Distinguishing Homogeneous from Heterogeneous Water Oxidation Catalysis when Beginning with Polyoxometalates

View Author Information
Chemistry Department, Colorado State University, Fort Collins, CO 80523, United States
Cite this: ACS Catal. 2014, 4, 3, 909–933
Publication Date (Web):February 14, 2014
https://doi.org/10.1021/cs4011716
Copyright © 2014 American Chemical Society
Article Views
3485
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)

Abstract

Polyoxometalates (POMs) have been proposed to be excellent homogeneous water oxidation catalysts (WOCs) due to their oxidative stability and activity. However, recent literature indicates that even these relatively robust compounds can be transformed into heterogeneous, metal-oxide WOCs under the oxidizing reaction conditions needed to drive O2 evolution. This review covers the experimental methodology for distinguishing homogeneous and heterogeneous WOCs; it then addresses the “what is the true catalyst?” problem for POMs used as precatalysts in the oxidation of water to O2. These results are also compared to the broader WOC literature. The primary findings in this review are the following: (1) Multiple, complementary experiments are needed to determine the true catalyst, including determination of catalyst stability, speciation, and kinetics under operating conditions. (2) Controls with hypothetical heterogeneous metal-oxide catalysts are required to determine their kinetic competence in the reaction and support the conclusion of either a homogeneous or heterogeneous catalyst. (3) Although many studies observe qualitative stability of the starting POM under the reaction conditions, there is a lack of quantitative stability studies; if one does not know where the (pre)catalyst mass lies, then it is very difficult to rule out the possibility of an alternative species as the true catalyst. (4) The stability of POMs is dependent on the polyoxometalate, the metal center, and the reaction conditions. And, (5) as a result of the variable stability of POMs under different reaction conditions, those different conditions can influence the dominant catalyst identity. Overall, knowledge of which POMs (or other starting materials) tend to transform into heterogeneous WOCs, and how they do so, is therefore critical to developing the next generation of higher stability, higher activity, and truly long-lived POM and other water oxidation catalysts.

Cited By


This article is cited by 160 publications.

  1. Lukas Reith, Carlos A. Triana, Faezeh Pazoki, Mehran Amiri, May Nyman, Greta R. Patzke. Unraveling Nanoscale Cobalt Oxide Catalysts for the Oxygen Evolution Reaction: Maximum Performance, Minimum Effort. Journal of the American Chemical Society 2021, 143 (37) , 15022-15038. https://doi.org/10.1021/jacs.1c03375
  2. Simran S. Saund, Maxime A. Siegler, V. Sara Thoi. Electrochemical Degradation of a Dicationic Rhenium Complex via Hoffman-Type Elimination. Inorganic Chemistry 2021, 60 (17) , 13011-13020. https://doi.org/10.1021/acs.inorgchem.1c01427
  3. Toru Konishi, Keisuke Kodani, Takuya Hasegawa, Shuhei Ogo, Si-Xuan Guo, John F. Boas, Jie Zhang, Alan M. Bond, Tadaharu Ueda. Impact of the Lithium Cation on the Voltammetry and Spectroscopy of [XVM11O40]n− (X = P, As (n = 4), S (n = 3); M = Mo, W): Influence of Charge and Addenda and Hetero Atoms. Inorganic Chemistry 2020, 59 (15) , 10522-10531. https://doi.org/10.1021/acs.inorgchem.0c00876
  4. Zhifeng Zhao, Bowen Cong, Zhanhua Su, Bairu Li. Self-Assembly of Biarsenate Capped Keggin Arsenomolybdates with Tetravanadium Substitution for Photocatalytic Degradation of Organic Dyes. Crystal Growth & Design 2020, 20 (4) , 2753-2760. https://doi.org/10.1021/acs.cgd.0c00123
  5. Cassandra T. Buru, Omar K. Farha. Strategies for Incorporating Catalytically Active Polyoxometalates in Metal–Organic Frameworks for Organic Transformations. ACS Applied Materials & Interfaces 2020, 12 (5) , 5345-5360. https://doi.org/10.1021/acsami.9b19785
