Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges

View Author Information
Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
Cite this: ACS Catal. 2014, 4, 10, 3701–3714
Publication Date (Web):September 7, 2014
https://doi.org/10.1021/cs500713d
Copyright © 2014 American Chemical Society
Article Views
9429
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (9 MB)

Abstract

Inspired by natural processes, there is an enormous interest in light-driven water splitting to convert solar energy into electrical and chemical energy. This approach is thought to be able to eventually solve the main energy problem that society will face more dramatically in the near future. The water oxidation reaction is widely considered a major barrier for utilizing solar energy in artificial photosynthesis. Due to the relatively high overpotential and slow kinetics of the reaction, numerous efforts are made on the development of non-noble metal oxygen evolution catalysts such as transition metal oxides. Among them, cobalt-oxide-based materials have shown decent activity and thus present themselves as a promising candidate. In this perspective, we summarize the state of the art in synthesis of cobalt-oxide-based materials and application as water oxidation catalysts through electrochemical, photochemical, and photoelectrochemical approaches. Additionally, we state the future challenges that are critical to overcome to push the catalyst performance one step further.

Cited By


This article is cited by 382 publications.

  1. Xue Bai, Qiang Wang, Jingqi Guan. Bimetallic Iron–Cobalt Nanoparticles Coated with Amorphous Carbon for Oxygen Evolution. ACS Applied Nano Materials 2021, 4 (11) , 12663-12671. https://doi.org/10.1021/acsanm.1c03208
  2. Ruihao Gong, Dandan Gao, Rongji Liu, Dieter Sorsche, Johannes Biskupek, Ute Kaiser, Sven Rau, Carsten Streb. Self-Activation of a Polyoxometalate-Derived Composite Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (11) , 12671-12676. https://doi.org/10.1021/acsaem.1c02399
  3. Quyen T. Nguyen, Elodie Rousset, Van T. H. Nguyen, Vincent Colliere, Pierre Lecante, Wantana Klysubun, Karine Philippot, Jérôme Esvan, Marc Respaud, Gilles Lemercier, Phong D. Tran, Catherine Amiens. Covalent Grafting of Ruthenium Complexes on Iron Oxide Nanoparticles: Hybrid Materials for Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces 2021, 13 (45) , 53829-53840. https://doi.org/10.1021/acsami.1c15051
  4. Manashi Nath, Umanga De Silva, Harish Singh, Matthew Perkins, Wipula P. R. Liyanage, Siddesh Umapathi, Shatadru Chakravarty, Jahangir Masud. Cobalt Telluride: A Highly Efficient Trifunctional Electrocatalyst for Water Splitting and Oxygen Reduction. ACS Applied Energy Materials 2021, 4 (8) , 8158-8174. https://doi.org/10.1021/acsaem.1c01438
  5. Yongjie Chen, Hedong Chen, Jiaxun Song, Yingzhi Zhao, Lujia Rao, Guofu Zhou, Richard Nötzel. One-Compartment InGaN Nanowire Fuel Cell in the Light and Dark Operating Modes. ACS Omega 2021, 6 (27) , 17464-17471. https://doi.org/10.1021/acsomega.1c01844
  6. Mahendran Mathankumar, Kannimuthu Karthick, Amal Kaitheri Nanda kumar, Subrata Kundu, Subramanian Balasubramanian. In Situ Decorated Ni Metallic Layer with CoS2-Layered Thin Films via a Layer-by-Layer Strategy Using Pulsed Laser Deposition for Enhanced Electrocatalytic OER. Inorganic Chemistry 2021, 60 (12) , 8946-8957. https://doi.org/10.1021/acs.inorgchem.1c00839
  7. Jayeeta Saha, Ranadeb Ball, Chandramouli Subramaniam. Premagnetized Carbon-Catalyst Interface Delivering 650% Enhancement in Electrocatalytic Kinetics of Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2021, 9 (23) , 7792-7802. https://doi.org/10.1021/acssuschemeng.1c01095
