Oxidizing Capacity of Periodate Activated with Iron-Based Bimetallic Nanoparticles

View Author Information
Center for Water Resource Cycle, Korea Institute of Science and Technology, Seoul 136-791, Korea
Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea
§ Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
Urban and Environmental Engineering, and KIST-UNIST-Ulsan Center for Convergent Materials (KUUC), Ulsan National Institute of Science and Technology, Ulsan 698-805, Korea
Energy Environmental Policy and Technology, Green School, Korea University-KIST, Seoul 136-701, Korea
# Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701, Korea
*E-mail: [email protected]. Tel: +82-52-217-2812. Fax: +82-52-217-2809.
*E-mail: [email protected]. Tel: +82-2-958-6947. Fax: +82-2-958-5839.
Cite this: Environ. Sci. Technol. 2014, 48, 14, 8086–8093
Publication Date (Web):June 4, 2014
https://doi.org/10.1021/es5002902
Copyright © 2014 American Chemical Society
Article Views
1746
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Nanosized zerovalent iron (nFe0) loaded with a secondary metal such as Ni or Cu on its surface was demonstrated to effectively activate periodate (IO4) and degrade selected organic compounds at neutral pH. The degradation was accompanied by a stoichiometric conversion of IO4 to iodate (IO3). nFe0 without bimetallic loading led to similar IO4 reduction but no organic degradation, suggesting the production of reactive iodine intermediate only when IO4 is activated by bimetallic nFe0 (e.g., nFe0–Ni and nFe0–Cu). The organic degradation kinetics in the nFe0–Ni(or Cu)/IO4 system was substrate dependent: 4-chlorophenol, phenol, and bisphenol A were effectively degraded, whereas little or no degradation was observed with benzoic acid, carbamazepine, and 2,4,6-trichlorophenol. The substrate specificity, further confirmed by little kinetic inhibition with background organic matter, implies the selective nature of oxidant in the nFe0–Ni(or Cu)/IO4 system. The comparison with the photoactivated IO4 system, in which iodyl radical (IO3) is a predominant oxidant in the presence of methanol, suggests IO3 also as primary oxidant in the nFe0–Ni(or Cu)/IO4 system.

Supporting Information

ARTICLE SECTIONS
Jump To

Chemicals and Figures S1–S19. This material is available free of charge via the Internet at http://pubs.acs.org/.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 50 publications.

  1. Yang Zong, Yufei Shao, Yunqiao Zeng, Binbin Shao, Longqian Xu, Zhenyu Zhao, Wen Liu, Deli Wu. Enhanced Oxidation of Organic Contaminants by Iron(II)-Activated Periodate: The Significance of High-Valent Iron–Oxo Species. Environmental Science & Technology 2021, 55 (11) , 7634-7642. https://doi.org/10.1021/acs.est.1c00375
  2. Yangke Long, Jian Dai, Shiyin Zhao, Yiping Su, Zhongying Wang, Zuotai Zhang. Atomically Dispersed Cobalt Sites on Graphene as Efficient Periodate Activators for Selective Organic Pollutant Degradation. Environmental Science & Technology 2021, 55 (8) , 5357-5370. https://doi.org/10.1021/acs.est.0c07794
  3. Hongwei Sun, Fei He, Wonyong Choi. Production of Reactive Oxygen Species by the Reaction of Periodate and Hydroxylamine for Rapid Removal of Organic Pollutants and Waterborne Bacteria. Environmental Science & Technology 2020, 54 (10) , 6427-6437. https://doi.org/10.1021/acs.est.0c00817