  6. Grégoire Paille, Maria Gomez-Mingot, Catherine Roch-Marchal, Mohamed Haouas, Youven Benseghir, Thomas Pino, Minh-Huong Ha-Thi, Gautier Landrot, Pierre Mialane, Marc Fontecave, Anne Dolbecq, Caroline Mellot-Draznieks. Thin Films of Fully Noble Metal-Free [email protected] for Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces 2019, 11 (51) , 47837-47845. https://doi.org/10.1021/acsami.9b13121
  7. Arno Bergmann, Beatriz Roldan Cuenya. Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catalysis 2019, 9 (11) , 10020-10043. https://doi.org/10.1021/acscatal.9b01831
  8. Zahra Zand, Payam Salimi, Mohammad Reza Mohammadi, Robabeh Bagheri, Petko Chernev, Zhenlun Song, Holger Dau, Mikaela Görlin, Mohammad Mahdi Najafpour. Nickel–Vanadium Layered Double Hydroxide under Water-Oxidation Reaction: New Findings and Challenges. ACS Sustainable Chemistry & Engineering 2019, 7 (20) , 17252-17262. https://doi.org/10.1021/acssuschemeng.9b03971
  9. Ximeng Liu, Lei Zhang, Xiaorui Gao, Cao Guan, Yating Hu, John Wang. Enlarged Interlayer Spacing in Cobalt–Manganese Layered Double Hydroxide Guiding Transformation to Layered Structure for High Supercapacitance. ACS Applied Materials & Interfaces 2019, 11 (26) , 23236-23243. https://doi.org/10.1021/acsami.9b05564
  10. Victor M. Chernyshev, Alexander V. Astakhov, Ilya E. Chikunov, Roman V. Tyurin, Dmitry B. Eremin, Gleb S. Ranny, Victor N. Khrustalev, Valentine P. Ananikov. Pd and Pt Catalyst Poisoning in the Study of Reaction Mechanisms: What Does the Mercury Test Mean for Catalysis?. ACS Catalysis 2019, 9 (4) , 2984-2995. https://doi.org/10.1021/acscatal.8b03683
  11. Noah D. McMillion, Amanda W. Wilson, McKenna K. Goetz, Mu-Chieh Chang, Chia-Cheng Lin, Wei-Jie Feng, Charles C. L. McCrory, John S. Anderson. Imidazole for Pyridine Substitution Leads to Enhanced Activity Under Milder Conditions in Cobalt Water Oxidation Electrocatalysis. Inorganic Chemistry 2019, 58 (2) , 1391-1397. https://doi.org/10.1021/acs.inorgchem.8b02942
  12. Zoel Codolà, Ilaria Gamba, Ferran Acuña-Parés, Carla Casadevall, Martin Clémancey, Jean-Marc Latour, Josep M. Luis, Julio Lloret-Fillol, Miquel Costas. Design of Iron Coordination Complexes as Highly Active Homogenous Water Oxidation Catalysts by Deuteration of Oxidation-Sensitive Sites. Journal of the American Chemical Society 2019, 141 (1) , 323-333. https://doi.org/10.1021/jacs.8b10211
  13. Cheng Liang, Qiyi Ma, Haoran Yuan, Yongtao Wang, Jianyong Mao, Zhirong Chen, Jia Yao, Haoran Li. Aerobic Oxidation of 2-Methoxy-4-methylphenol to Vanillin Catalyzed by Cobalt/NaOH: Identification of CoOx(OH)y Nanoparticles as the True Catalyst. ACS Catalysis 2018, 8 (10) , 9103-9114. https://doi.org/10.1021/acscatal.8b02468
  14. Qiu-Yi Zhai, Juan Su, Ting-Ting Guo, Jin Yang, Jian-Fang Ma, Jie-Sheng Chen. Two Porous Polyoxometalate-Resorcin[4]arene-Based Supramolecular Complexes: Selective Adsorption of Organic Dyes and Electrochemical Properties. Crystal Growth & Design 2018, 18 (10) , 6046-6053. https://doi.org/10.1021/acs.cgd.8b00891
  15. Scott J. Folkman, Joaquin Soriano-Lopez, José Ramón Galán-Mascarós, Richard G. Finke. Electrochemically Driven Water-Oxidation Catalysis Beginning with Six Exemplary Cobalt Polyoxometalates: Is It Molecular, Homogeneous Catalysis or Electrode-Bound, Heterogeneous CoOx Catalysis?. Journal of the American Chemical Society 2018, 140 (38) , 12040-12055. https://doi.org/10.1021/jacs.8b06303
  16. Rafael Müller, Ilya Kuznetsov, Yunieski Arbelo, Matthias Trottmann, Carmen S. Menoni, Jorge J. Rocca, Greta R. Patzke, Davide Bleiner. Depth-Profiling Microanalysis of CoNCN Water-Oxidation Catalyst Using a λ = 46.9 nm Plasma Laser for Nano-Ionization Mass Spectrometry. Analytical Chemistry 2018, 90 (15) , 9234-9240. https://doi.org/10.1021/acs.analchem.8b01740
  17. Ira A. Weinstock, Roy E. Schreiber, Ronny Neumann. Dioxygen in Polyoxometalate Mediated Reactions. Chemical Reviews 2018, 118 (5) , 2680-2717. https://doi.org/10.1021/acs.chemrev.7b00444