  8. Jaeun Kang, Myung Jun Lee, Nam Gue Oh, Jiehye Shin, Seong Jung Kwon, Hyungphil Chun, Seung-Joo Kim, Hoseop Yun, Hongil Jo, Kang Min Ok, Junghwan Do. I3O0-Type 3D Framework of Cobalt Cinnamate and Its Efficient Electrocatalytic Activity toward the Oxygen Evolution Reaction. Chemistry of Materials 2021, 33 (8) , 2804-2813. https://doi.org/10.1021/acs.chemmater.0c04785
  9. Biswajit Mondal, Samir Chattopadhyay, Subal Dey, Atif Mahammed, Kaustuv Mittra, Atanu Rana, Zeev Gross, Abhishek Dey. Elucidation of Factors That Govern the 2e–/2H+ vs 4e–/4H+ Selectivity of Water Oxidation by a Cobalt Corrole. Journal of the American Chemical Society 2020, 142 (50) , 21040-21049. https://doi.org/10.1021/jacs.0c08654
  10. Anna S. Schenk, Miriam Goll, Lukas Reith, Manuel Roussel, Björn Blaschkowski, Sabine Rosenfeldt, Xiaofei Yin, Wolfgang W. Schmahl, Sabine Ludwigs. Hierarchically Structured Spherulitic Cobalt Hydroxide Carbonate as a Precursor to Ordered Nanostructures of Electrocatalytically Active Co3O4. Crystal Growth & Design 2020, 20 (10) , 6407-6420. https://doi.org/10.1021/acs.cgd.0c00576
  11. Ayuk M. Ako, Amal Cherian Kathalikkattil, Rory Elliott, Joaquín Soriano-López, Ian M. McKeogh, Muhammad Zubair, Nianyong Zhu, Max García-Melchor, Paul E. Kruger, Wolfgang Schmitt. Synthetic Approaches to Metallo-Supramolecular CoII Polygons and Potential Use for H2O Oxidation. Inorganic Chemistry 2020, 59 (19) , 14432-14438. https://doi.org/10.1021/acs.inorgchem.0c02182
  12. Baghendra Singh, Om Prakash, Pralay Maiti, Arindam Indra. Electrochemical Transformation of Metal Organic Framework into Ultrathin Metal Hydroxide-(oxy)hydroxide Nanosheets for Alkaline Water Oxidation. ACS Applied Nano Materials 2020, 3 (7) , 6693-6701. https://doi.org/10.1021/acsanm.0c01137
  13. Fengkai Wu, Jiale Xie, Yue You, Zhengyu Zhao, Liuliu Wang, Xiaoying Chen, Pingping Yang, Yuelong Huang. Cobalt Metal–Organic Framework Ultrathin Cocatalyst Overlayer for Improved Photoelectrochemical Activity of Ti-Doped Hematite. ACS Applied Energy Materials 2020, 3 (5) , 4867-4876. https://doi.org/10.1021/acsaem.0c00465
  14. Hemam Rachna Devi, Ravi Nandan, Karuna Kar Nanda. Mechanistic Investigation into Efficient Water Oxidation by Co–Ni-Based Hybrid Oxide–Hydroxide Flowers. ACS Applied Materials & Interfaces 2020, 12 (12) , 13888-13895. https://doi.org/10.1021/acsami.9b22956
  15. Tao Jiang, Syed-asif Ansar, Xingchen Yan, Chaoyue Chen, Xiujuan Fan, Fatemeh Razmjooei, Regine Reisser, Ghislain Montavon, Hanlin Liao. In Situ Electrochemical Activation of a Codoped Heterogeneous System as a Highly Efficient Catalyst for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. ACS Applied Energy Materials 2019, 2 (12) , 8809-8817. https://doi.org/10.1021/acsaem.9b01807
  16. Jayashree Swaminathan, Anand B. Puthirath, Mihir Ranjan Sahoo, Saroj Kumar Nayak, Gelu Costin, Robert Vajtai, Tiva Sharifi, Pulickel M. Ajayan. Tuning the Electrocatalytic Activity of Co3O4 through Discrete Elemental Doping. ACS Applied Materials & Interfaces 2019, 11 (43) , 39706-39714. https://doi.org/10.1021/acsami.9b06815
  17. Yaroslava Lykhach, Simone Piccinin, Tomáš Skála, Manon Bertram, Nataliya Tsud, Olaf Brummel, Matteo Farnesi Camellone, Klára Beranová, Armin Neitzel, Stefano Fabris, Kevin C. Prince, Vladimír Matolín, Jörg Libuda. Quantitative Analysis of the Oxidation State of Cobalt Oxides by Resonant Photoemission Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10 (20) , 6129-6136. https://doi.org/10.1021/acs.jpclett.9b02398
  18. Ekata Saha, Kannimuthu Karthick, Subrata Kundu, Joyee Mitra. Electrocatalytic Oxygen Evolution in Acidic and Alkaline Media by a Multistimuli-Responsive Cobalt(II) Organogel. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16094-16102. https://doi.org/10.1021/acssuschemeng.9b02858
  19. Alexander Bähr, Gun-hee Moon, Harun Tüysüz. Nitrogen-Doped Mesostructured Carbon-Supported Metallic Cobalt Nanoparticles for Oxygen Evolution Reaction. ACS Applied Energy Materials 2019, 2 (9) , 6672-6680. https://doi.org/10.1021/acsaem.9b01183