  4. Hyejin Kim, Jonghun Lim, Seonggyu Lee, Hak-Hyeon Kim, Changha Lee, Jinwoo Lee, Wonyong Choi. Spontaneous Generation of H2O2 and Hydroxyl Radical through O2 Reduction on Copper Phosphide under Ambient Aqueous Condition. Environmental Science & Technology 2019, 53 (5) , 2918-2925. https://doi.org/10.1021/acs.est.8b06353
  5. Yan Wang, Sihui Zhan, Song Di, Xu Zhao. Novel Flexible Self-Standing Pt/Al2O3 Nanofibrous Membranes: Synthesis and Multifunctionality for Environmental Remediation. ACS Applied Materials & Interfaces 2018, 10 (31) , 26396-26404. https://doi.org/10.1021/acsami.8b07637
  6. Yejin Choi, Ho-Il Yoon, Changha Lee, L’ubica Vetráková, Dominik Heger, Kitae Kim, Jungwon Kim. Activation of Periodate by Freezing for the Degradation of Aqueous Organic Pollutants. Environmental Science & Technology 2018, 52 (9) , 5378-5385. https://doi.org/10.1021/acs.est.8b00281
  7. Eun-Tae Yun, Ha-Young Yoo, Hyokwan Bae, Hyoung-Il Kim, and Jaesang Lee . Exploring the Role of Persulfate in the Activation Process: Radical Precursor Versus Electron Acceptor. Environmental Science & Technology 2017, 51 (17) , 10090-10099. https://doi.org/10.1021/acs.est.7b02519
  8. Yong-Yoon Ahn, Eun-Tae Yun, Ji-Won Seo, Changha Lee, Sang Hoon Kim, Jae-Hong Kim, and Jaesang Lee . Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds. Environmental Science & Technology 2016, 50 (18) , 10187-10197. https://doi.org/10.1021/acs.est.6b02841
  9. Alok D. Bokare and Wonyong Choi . Singlet-Oxygen Generation in Alkaline Periodate Solution. Environmental Science & Technology 2015, 49 (24) , 14392-14400. https://doi.org/10.1021/acs.est.5b04119
  10. Lei He, Chao Yang, Jie Ding, Mei-Yun Lu, Cheng-Xin Chen, Guang-Yuan Wang, Jun-Qiu Jiang, Lan Ding, Guo-Shuai Liu, Nan-Qi Ren, Shan-Shan Yang. Fe, N-doped carbonaceous catalyst activating periodate for micropollutant removal: Significant role of electron transfer. Applied Catalysis B: Environmental 2022, 303 , 120880. https://doi.org/10.1016/j.apcatb.2021.120880
  11. Bowen Yang, Sae-In Suh, Jeonggil Lee, Hwa-Soo Ryoo, So-Young Ham, Jaesung Kim, Young-Jin Ko, Heesoo Woo, Jaemin Choi, Hyung-Suk Oh, Sang-Hoon Lee, Hee-Deung Park, Man Jae Kwon, Hongshin Lee, Jaesang Lee. Peroxide activation by microbially synthesized sulfidated iron: Comparison against abiotic iron-based materials in terms of treatment efficiency and oxidative degradation pathway. Applied Catalysis B: Environmental 2022, 303 , 120884. https://doi.org/10.1016/j.apcatb.2021.120884
  12. Yang Zong, Hua Zhang, Yufei Shao, Wenjie Ji, Yunqiao Zeng, Longqian Xu, Deli Wu. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. Journal of Hazardous Materials 2022, 423 , 126991. https://doi.org/10.1016/j.jhazmat.2021.126991
  13. Pengyu Xiao, Xianliang Yi, Minghuo Wu, Xue Wang, Simeng Zhu, Bixia Gao, Yang Liu, Hao Zhou. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. Journal of Hazardous Materials 2022, 424 , 127692. https://doi.org/10.1016/j.jhazmat.2021.127692
  14. Yangke Long, Jian Dai, Shiyin Zhao, Shixin Huang, Zuotai Zhang. Metal–organic framework-derived magnetic carbon for efficient decontamination of organic pollutants via periodate activation: Surface atomic structure and mechanistic considerations. Journal of Hazardous Materials 2022, 424 , 126786. https://doi.org/10.1016/j.jhazmat.2021.126786