  18. J. M. Gómez-Gil, E. Laborda, J. Gonzalez, A. Molina, and R. G. Compton . Electrochemical and Computational Study of Ion Association in the Electroreduction of PW12O403–. The Journal of Physical Chemistry C 2017, 121 (48) , 26751-26763. https://doi.org/10.1021/acs.jpcc.7b07073
  19. Cassandra T. Buru, Peng Li, B. Layla Mehdi, Alice Dohnalkova, Ana E. Platero-Prats, Nigel D. Browning, Karena W. Chapman, Joseph T. Hupp, and Omar K. Farha . Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-type Metal–Organic Framework. Chemistry of Materials 2017, 29 (12) , 5174-5181. https://doi.org/10.1021/acs.chemmater.7b00750
  20. Tadaharu Ueda, Keisuke Kodani, Hiromi Ota, Motoo Shiro, Si-Xuan Guo, John F. Boas, and Alan M. Bond . Voltammetric and Spectroscopic Studies of α- and β-[PW12O40]3– Polyoxometalates in Neutral and Acidic Media: Structural Characterization as Their [(n-Bu4N)3][PW12O40] Salts. Inorganic Chemistry 2017, 56 (7) , 3990-4001. https://doi.org/10.1021/acs.inorgchem.6b03046
  21. Sung Ki Cho and Jinho Chang . Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni2+ and Its Combination with Photoelectrode. ACS Omega 2017, 2 (2) , 432-442. https://doi.org/10.1021/acsomega.6b00448
  22. Wei Zhang, Wenzhen Lai, and Rui Cao . Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews 2017, 117 (4) , 3717-3797. https://doi.org/10.1021/acs.chemrev.6b00299
  23. Scott J. Folkman and Richard G. Finke . Electrochemical Water Oxidation Catalysis Beginning with Co(II) Polyoxometalates: The Case of the Precatalyst Co4V2W18O6810–. ACS Catalysis 2017, 7 (1) , 7-16. https://doi.org/10.1021/acscatal.6b02244
  24. Jamie M. Cameron, Laia Vilà-Nadal, Ross S. Winter, Fumichika Iijima, Juan Carlos Murillo, Antonio Rodríguez-Fortea, Hiroki Oshio, Josep M. Poblet, and Leroy Cronin . Investigating the Transformations of Polyoxoanions Using Mass Spectrometry and Molecular Dynamics. Journal of the American Chemical Society 2016, 138 (28) , 8765-8773. https://doi.org/10.1021/jacs.6b02245
  25. Scott J. Folkman, Joel T. Kirner, and Richard G. Finke . Cobalt Polyoxometalate Co4V2W18O6810–: A Critical Investigation of Its Synthesis, Purity, and Observed 51V Quadrupolar NMR. Inorganic Chemistry 2016, 55 (11) , 5343-5355. https://doi.org/10.1021/acs.inorgchem.6b00324
  26. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
  27. Isolda Roger and Mark D. Symes . Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations. Journal of the American Chemical Society 2015, 137 (43) , 13980-13988. https://doi.org/10.1021/jacs.5b08139
  28. Andy I. Nguyen, Micah S. Ziegler, Pascual Oña-Burgos, Manuel Sturzbecher-Hohne, Wooyul Kim, Donatela E. Bellone, and T. Don Tilley . Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. Journal of the American Chemical Society 2015, 137 (40) , 12865-12872. https://doi.org/10.1021/jacs.5b08396
  29. Kai Liu, Zhixiao Yao, and Yu-Fei Song . Polyoxometalates Hosted in Layered Double Hydroxides: Highly Enhanced Catalytic Activity and Selectivity in Sulfoxidation of Sulfides. Industrial & Engineering Chemistry Research 2015, 54 (37) , 9133-9141. https://doi.org/10.1021/acs.iecr.5b02298
  30. Hongfei Liu, Mauro Schilling, Maxim Yulikov, Sandra Luber, and Greta R. Patzke . Homogeneous Photochemical Water Oxidation with Cobalt Chloride in Acidic Media. ACS Catalysis 2015, 5 (9) , 4994-4999. https://doi.org/10.1021/acscatal.5b01101
  31. Fabio Evangelisti, René Moré, Florian Hodel, Sandra Luber, and Greta Ricarda Patzke . 3d–4f {CoII3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts. Journal of the American Chemical Society 2015, 137 (34) , 11076-11084. https://doi.org/10.1021/jacs.5b05831
  32. Hongfei Liu, Ying Zhou, René Moré, Rafael Müller, Thomas Fox, and Greta R. Patzke . Correlations among Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on Lithium Cobalt Oxides. ACS Catalysis 2015, 5 (6) , 3791-3800. https://doi.org/10.1021/acscatal.5b00078