  20. Ioannis Spanos, Marc F. Tesch, Mingquan Yu, Harun Tüysüz, Jian Zhang, Xinliang Feng, Klaus Müllen, Robert Schlögl, Anna K. Mechler. Facile Protocol for Alkaline Electrolyte Purification and Its Influence on a Ni–Co Oxide Catalyst for the Oxygen Evolution Reaction. ACS Catalysis 2019, 9 (9) , 8165-8170. https://doi.org/10.1021/acscatal.9b01940
  21. Lu Bai, Xudong Wen, Jingqi Guan. High-Efficiency Electrocatalytic Water Oxidation on Trimetal-Based Fe–Co–Cr Oxide. ACS Applied Energy Materials 2019, 2 (8) , 5584-5590. https://doi.org/10.1021/acsaem.9b00762
  22. Xi Cao, Emily Johnson, Manashi Nath. Expanding Multinary Selenide Based High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition: Case Study with Fe–Cu–Co Selenides. ACS Sustainable Chemistry & Engineering 2019, 7 (10) , 9588-9600. https://doi.org/10.1021/acssuschemeng.9b01095
  23. Shuai Liu, Chenyun Zhang, Baohua Zhang, Zhonghao Li, Jingcheng Hao. All-In-One Deep Eutectic Solvent toward Cobalt-Based Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (9) , 8964-8971. https://doi.org/10.1021/acssuschemeng.9b01078
  24. Finn Reikowski, Fouad Maroun, Ivan Pacheco, Tim Wiegmann, Philippe Allongue, Jochim Stettner, Olaf M. Magnussen. Operando Surface X-ray Diffraction Studies of Structurally Defined Co3O4 and CoOOH Thin Films during Oxygen Evolution. ACS Catalysis 2019, 9 (5) , 3811-3821. https://doi.org/10.1021/acscatal.8b04823
  25. Lingyun He, Wu Zhou, Liu Hong, Daixing Wei, Guangxu Wang, Xiaobo Shi, Shaohua Shen. Cascading Interfaces Enable n-Si Photoanodes for Efficient and Stable Solar Water Oxidation. The Journal of Physical Chemistry Letters 2019, 10 (9) , 2278-2285. https://doi.org/10.1021/acs.jpclett.9b00746
  26. Kyu Yeon Jang, Sang Jung Ahn, Ji-Hwan Kwon, Ki Min Nam, Young Heon Kim. Novel Route from a Wurtzite to a Rock-Salt Structure in CoO Nanocrystals: In Situ Transmission Electron Microscopy Study. The Journal of Physical Chemistry C 2019, 123 (16) , 10689-10694. https://doi.org/10.1021/acs.jpcc.9b01548
  27. Astrid J. Olaya, Terumasa Omatsu, Jonnathan C. Hidalgo-Acosta, Julieta S. Riva, Victor Costa Bassetto, Natalia Gasilova, Hubert H. Girault. A Self-Assembled Organic/Metal Junction for Water Photo-Oxidation. Journal of the American Chemical Society 2019, 141 (16) , 6765-6774. https://doi.org/10.1021/jacs.9b02693
  28. Jakob Fester, Zhaozong Sun, Jonathan Rodríguez-Fernández, Alex S. Walton, Jeppe V. Lauritsen. Structure and Stability of Au-Supported Layered Cobalt Oxide Nanoislands in Ambient Conditions. The Journal of Physical Chemistry C 2019, 123 (14) , 9176-9182. https://doi.org/10.1021/acs.jpcc.9b00771
  29. Ping-Ping Liu, Yue-Qing Zheng, Hong-Lin Zhu, Ting-Ting Li. Mn2O3 Hollow Nanotube Arrays on Ni Foam as Efficient Supercapacitors and Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Nano Materials 2019, 2 (2) , 744-749. https://doi.org/10.1021/acsanm.8b01918
  30. Zuozhong Liang, Chaochao Zhang, Yang Xu, Wei Zhang, Haoquan Zheng, Rui Cao. Dual Tuning of Ultrathin α-Co(OH)2 Nanosheets by Solvent Engineering and Coordination Competition for Efficient Oxygen Evolution. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3527-3535. https://doi.org/10.1021/acssuschemeng.8b05770
  31. Mengjiao Wang, Zhiya Dang, Mirko Prato, Dipak V. Shinde, Luca De Trizio, Liberato Manna. Ni–Co–S–Se Alloy Nanocrystals: Influence of the Composition on Their in Situ Transformation and Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Applied Nano Materials 2018, 1 (10) , 5753-5762. https://doi.org/10.1021/acsanm.8b01418
  32. Sweta Shrestha, Prabir K. Dutta. Photochemical Water Oxidation in a Buffered Tris(2,2′-bipyridyl)ruthenium–Persulfate System Using Iron(III)-Modified Potassium Manganese Oxides as Catalysts. ACS Omega 2018, 3 (9) , 11972-11981. https://doi.org/10.1021/acsomega.8b01918