  15. Weihua Xu, Ting Yang, Shaobo Liu, Li Du, Qiang Chen, Xin Li, Jie Dong, Zhuang Zhang, Sihui Lu, Youzi Gong, Liang Zhou, Yunguo Liu, Xiaofei Tan. Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects. Environment International 2022, 158 , 106980. https://doi.org/10.1016/j.envint.2021.106980
  16. Alkiviadis Vasilas, Theodoros Chatzimitakos, Lamprini Sygellou, Constantine Stalikas. Performance study of a magnetic iron–copper bimetallic material for the removal of an environmental “cocktail” of diverse hazardous organic micropollutants from aqueous samples. Nanotechnology for Environmental Engineering 2021, 6 (3) https://doi.org/10.1007/s41204-021-00160-x
  17. Ying Lu, Fujian Yang, Siyuan Chen, Wenchao Shi, Chengdu Qi, Guilong Peng. Decomplexation of Ni(Ⅱ)-citrate and recovery of nickel from chelated nickel containing electroplating wastewater by peroxymonosulfate with nickel. Separation and Purification Technology 2021, 757 , 120142. https://doi.org/10.1016/j.seppur.2021.120142
  18. Bingbing Lan, Ruofei Jin, Guangfei Liu, Bin Dong, Jiti Zhou, Defeng Xing. Improving waste activated sludge dewaterability with sodium periodate pre‐oxidation on extracellular polymeric substances. Water Environment Research 2021, 93 (9) , 1680-1689. https://doi.org/10.1002/wer.1553
  19. Liuyang He, Lixin Lv, Suresh C. Pillai, Hailong Wang, Jianming Xue, Yongfei Ma, Yanli Liu, Yulin Chen, Li Wu, Zulin Zhang, Lie Yang. Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Science of The Total Environment 2021, 783 , 146974. https://doi.org/10.1016/j.scitotenv.2021.146974
  20. Slimane Merouani, Oualid Hamdaoui. UV/Periodate Advanced Oxidation Process: Fundamentals and Applications. 2021,,, 215-248. https://doi.org/10.1002/9781119725282.ch6
  21. Qun Wang, Han Zeng, Youheng Liang, Ye Cao, Yang Xiao, Jun Ma. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. Chemical Engineering Journal 2021, 407 , 126738. https://doi.org/10.1016/j.cej.2020.126738
  22. Mohamed Larbi Djaballah, Slimane Merouani, Hafida Bendjama, Oualid Hamdaoui. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process. Journal of Photochemistry and Photobiology A: Chemistry 2021, 408 , 113102. https://doi.org/10.1016/j.jphotochem.2020.113102
  23. Jidong Shi, Wei Zeng, Zhaohe Dai, Liu Wang, Qi Wang, Shuping Lin, Ying Xiong, Su Yang, Songmin Shang, Wei Chen, Lingyu Zhao, Xujiao Ding, Xiaoming Tao, Yang Chai. Piezocatalytic Foam for Highly Efficient Degradation of Aqueous Organics. Small Science 2021, 1 (2) , 2000011. https://doi.org/10.1002/smsc.202000011
  24. Chi Hieu Nguyen, Mai Lien Tran, Thi Tuong Van Tran, Ruey-Shin Juang. Efficient removal of antibiotic oxytetracycline from water by Fenton-like reactions using reduced graphene oxide-supported bimetallic Pd/nZVI nanocomposites. Journal of the Taiwan Institute of Chemical Engineers 2021, 119 , 80-89. https://doi.org/10.1016/j.jtice.2021.02.001
  25. Zenon Foltynowicz, Andrzej Maranda, Bogdan Czajka, Leszek Wachowski, Tomasz Sałaciński. The effective removal of organic and inorganic contaminants using compositions based on zero-valent iron nanoparticles (n-ZVI). Materiały Wysokoenergetyczne / High Energy Materials 2020, , 37-74. https://doi.org/10.22211/matwys/0172E