  33. Ercan Bayram, John C. Linehan, John L. Fulton, Nathaniel K. Szymczak, and Richard G. Finke . Determination of the Dominant Catalyst Derived from the Classic [RhCp*Cl2]2 Precatalyst System: Is it Single-Metal Rh1Cp*-Based, Subnanometer Rh4 Cluster-Based, or Rh(0)n Nanoparticle-Based Cyclohexene Hydrogenation Catalysis at Room Temperature and Mild Pressures?. ACS Catalysis 2015, 5 (6) , 3876-3886. https://doi.org/10.1021/acscatal.5b00315
  34. Lingjing Chen, Gui Chen, Chi-Fai Leung, Shek-Man Yiu, Chi-Chiu Ko, Elodie Anxolabéhère-Mallart, Marc Robert, and Tai-Chu Lau . Dual Homogeneous and Heterogeneous Pathways in Photo- and Electrocatalytic Hydrogen Evolution with Nickel(II) Catalysts Bearing Tetradentate Macrocyclic Ligands. ACS Catalysis 2015, 5 (1) , 356-364. https://doi.org/10.1021/cs501534h
  35. Arianna Savini, Alberto Bucci, Morena Nocchetti, Riccardo Vivani, Hicham Idriss, and Alceo Macchioni . Activity and Recyclability of an Iridium–EDTA Water Oxidation Catalyst Immobilized onto Rutile TiO2. ACS Catalysis 2015, 5 (1) , 264-271. https://doi.org/10.1021/cs501590k
  36. Mojtaba Amini, Younes Mousazade, Zahra Zand, Mojtaba Bagherzadeh, Mohammad Mahdi Najafpour. Ultra-small and highly dispersive iron oxide hydroxide as an efficient catalyst for oxidation reactions: a Swiss-army-knife catalyst. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-85672-x
  37. Gustavo Cárdenas, Ivan Trentin, Ludwig Schwiedrzik, David Hernández-Castillo, Grace A. Lowe, Julian Kund, Christine Kranz, Sarah Klingler, Robert Stach, Boris Mizaikoff, Philipp Marquetand, Juan J. Nogueira, Carsten Streb, Leticia González. Activation by oxidation and ligand exchange in a molecular manganese vanadium oxide water oxidation catalyst. Chemical Science 2021, 12 (39) , 12918-12927. https://doi.org/10.1039/D1SC03239A
  38. CHANDANI SINGH, SAMAR K DAS. Polyoxometalate based hybrid compound as a pre-catalyst for electrocatalytic water reduction at neutral pH. Journal of Chemical Sciences 2021, 133 (3) https://doi.org/10.1007/s12039-021-01928-z
  39. Jens Friedland, Robert Güttel. Challenges in transfer of gas-liquid reactions from batch to continuous operation: dimensional analysis and simulations for aerobic oxidation. Journal of Flow Chemistry 2021, 11 (3) , 625-640. https://doi.org/10.1007/s41981-021-00176-z
  40. Zahra Abdi, Matthias Vandichel, Alla S. Sologubenko, Marc-Georg Willinger, Jian-Ren Shen, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. The importance of identifying the true catalyst when using Randles-Sevcik equation to calculate turnover frequency. International Journal of Hydrogen Energy 2021, 360 https://doi.org/10.1016/j.ijhydene.2021.09.039
  41. Amirreza Valizadeh, Rahman Bikas, Pavlo Aleshkevych, Anna Kozakiewicz, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. A dinuclear iron complex as a precatalyst for water oxidation under alkaline conditions. International Journal of Hydrogen Energy 2021, 46 (58) , 29896-29904. https://doi.org/10.1016/j.ijhydene.2021.06.123
  42. Morsy A.M. Abu-Youssef, Zahia M. Bobaeda, Taher S. Kassem, Nicholas J. Lees-Gayed, Joerg H. Albering, Eman Salam, Saied M. Soliman. Synthesis, X-ray structure, Hirshfeld analysis and DFT studies of Ni(II) complexes with pyridine-type ligands and monoanionic (SCN¯, N3¯ and NO3¯) ligands. Journal of Molecular Structure 2021, 1236 , 130325. https://doi.org/10.1016/j.molstruc.2021.130325
  43. Francesco Rigodanza, Nadia Marino, Alessandro Bonetto, Antonio Marcomini, Marcella Bonchio, Mirco Natali, Andrea Sartorel. Water‐Assisted Concerted Proton‐Electron Transfer at Co(II)‐Aquo Sites in Polyoxotungstates With Photogenerated Ru III (bpy) 3 3+ Oxidant. ChemPhysChem 2021, 22 (12) , 1208-1218. https://doi.org/10.1002/cphc.202100190
  44. Mahya Salmanion, Mohammad Mahdi Najafpour. Structural changes of a NiFe-based metal-organic framework during the oxygen-evolution reaction under alkaline conditions. International Journal of Hydrogen Energy 2021, 46 (37) , 19245-19253. https://doi.org/10.1016/j.ijhydene.2021.03.107