  33. Huanyu Jin, Chunxian Guo, Xin Liu, Jinlong Liu, Anthony Vasileff, Yan Jiao, Yao Zheng, Shi-Zhang Qiao. Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews 2018, 118 (13) , 6337-6408. https://doi.org/10.1021/acs.chemrev.7b00689
  34. Vitor Brasiliense, Jan Clausmeyer, Pascal Berto, Gilles Tessier, Catherine Combellas, Wolfgang Schuhmann, Frédéric Kanoufi. Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy. Analytical Chemistry 2018, 90 (12) , 7341-7348. https://doi.org/10.1021/acs.analchem.8b00649
  35. Matthias Schwarz, Firas Faisal, Susanne Mohr, Chantal Hohner, Kristin Werner, Tao Xu, Tomáš Skála, Nataliya Tsud, Kevin C. Prince, Vladimír Matolín, Yaroslava Lykhach, Jörg Libuda. Structure-Dependent Dissociation of Water on Cobalt Oxide. The Journal of Physical Chemistry Letters 2018, 9 (11) , 2763-2769. https://doi.org/10.1021/acs.jpclett.8b01033
  36. Chandani Singh, Subhabrata Mukhopadhyay, Samar K. Das. Polyoxometalate-Supported Bis(2,2′-bipyridine)mono(aqua)nickel(II) Coordination Complex: an Efficient Electrocatalyst for Water Oxidation. Inorganic Chemistry 2018, 57 (11) , 6479-6490. https://doi.org/10.1021/acs.inorgchem.8b00541
  37. Subhajyoti Samanta, Santimoy Khilari, Kousik Bhunia, Debabrata Pradhan, Biswarup Satpati, Rajendra Srivastava. Double-Metal-Ion-Exchanged Mesoporous Zeolite as an Efficient Electrocatalyst for Alkaline Water Oxidation: Synergy between Ni–Cu and Their Contents in Catalytic Activity Enhancement. The Journal of Physical Chemistry C 2018, 122 (20) , 10725-10736. https://doi.org/10.1021/acs.jpcc.8b01769
  38. Elisa Erdmann, Matthias Lütgens, Stefan Lochbrunner, Wolfram W. Seidel. Ultrafast Energy Transfer in Dinuclear Complexes with Bridging 1,10-Phenanthroline-5,6-Dithiolate. Inorganic Chemistry 2018, 57 (9) , 4849-4863. https://doi.org/10.1021/acs.inorgchem.7b02840
  39. Kai junge Puring, Dennis Zywitzki, Dereje H. Taffa, Detlef Rogalla, Manuela Winter, Michael Wark, Anjana Devi. Rational Development of Cobalt β-Ketoiminate Complexes: Alternative Precursors for Vapor-Phase Deposition of Spinel Cobalt Oxide Photoelectrodes. Inorganic Chemistry 2018, 57 (9) , 5133-5144. https://doi.org/10.1021/acs.inorgchem.8b00204
  40. Renjie Wei, Ming Fang, Guofa Dong, Changyong Lan, Lei Shu, Heng Zhang, Xiuming Bu, and Johnny C. Ho . High-Index Faceted Porous Co3O4 Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (8) , 7079-7086. https://doi.org/10.1021/acsami.7b18208
  41. Luo Gong, Xin Yu Esther Chng, Yonghua Du, Shibo Xi, and Boon Siang Yeo . Enhanced Catalysis of the Electrochemical Oxygen Evolution Reaction by Iron(III) Ions Adsorbed on Amorphous Cobalt Oxide. ACS Catalysis 2018, 8 (2) , 807-814. https://doi.org/10.1021/acscatal.7b03509
  42. Jakob Fester, Zhaozong Sun, Jonathan Rodríguez-Fernández, Alex Walton, and Jeppe V. Lauritsen . Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111): The Role of Edge Sites and Substrate Interactions. The Journal of Physical Chemistry B 2018, 122 (2) , 561-571. https://doi.org/10.1021/acs.jpcb.7b04944
  43. Xinzhi Ma, Jing Wen, Shen Zhang, Haoran Yuan, Kaiyue Li, Feng Yan, Xitian Zhang, and Yujin Chen . Crystal CoxB (x = 1–3) Synthesized by a Ball-Milling Method as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10266-10274. https://doi.org/10.1021/acssuschemeng.7b02281
  44. Areum Yu, Chongmok Lee, Myung Hwa Kim, and Youngmi Lee . Nanotubular Iridium–Cobalt Mixed Oxide Crystalline Architectures Inherited from Cobalt Oxide for Highly Efficient Oxygen Evolution Reaction Catalysis. ACS Applied Materials & Interfaces 2017, 9 (40) , 35057-35066. https://doi.org/10.1021/acsami.7b12247
  45. Tianhua Zhou, Yonghua Du, Danping Wang, Shengming Yin, Wenguang Tu, Zhong Chen, Armando Borgna, and Rong Xu . Phosphonate-Based Metal–Organic Framework Derived Co–P–C Hybrid as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (9) , 6000-6007. https://doi.org/10.1021/acscatal.7b00937
  46. Meenakshi Chauhan, Kasala Prabhakar Reddy, Chinnakonda S. Gopinath, and Sasanka Deka . Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (9) , 5871-5879. https://doi.org/10.1021/acscatal.7b01831
  47. Ayon Karmakar and Suneel Kumar Srivastava . Interconnected Copper Cobaltite Nanochains as Efficient Electrocatalysts for Water Oxidation in Alkaline Medium. ACS Applied Materials & Interfaces 2017, 9 (27) , 22378-22387. https://doi.org/10.1021/acsami.7b03029
  48. Marco Favaro, Jinhui Yang, Silvia Nappini, Elena Magnano, Francesca M. Toma, Ethan J. Crumlin, Junko Yano, and Ian D. Sharp . Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 2017, 139 (26) , 8960-8970. https://doi.org/10.1021/jacs.7b03211
  49. Xiaohui Deng, Secil Öztürk, Claudia Weidenthaler, and Harun Tüysüz . Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (25) , 21225-21233. https://doi.org/10.1021/acsami.7b02571
  50. Jingwei Huang, Yan Zhang, and Yong Ding . Rationally Designed/Constructed CoOx/WO3 Anode for Efficient Photoelectrochemical Water Oxidation. ACS Catalysis 2017, 7 (3) , 1841-1845. https://doi.org/10.1021/acscatal.7b00022
  51. Lan Huang, Jing Jiang, and Lunhong Ai . Interlayer Expansion of Layered Cobalt Hydroxide Nanobelts to Highly Improve Oxygen Evolution Electrocatalysis. ACS Applied Materials & Interfaces 2017, 9 (8) , 7059-7067. https://doi.org/10.1021/acsami.6b14479
  52. Jing Jiang, Lan Huang, Xiaomin Liu, and Lunhong Ai . Bioinspired Cobalt–Citrate Metal–Organic Framework as an Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (8) , 7193-7201. https://doi.org/10.1021/acsami.6b16534
  53. Kazuhiko Maeda, Koki Ishimaki, Megumi Okazaki, Tomoki Kanazawa, Daling Lu, Shunsuke Nozawa, Hideki Kato, and Masato Kakihana . Cobalt Oxide Nanoclusters on Rutile Titania as Bifunctional Units for Water Oxidation Catalysis and Visible Light Absorption: Understanding the Structure–Activity Relationship. ACS Applied Materials & Interfaces 2017, 9 (7) , 6114-6122. https://doi.org/10.1021/acsami.6b15804
  54. Quentin Daniel, Ram B. Ambre, Biaobiao Zhang, Bertrand Philippe, Hong Chen, Fusheng Li, Ke Fan, Sareh Ahmadi, Håkan Rensmo, and Licheng Sun . Re-Investigation of Cobalt Porphyrin for Electrochemical Water Oxidation on FTO Surface: Formation of CoOx as Active Species. ACS Catalysis 2017, 7 (2) , 1143-1149. https://doi.org/10.1021/acscatal.6b01815
  55. Xiaohui Deng, Kun Chen, and Harun Tüysüz . Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Metal Oxides. Chemistry of Materials 2017, 29 (1) , 40-52. https://doi.org/10.1021/acs.chemmater.6b02645
  56. Xiaohui Deng, Candace K. Chan, and Harun Tüysüz . Spent Tea Leaf Templating of Cobalt-Based Mixed Oxide Nanocrystals for Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (47) , 32488-32495. https://doi.org/10.1021/acsami.6b12005
  57. Gonzalo Prieto, Harun Tüysüz, Nicolas Duyckaerts, Johannes Knossalla, Guang-Hui Wang, and Ferdi Schüth . Hollow Nano- and Microstructures as Catalysts. Chemical Reviews 2016, 116 (22) , 14056-14119. https://doi.org/10.1021/acs.chemrev.6b00374
  58. Amira Y. Ahmed, Mahmoud G. Ahmed, and Tarek A. Kandiel . Modification of Hematite Photoanode with Cobalt Based Oxygen Evolution Catalyst via Bifunctional Linker Approach for Efficient Water Splitting. The Journal of Physical Chemistry C 2016, 120 (41) , 23415-23420. https://doi.org/10.1021/acs.jpcc.6b08010
  59. Jia-Wei Wang, Pathik Sahoo, and Tong-Bu Lu . Reinvestigation of Water Oxidation Catalyzed by a Dinuclear Cobalt Polypyridine Complex: Identification of CoOx as a Real Heterogeneous Catalyst. ACS Catalysis 2016, 6 (8) , 5062-5068. https://doi.org/10.1021/acscatal.6b00798