  45. Michael R. Horn, Amandeep Singh, Suaad Alomari, Sara Goberna-Ferrón, Raúl Benages-Vilau, Nilesh Chodankar, Nunzio Motta, Kostya (Ken) Ostrikov, Jennifer MacLeod, Prashant Sonar, Pedro Gomez-Romero, Deepak Dubal. Polyoxometalates (POMs): from electroactive clusters to energy materials. Energy & Environmental Science 2021, 14 (4) , 1652-1700. https://doi.org/10.1039/D0EE03407J
  46. Alexey S. Galushko, Alexey S. Kashin, Dmitry B. Eremin, Mikhail V. Polynski, Evgeniy O. Pentsak, Victor M. Chernyshev, Valentine P. Ananikov. Introduction to Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts. 2021,,, 13-42. https://doi.org/10.1002/9783527821761.ch2
  47. Yue Wu, Lihua Bi. Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites. Catalysts 2021, 11 (4) , 524. https://doi.org/10.3390/catal11040524
  48. Ali Haider, Bassem S. Bassil, Zhengguo Lin, Xiang Ma, Peter J. Haferl, Jasleen K. Bindra, Jared Kinyon, Guangjin Zhang, Bineta Keita, Naresh S. Dalal, Ulrich Kortz. Synthesis, structure, electrochemistry and magnetism of cobalt-, nickel- and zinc-containing [M 4 (OH) 3 (H 2 O) 2 (α-SiW 10 O 36.5 ) 2 ] 13− (M = Co 2+ , Ni 2+ , and Zn 2+ ). Dalton Transactions 2021, 50 (11) , 3923-3930. https://doi.org/10.1039/D0DT03392H
  49. Konstantin E. Shepelenko, Safarmurod B. Soliev, Alexey S. Galushko, Victor M. Chernyshev, Valentine P. Ananikov. Different effects of metal-NHC bond cleavage on the Pd/NHC and Ni/NHC catalyzed α-arylation of ketones with aryl halides. Inorganic Chemistry Frontiers 2021, 8 (6) , 1511-1527. https://doi.org/10.1039/D0QI01411G
  50. Mehdi Khosravi, Hadi Feizi, Behzad Haghighi, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. Investigation of photo-electrochemical response of iron oxide/mixed-phase titanium oxide heterojunction toward possible solar energy conversion. International Journal of Hydrogen Energy 2021, 46 (10) , 7241-7253. https://doi.org/10.1016/j.ijhydene.2020.11.247
  51. M.K. Goetz, J.S. Anderson. Cobalt-Oxo Complexes. 2021,,https://doi.org/10.1016/B978-0-08-102688-5.00046-5
  52. Nader Akbari, Mohammad Mahdi Najafpour. A chromium complex under water oxidation: A conversion mechanism and a comprehensive hypothesis. International Journal of Hydrogen Energy 2021, 46 (5) , 3954-3963. https://doi.org/10.1016/j.ijhydene.2020.10.229
  53. Michael John Craig, Romain Barda-Chatain, Max García-Melchor. Fundamental insights and rational design of low-cost polyoxometalates for the oxygen evolution reaction. Journal of Catalysis 2021, 393 , 202-206. https://doi.org/10.1016/j.jcat.2020.11.031
  54. Nadiia I. Gumerova, Annette Rompel. Polyoxometalates in solution: speciation under spotlight. Chemical Society Reviews 2020, 49 (21) , 7568-7601. https://doi.org/10.1039/D0CS00392A
  55. Shima Kalantarifard, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. Water oxidation by a nickel complex: New challenges and an alternative mechanism. International Journal of Hydrogen Energy 2020, 45 (58) , 33563-33573. https://doi.org/10.1016/j.ijhydene.2020.09.111
  56. Kousik Das, Soumyajit Roy. Oxometalate- and Soft-Oxometalate-Based Hybrid Materials: From Synthesis to Catalytic Applications. Journal of Molecular and Engineering Materials 2020, 08 (03n04) , 2030002. https://doi.org/10.1142/S2251237320300028
  57. Yan Mei, Ting-Ting Li, Jinjie Qian, Hongwei Li, Yue-Qing Zheng. Improved performance of photoelectrochemical water oxidation from nanostructured hematite photoanode with an immobilized molecular cobalt salophen catalyst. Journal of Materials Science 2020, 55 (27) , 12864-12875. https://doi.org/10.1007/s10853-020-04971-2
  58. Victor M. Chernyshev, Ekaterina A. Denisova, Dmitry B. Eremin, Valentine P. Ananikov. The key role of R–NHC coupling (R = C, H, heteroatom) and M–NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chemical Science 2020, 11 (27) , 6957-6977. https://doi.org/10.1039/D0SC02629H
  59. Somayeh Mehrabani, Rahman Bikas, Zahra Zand, Younes Mousazade, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. Water splitting by a pentanuclear iron complex. International Journal of Hydrogen Energy 2020, 45 (35) , 17434-17443. https://doi.org/10.1016/j.ijhydene.2020.04.249
  60. Dominik Gärtner, Sebastian Sandl, Axel Jacobi von Wangelin. Homogeneous vs. heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science & Technology 2020, 10 (11) , 3502-3514. https://doi.org/10.1039/D0CY00644K
  61. Hussein A. Younus, Nazir Ahmad, Ibrahim Yildiz, Serge Zhuiykov, Shiguo Zhang, Francis Verpoort. Ligand photodissociation in Ru( ii )–1,4,7-triazacyclononane complexes enhances water oxidation and enables electrochemical generation of surface active species. Catalysis Science & Technology 2020, 10 (10) , 3399-3408. https://doi.org/10.1039/C9CY02575H
  62. Bahram Sarvi, Seyedeh Maedeh Hosseini, Bahareh Deljoo, Abdelhamid El-Sawy, Alireza Shirazi Amin, Mark Aindow, Steven L. Suib, Mohammad Mahdi Najafpour. New findings and current controversies in the reaction of ruthenium red and ammonium cerium( iv ) nitrate: focus on the precipitated compound. Catalysis Science & Technology 2020, 10 (8) , 2491-2502. https://doi.org/10.1039/C9CY02499A
  63. B. Cornils. Finke's test. 2020,,https://doi.org/10.1002/9783527809080.cataz06919
  64. Rahul Kaushik, Rahul Sakla, D. Amilan Jose, Amrita Ghosh. Giant iron polyoxometalate that works as a catalyst for water oxidation. New Journal of Chemistry 2020, 44 (9) , 3764-3770. https://doi.org/10.1039/C9NJ05690D
  65. Brian D. McCarthy, Anna M. Beiler, Ben A. Johnson, Timofey Liseev, Ashleigh T. Castner, Sascha Ott. Analysis of electrocatalytic metal-organic frameworks. Coordination Chemistry Reviews 2020, 406 , 213137. https://doi.org/10.1016/j.ccr.2019.213137
  66. Dandan Gao, Ivan Trentin, Ludwig Schwiedrzik, Leticia González, Carsten Streb. The Reactivity and Stability of Polyoxometalate Water Oxidation Electrocatalysts. Molecules 2020, 25 (1) , 157. https://doi.org/10.3390/molecules25010157
  67. Nagaraju Shilpa, Ayasha Nadeema, Sreekumar Kurungot. Glycine‐Induced Electrodeposition of Nanostructured Cobalt Hydroxide: A Bifunctional Catalyst for Overall Water Splitting. ChemSusChem 2019, 12 (24) , 5300-5309. https://doi.org/10.1002/cssc.201902323
  68. Yaxue Jia, Shucheng Sun, Xiujun Cui, Xiaohong Wang, Li Yang. Enzyme-like catalysis of polyoxometalates for chemiluminescence: Application in ultrasensitive detection of H2O2 and blood glucose. Talanta 2019, 205 , 120139. https://doi.org/10.1016/j.talanta.2019.120139
  69. Mohammad Mahdi Najafpour, Hadi Feizi. A new decomposition mechanism for metal complexes under water-oxidation conditions. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-43953-6
  70. Maya Singer Hobbs, Emma V. Sackville, Andrew J. Smith, Karen J. Edler, Ulrich Hintermair. In Situ Monitoring of Nanoparticle Formation during Iridium‐Catalysed Oxygen Evolution by Real‐Time Small Angle X‐Ray Scattering. ChemCatChem 2019, 11 (21) , 5313-5321. https://doi.org/10.1002/cctc.201901268
  71. Md. Ali Asraf, Chizoba I. Ezugwu, C. M. Zakaria, Francis Verpoort. Homogeneous photochemical water oxidation with metal salophen complexes in neutral media. Photochemical & Photobiological Sciences 2019, 18 (11) , 2782-2791. https://doi.org/10.1039/C9PP00254E
  72. Qiyu Hu, Xiangyu Meng, Yinjuan Dong, Qing Han, Yifan Wang, Yong Ding. A stable iron-containing polyoxometalate coupled with semiconductor for efficient photocatalytic water oxidation under acidic condition. Chemical Communications 2019, 55 (78) , 11778-11781. https://doi.org/10.1039/C9CC05726A
  73. Lubin Ni, Robin Güttinger, C. A. Triana, Bernhard Spingler, Kim K. Baldridge, Greta R. Patzke. Pathways towards true catalysts: computational modelling and structural transformations of Zn-polyoxotungstates. Dalton Transactions 2019, 48 (35) , 13293-13304. https://doi.org/10.1039/C9DT03018B