  60. Zhishan Luo, Erdem Irtem, Maria Ibáñez, Raquel Nafria, Sara Martı́-Sánchez, Aziz Genç, Maria de la Mata, Yu Liu, Doris Cadavid, Jordi Llorca, Jordi Arbiol, Teresa Andreu, Joan Ramon Morante, and Andreu Cabot . [email protected]–CoxOy Nanoparticles: Partial Cation Exchange Synthesis and Electrocatalytic Properties toward the Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces 2016, 8 (27) , 17435-17444. https://doi.org/10.1021/acsami.6b02786
  61. Naimeh Naseri, Ali Esfandiar, Mohammad Qorbani, and Alireza Z. Moshfegh . Selecting Support Layer for Electrodeposited Efficient Cobalt Oxide/Hydroxide Nanoflakes to Split Water. ACS Sustainable Chemistry & Engineering 2016, 4 (6) , 3151-3159. https://doi.org/10.1021/acssuschemeng.6b00178
  62. Jiayuan Li, Jing Li, Xuemei Zhou, Zhaoming Xia, Wei Gao, Yuanyuan Ma, and Yongquan Qu . Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. ACS Applied Materials & Interfaces 2016, 8 (17) , 10826-10834. https://doi.org/10.1021/acsami.6b00731
  63. V. S. K. Yadav and M. K. Purkait . Simultaneous CO2 Reduction and Dye (Crystal Violet) Removal Electrochemically on Sn and Zn Electrocatalysts Using Co3O4 Anode. Energy & Fuels 2016, 30 (4) , 3340-3346. https://doi.org/10.1021/acs.energyfuels.6b00047
  64. Khurram S. Joya and Huub J. M. de Groot . Controlled Surface-Assembly of Nanoscale Leaf-Type Cu-Oxide Electrocatalyst for High Activity Water Oxidation. ACS Catalysis 2016, 6 (3) , 1768-1771. https://doi.org/10.1021/acscatal.5b02950
  65. Yingying Feng, Jie Wei, and Yong Ding . Efficient Photochemical, Thermal, and Electrochemical Water Oxidation Catalyzed by a Porous Iron-Based Oxide Derived Metal–Organic Framework. The Journal of Physical Chemistry C 2016, 120 (1) , 517-526. https://doi.org/10.1021/acs.jpcc.5b11533
  66. Hyo Sang Jeon, Michael Shincheon Jee, Haeri Kim, Su Jin Ahn, Yun Jeong Hwang, and Byoung Koun Min . Simple Chemical Solution Deposition of Co3O4 Thin Film Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2015, 7 (44) , 24550-24555. https://doi.org/10.1021/acsami.5b06189
  67. Ela Nurlaela, Samy Ould-Chikh, Isabelle Llorens, Jean-Louis Hazemann, and Kazuhiro Takanabe . Establishing Efficient Cobalt-Based Catalytic Sites for Oxygen Evolution on a Ta3N5 Photocatalyst. Chemistry of Materials 2015, 27 (16) , 5685-5694. https://doi.org/10.1021/acs.chemmater.5b02139
  68. Alireza Kargar, Serdar Yavuz, Tae Kyoung Kim, Chin-Hung Liu, Cihan Kuru, Cyrus S. Rustomji, Sungho Jin, and Prabhakar R. Bandaru . Solution-Processed CoFe2O4 Nanoparticles on 3D Carbon Fiber Papers for Durable Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2015, 7 (32) , 17851-17856. https://doi.org/10.1021/acsami.5b04270
  69. Rong Li, Zidong Wei, and Xinglong Gou . Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catalysis 2015, 5 (7) , 4133-4142. https://doi.org/10.1021/acscatal.5b00601
  70. Pandian Ganesan, Moni Prabu, Jakkid Sanetuntikul, and Sangaraju Shanmugam . Cobalt Sulfide Nanoparticles Grown on Nitrogen and Sulfur Codoped Graphene Oxide: An Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Catalysis 2015, 5 (6) , 3625-3637. https://doi.org/10.1021/acscatal.5b00154
  71. Hyung Ju Kim, David H. K. Jackson, Jechan Lee, Yingxin Guan, Thomas F. Kuech, and George W. Huber . Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. ACS Catalysis 2015, 5 (6) , 3463-3469. https://doi.org/10.1021/acscatal.5b00173
  72. Prashanth W. Menezes, Arindam Indra, Diego González-Flores, Nastaran Ranjbar Sahraie, Ivelina Zaharieva, Michael Schwarze, Peter Strasser, Holger Dau, and Matthias Driess . High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity. ACS Catalysis 2015, 5 (4) , 2017-2027. https://doi.org/10.1021/cs501724v
  73. Chia-Cheng Lin, Yijun Guo, and Javier Vela . Microstructure Effects on the Water Oxidation Activity of Co3O4/Porous Silica Nanocomposites. ACS Catalysis 2015, 5 (2) , 1037-1044. https://doi.org/10.1021/cs501650j
  74. Hyun S. Ahn and Allen J. Bard . Surface Interrogation of CoPi Water Oxidation Catalyst by Scanning Electrochemical Microscopy. Journal of the American Chemical Society 2015, 137 (2) , 612-615. https://doi.org/10.1021/ja511740h
  75. Arianna Savini, Alberto Bucci, Morena Nocchetti, Riccardo Vivani, Hicham Idriss, and Alceo Macchioni . Activity and Recyclability of an Iridium–EDTA Water Oxidation Catalyst Immobilized onto Rutile TiO2. ACS Catalysis 2015, 5 (1) , 264-271. https://doi.org/10.1021/cs501590k
  76. Xiaohui Deng, Wolfgang N. Schmidt, and Harun Tüysüz . Impacts of Geometry, Symmetry, and Morphology of Nanocast Co3O4 on Its Catalytic Activity for Water Oxidation. Chemistry of Materials 2014, 26 (21) , 6127-6134. https://doi.org/10.1021/cm5023163
  77. G. Sathish Sharma, M. Sugavaneswaran, R. Prakash. Design and validation of additive manufactured catalytic converter for the control of regulated and unregulated emissions of a gasohol fuelled spark ignition engine. Fuel 2022, 309 , 122146. https://doi.org/10.1016/j.fuel.2021.122146
  78. Tejendra K. Gupta, Sucheta Sengupta, Manoj Raula. Optimization of Process, Mechanism and Kinetics Study for Photocatalytic Oxidation. 2022,,, 33-48. https://doi.org/10.1007/978-3-030-77371-7_2
  79. A.G. Abd-Elrahim, Doo-Man Chun. Heterostructured Mn3O4-2D material nanosheets: One-step vacuum kinetic spray deposition and non-enzymatic H2O2 sensing. Ceramics International 2021, 47 (24) , 35111-35123. https://doi.org/10.1016/j.ceramint.2021.09.054
  80. Xue Bai, Jingqi Guan. Promotion of Oxygen Evolution Activity of Co-Based Nanocomposites by Introducing Fe3+ Ions. Topics in Catalysis 2021, 33 https://doi.org/10.1007/s11244-021-01530-0
  81. Kevin Pachuta, Halyna Volkova, Benjamin Hirt, Marie‐Hélène Berger, Emily Pentzer, Alp Sehirlioglu. Liquid‐phase exfoliation method to access cobalt oxide nanosheets in pH‐neutral solutions. Journal of the American Ceramic Society 2021, 306 https://doi.org/10.1111/jace.18199
  82. Aditya Sharma, Mayora Varshney, Yogesh Kumar, Byeong-hyeon Lee, Sung Ok Won, Keun Hwa Chae, Ankush Vij, Ram K. Sharma, Hyun-Joon Shin. Electronic structure and magnetic assets of FeCoGaO4 nanoparticles: An XANES investigation. Journal of Physics and Chemistry of Solids 2021, 9 , 110476. https://doi.org/10.1016/j.jpcs.2021.110476
  83. Zeenat Shafi, Zahoor Ahmad, Khurram Saleem Joya, Shahid Iqbal, Muhammad Naeem Khan. Designing of noble metal free high performance mesoporous electrocatalysts for water splitting. International Journal of Hydrogen Energy 2021, 46 (80) , 39799-39809. https://doi.org/10.1016/j.ijhydene.2021.09.211
  84. Hanna Kierzkowska-Pawlak, Ewelina Kruszczak, Jacek Tyczkowski. Catalytic activity of plasma-deposited Co3O4-based thin films for CO2 hydration − a new approach to carbon capture applications. Applied Catalysis B: Environmental 2021, 120073 , 120961. https://doi.org/10.1016/j.apcatb.2021.120961
  85. Muhammad Yameen Solangi, Umair Aftab, Aneela Tahira, Muhammad Ishaq Abro, Raffaello Mazarro, Vitorio Morandi, Ayman Nafady, Shymaa S. Medany, Antonia Infantes-Molina, Zafar Hussain Ibupoto. An efficient palladium oxide [email protected] nanocomposite with low chemisorbed species for enhanced oxygen evolution reaction. International Journal of Hydrogen Energy 2021, 14 https://doi.org/10.1016/j.ijhydene.2021.11.042
  86. Atanu Dey, Anku Guha, Vierandra Kumar, Sumit Bawari, Tharangattu N. Narayanan, Vadapalli Chandrasekhar. Facile water oxidation by dinuclear mixed-valence Co III /Co II complexes: the role of coordinated water. Dalton Transactions 2021, 50 (40) , 14257-14263. https://doi.org/10.1039/D1DT01910D