  74. Younes Mousazade, Mohammad Mahdi Najafpour, Robabeh Bagheri, Zvonko Jagličić, Jitendra Pal Singh, Keun Hwa Chae, Zhenlun Song, Margarita V. Rodionova, Roman A. Voloshin, Jian-Ren Shen, Seeram Ramakrishna, Suleyman I. Allakhverdiev. A manganese( ii ) phthalocyanine under water-oxidation reaction: new findings. Dalton Transactions 2019, 48 (32) , 12147-12158. https://doi.org/10.1039/C9DT01790A
  75. Xue Bai, Hongyan Lin, Xiuli Wang, Junjun Sun, Xiang Wang, Guocheng Liu. Two polyoxometalate-based metal–organic complexes constructed from a pyridine-polyazole: Assembly, structures, electrochemistry and adsorption properties. Polyhedron 2019, 166 , 91-97. https://doi.org/10.1016/j.poly.2019.03.037
  76. Katherine J. Lee, Brian D. McCarthy, Jillian L. Dempsey. On decomposition, degradation, and voltammetric deviation: the electrochemist's field guide to identifying precatalyst transformation. Chemical Society Reviews 2019, 48 (11) , 2927-2945. https://doi.org/10.1039/C8CS00851E
  77. Lihui Zhang, Qiwen Wang, Yu Qi, Ling Li, Shengtian Wang, Xiaohong Wang. An ultrasensitive sensor based on polyoxometalate and zirconium dioxide nanocomposites hybrids material for simultaneous detection of toxic clenbuterol and ractopamine. Sensors and Actuators B: Chemical 2019, 288 , 347-355. https://doi.org/10.1016/j.snb.2019.03.033
  78. Andy I. Nguyen, Kurt M. Van Allsburg, Maxwell W. Terban, Michal Bajdich, Julia Oktawiec, Jaruwan Amtawong, Micah S. Ziegler, James P. Dombrowski, K. V. Lakshmi, Walter S. Drisdell, Junko Yano, Simon J. L. Billinge, T. Don Tilley. Stabilization of reactive Co 4 O 4 cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Sciences 2019, 20 , 201815013. https://doi.org/10.1073/pnas.1815013116
  79. Anne-Lucie Teillout, Pedro de Oliveira, Jérôme Marrot, Robertha Howell, Neus Vilà, Alain Walcarius, Israël Mbomekallé. Synthesis, Crystal Structure, Electrochemistry and Electro-Catalytic Properties of the Manganese-Containing Polyoxotungstate, [(Mn(H2O)3)2(H2W12O42)]6−. Inorganics 2019, 7 (2) , 15. https://doi.org/10.3390/inorganics7020015
  80. Hadi Feizi, Robabeh Bagheri, Zvonko Jagličić, Jitendra Pal Singh, Keun Hwa Chae, Zhenlun Song, Mohammad Mahdi Najafpour. A nickel( ii ) complex under water-oxidation reaction: what is the true catalyst?. Dalton Transactions 2019, 48 (2) , 547-557. https://doi.org/10.1039/C8DT03990A
  81. Carminna Ottone, Simelys Hernández, Marco Armandi, Barbara Bonelli. Sacrificial Oxidants as a Means to Study the Catalytic Activity of Water Oxidation Catalysts. 2019,,, 29-47. https://doi.org/10.1007/978-3-030-12712-1_3
  82. Carminna Ottone, Simelys Hernández, Marco Armandi, Barbara Bonelli. Use of the Bubbling Reactor with the $${\mathbf{Ru(bpy)}}_{\mathbf{3}}^{\mathbf{2+}} {\mathbf{/S}}_{\mathbf{2}} {\mathbf{O}}_{\mathbf{8}} ^{\mathbf{2 - }}$$ Photosystem for Measuring the Rate of Water Oxidation as Promoted by Different Manganese Oxides. 2019,,, 49-74. https://doi.org/10.1007/978-3-030-12712-1_4
  83. Julio Lloret-Fillol, Miquel Costas. Water oxidation at base metal molecular catalysts. 2019,,, 1-52. https://doi.org/10.1016/bs.adomc.2019.02.003
  84. Gouhar Azadi, Zahra Zand, Younes Mousazade, Robabeh Bagheri, Junfeng Cui, Zhenlun Song, Rahman Bikas, Krzysztof Wozniak, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. A tetranuclear nickel(II) complex for water oxidation: Meeting new challenges. International Journal of Hydrogen Energy 2019, 44 (5) , 2857-2867. https://doi.org/10.1016/j.ijhydene.2018.12.059
  85. Chang-jiang Yang. Polyoxometalate/Lead Composite Anode for Efficient Oxygen Evolution in Zinc Electrowinning. Journal of The Electrochemical Society 2019, 166 (4) , E129-E136. https://doi.org/10.1149/2.0751904jes
  86. Rasoul Safdari, Mohammad Reza Mohammadi, Małgorzata Hołyńska, Petko Chernev, Holger Dau, Mohammad Mahdi Najafpour. A mononuclear cobalt complex for water oxidation: new controversies and puzzles. Dalton Transactions 2018, 47 (46) , 16668-16673. https://doi.org/10.1039/C8DT03147A