  87. Mahdi Karimi-Nazarabad, Hossein Ahmadzadeh, Elaheh K. Goharshadi. Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4. Solar Energy 2021, 227 , 426-437. https://doi.org/10.1016/j.solener.2021.09.028
  88. Xiuhong Zhang, Zheng Li, Weilin Shen, Guang Zhao, Zhaohui Yi, Ji Qi, Changhai Liang. In‐situ Surface‐selective Removal of Al Element from NiFeAl Ternary Nanowires for Large‐current Oxygen Evolution Reaction. ChemNanoMat 2021, 7 (10) , 1138-1144. https://doi.org/10.1002/cnma.202100194
  89. S. I. Dorovskikh, P. А. Stabnikov, L. N. Zelenina, S. V. Sysoev, N. B. Morozova. Thermal Properties of Cobalt(II) β-Iminoketonates. Russian Journal of General Chemistry 2021, 91 (10) , 1977-1983. https://doi.org/10.1134/S107036322110008X
  90. Karuppiah Selvakumar, Velu Duraisamy, Sakkarapalayam Murugesan Senthil Kumar. Activity manifestation via architectural manipulation by cubic silica-derived Co 3 O 4 electrocatalysts towards bifunctional oxygen electrode performance. New Journal of Chemistry 2021, 45 (36) , 16913-16925. https://doi.org/10.1039/D1NJ02061G
  91. Mengru Sun, Changli Chen, Menghao Wu, Danni Zhou, Zhiyi Sun, Jianling Fan, Wenxing Chen, Yujing Li. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Research 2021, 488 https://doi.org/10.1007/s12274-021-3827-8
  92. Fei Liu, Jie Zhang, Weiwei Wu, Peng Zhang, Xiaohua Ma, Keyu Tao, Tongtong Wang, Qi Wang. The real-time investigation of the nickel–iron hydroxide catalyzed oxygen evolution reaction with interdigitated array electrodes. Nanotechnology 2021, 32 (37) , 375706. https://doi.org/10.1088/1361-6528/ac0a14
  93. Alexander Bähr, Hilke Petersen, Harun Tüysüz. Large‐Scale Production of Carbon‐Supported Cobalt‐Based Functional Nanoparticles for Oxygen Evolution Reaction. ChemCatChem 2021, 13 (17) , 3824-3835. https://doi.org/10.1002/cctc.202100594
  94. Sebastian Klemenz, Andreas Stegmüller, Songhak Yoon, Claudia Felser, Harun Tüysüz, Anke Weidenkaff. Holistic View on Materials Development: Water Electrolysis as a Case Study. Angewandte Chemie International Edition 2021, 60 (37) , 20094-20100. https://doi.org/10.1002/anie.202105324
  95. Sebastian Klemenz, Andreas Stegmüller, Songhak Yoon, Claudia Felser, Harun Tüysüz, Anke Weidenkaff. Ganzheitliche Betrachtung in der Materialentwicklung: Wasser‐Elektrolyse als Fallbeispiel. Angewandte Chemie 2021, 133 (37) , 20254-20260. https://doi.org/10.1002/ange.202105324
  96. M. Chomiak, J. Trawczyński, M. Zawadzki. Effect of cobalt (nickel) oxide on the properties of zinc–titanium sorbents for high temperature desulphurization of model coal gas. Brazilian Journal of Chemical Engineering 2021, 38 (3) , 605-616. https://doi.org/10.1007/s43153-021-00129-y
  97. Michaela Plevová, Jaromír Hnát, Karel Bouzek. Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources 2021, 507 , 230072. https://doi.org/10.1016/j.jpowsour.2021.230072
  98. Sangeetha Kumaravel, Karthik Kumaran Saravanan, Bariki Eunice Evangeline, Vennala Niharika, Rishivandhiga Jayakumar, Subrata Kundu. DNA-based low resistance palladium nano-spheres for effective hydrogen evolution reaction. Catalysis Science & Technology 2021, 11 (17) , 5868-5880. https://doi.org/10.1039/D1CY00986A
  99. Ruihao Gong, Dariusz Mitoraj, Robert Leiter, Manuel Mundszinger, Alexander K. Mengele, Igor Krivtsov, Johannes Biskupek, Ute Kaiser, Radim Beranek, Sven Rau. Anatase-Wrapped Rutile Nanorods as an Effective Electron Collector in Hybrid Photoanodes for Visible Light-Driven Oxygen Evolution. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.709903
  100. K. Souleh, T. Smain, H. Lidjici, B. Lagoun, M. Boucenna, N. Bouarissa. Electronic structure and magnetization of Zn1-xCoxO ternary alloys with zinc-blende, rocksalt and wurtzite phases. Optical and Quantum Electronics 2021, 53 (8) https://doi.org/10.1007/s11082-021-02985-x
Load more citations