  87. Kevin P. Sullivan, Qiushi Yin, Daniel L. Collins-Wildman, Meilin Tao, Yurii V. Geletii, Djamaladdin G. Musaev, Tianquan Lian, Craig L. Hill. Multi-Tasking POM Systems. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00365
  88. Joaquín Soriano-López, Fangyuan Song, Greta R. Patzke, J. R. Galan-Mascaros. Photoinduced Oxygen Evolution Catalysis Promoted by Polyoxometalate Salts of Cationic Photosensitizers. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00302
  89. Shuangshuang Zhang, Rongji Liu, Shiwen Li, Anne Dolbecq, Pierre Mialane, Lin Suo, Lihua Bi, Baofang Zhang, Tianbo Liu, Caixia Wu, Likai Yan, Zhongmin Su, Guangjin Zhang, Bineta Keita. Simple and efficient polyoxomolybdate-mediated synthesis of novel graphene and metal nanohybrids for versatile applications. Journal of Colloid and Interface Science 2018, 514 , 507-516. https://doi.org/10.1016/j.jcis.2017.12.039
  90. Sergio Gonell, Alexander J.M. Miller. Carbon Dioxide Electroreduction Catalyzed by Organometallic Complexes. 2018,,, 1-69. https://doi.org/10.1016/bs.adomc.2018.07.001
  91. Mohammad Mahdi Najafpour, Hadi Feizi. Water oxidation catalyzed by two cobalt complexes: new challenges and questions. Catalysis Science & Technology 2018, 8 (7) , 1840-1848. https://doi.org/10.1039/C7CY02602A
  92. Zhewei Weng, Yuanhang Ren, Min Gu, Bin Yue, Heyong He. Two mixed-addenda Nb/W polyoxometalate-based hybrid compounds containing multicopper units: synthesis, structures, and electrochemical and magnetic properties. Dalton Transactions 2018, 47 (1) , 233-239. https://doi.org/10.1039/C7DT03968A
  93. Hadi Feizi, Farshad Shiri, Robabeh Bagheri, Jitendra Pal Singh, Keun Hwa Chae, Zhenlun Song, Mohammad Mahdi Najafpour. The application of a nickel( ii ) Schiff base complex in water oxidation: the importance of nanosized materials. Catalysis Science & Technology 2018, 8 (15) , 3954-3968. https://doi.org/10.1039/C8CY00582F
  94. Mohammad Mahdi Najafpour, Somayeh Mehrabani, Younes Mousazade, Małgorzata Hołyńska. Water oxidation by a copper( ii ) complex: new findings, questions, challenges and a new hypothesis. Dalton Transactions 2018, 47 (27) , 9021-9029. https://doi.org/10.1039/C8DT01876F
  95. Zahra Zand, Mohammad Mahdi Najafpour, Robabeh Bagheri, Zhenlun Song. Nanosized silver bromide: an efficient catalyst for alcohol oxidation in the presence of a multinuclear silver complex. New Journal of Chemistry 2018, 42 (14) , 12172-12179. https://doi.org/10.1039/C8NJ02288G
  96. Yidan Liu, Yi Jiang, Fei Li, Fengshou Yu, Wenchao Jiang, Lixin Xia. Molecular cobalt salophen catalyst-integrated BiVO 4 as stable and robust photoanodes for photoelectrochemical water splitting. Journal of Materials Chemistry A 2018, 6 (23) , 10761-10768. https://doi.org/10.1039/C8TA01304G
  97. Hui‐Qing Yuan, Hua‐Hua Wang, Jaipal Kandhadi, Hui Wang, Shu‐Zhong Zhan, Hai‐Yang Liu. Electrochemical and photocatalytic hydrogen evolution by an electron‐deficient cobalt tris(ethoxycarbonyl)corrole complex. Applied Organometallic Chemistry 2017, 31 (11) https://doi.org/10.1002/aoc.3773
  98. Xiao-Wu Lei, Cheng-Yang Yue, Jun-Chao Wei, Rui-Qing Li, Fu-Qi Mi, Yan Li, Lu Gao, Quan-Xiu Liu. Novel 3D Semiconducting Open-Frameworks based on Cuprous Bromides with Visible Light Driven Photocatalytic Properties. Chemistry - A European Journal 2017, 23 (58) , 14547-14553. https://doi.org/10.1002/chem.201702736
  99. Theodoros S. Symeonidis, Alexandros Athanasoulis, Rikako Ishii, Yasuhiro Uozumi, Yoichi M. A. Yamada, Ioannis N. Lykakis. Photocatalytic Aerobic Oxidation of Alkenes into Epoxides or Chlorohydrins Promoted by a Polymer-Supported Decatungstate Catalyst. ChemPhotoChem 2017, 1 (10) , 479-484. https://doi.org/10.1002/cptc.201700079
  100. Laia Vilà-Nadal, Leroy Cronin. Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nature Reviews Materials 2017, 2 (10) https://doi.org/10.1038/natrevmats.2017.54
Load all citations