  26. Eun-Tae Yun, Sung-Woo Park, Hyun Jung Shin, Hongshin Lee, Dong-Wan Kim, Jaesang Lee. Peroxymonosulfate activation by carbon-encapsulated metal nanoparticles: Switching the primary reaction route and increasing chemical stability. Applied Catalysis B: Environmental 2020, 279 , 119360. https://doi.org/10.1016/j.apcatb.2020.119360
  27. Mai Lien Tran, Chi Hieu Nguyen, Thi Tuong Van Tran, Ruey-Shin Juang. One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: Roles of morphology changes and Pt catalysis. Journal of the Taiwan Institute of Chemical Engineers 2020, 111 , 130-140. https://doi.org/10.1016/j.jtice.2020.05.001
  28. Jiangkun Du, Guangfeng Xiao, Yanxing Xi, Xiaowei Zhu, Fan Su, Sang Hoon Kim. Periodate activation with manganese oxides for sulfanilamide degradation. Water Research 2020, 169 , 115278. https://doi.org/10.1016/j.watres.2019.115278
  29. Xiaohui Lu, Jingnan Zhao, Qun Wang, Da Wang, Haodan Xu, Jun Ma, Wei Qiu, Tao Hu. Sonolytic degradation of bisphenol S: Effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity. Water Research 2019, 165 , 114969. https://doi.org/10.1016/j.watres.2019.114969
  30. Jiangkun Du, Shigang Tang, Faheem, Haibo Ling, Han Zheng, Guangfeng Xiao, Liting Luo, Jianguo Bao. Insights into periodate oxidation of bisphenol A mediated by manganese. Chemical Engineering Journal 2019, 369 , 1034-1039. https://doi.org/10.1016/j.cej.2019.03.158
  31. Nor Elhouda Chadi, Slimane Merouani, Oualid Hamdaoui, Mohammed Bouhelassa, Muthupandian Ashokkumar. H 2 O 2 /periodate (IO 4 − ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environmental Science: Water Research & Technology 2019, 5 (6) , 1113-1123. https://doi.org/10.1039/C9EW00147F
  32. Biswarup Chakraborty, Gal Gan‐Or, Yan Duan, Manoj Raula, Ira A. Weinstock. Visible‐Light‐Driven Water Oxidation with a Polyoxometalate‐Complexed Hematite Core of 275 Iron Atoms. Angewandte Chemie 2019, 131 (20) , 6656-6661. https://doi.org/10.1002/ange.201900492
  33. Biswarup Chakraborty, Gal Gan‐Or, Yan Duan, Manoj Raula, Ira A. Weinstock. Visible‐Light‐Driven Water Oxidation with a Polyoxometalate‐Complexed Hematite Core of 275 Iron Atoms. Angewandte Chemie International Edition 2019, 58 (20) , 6584-6589. https://doi.org/10.1002/anie.201900492
  34. Amal Haddad, Slimane Merouani, Chiraz Hannachi, Oualid Hamdaoui, Béchir Hamrouni. Intensification of light green SF yellowish (LGSFY) photodegradion in water by iodate ions: Iodine radicals implication in the degradation process and impacts of water matrix components. Science of The Total Environment 2019, 652 , 1219-1227. https://doi.org/10.1016/j.scitotenv.2018.10.183
  35. Minghua Nie, Wenjing Zhang, Caixia Yan, Wenli Xu, Leliang Wu, Yuping Ye, Yun Hu, Wenbo Dong. Enhanced removal of organic contaminants in water by the combination of peroxymonosulfate and carbonate. Science of The Total Environment 2019, 647 , 734-743. https://doi.org/10.1016/j.scitotenv.2018.08.065
  36. Zenon Foltynowicz, Andrzej Maranda, Bogdan Czajka, Leszek Wachowski, Tomasz Sałaciński. Efektywne usuwanie zanieczyszczeń pochodzenia organicznego i nieorganicznego za pomocą kompozytów na bazie nanocząstek zero wartościowego żelaza n-Fe(0). Materiały Wysokoenergetyczne / High Energy Materials 2018, , 108-146. https://doi.org/10.22211/matwys/0172
  37. Brenna C. Hodges, Ezra L. Cates, Jae-Hong Kim. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nature Nanotechnology 2018, 13 (8) , 642-650. https://doi.org/10.1038/s41565-018-0216-x
  38. Chang Min Park, Dengjun Wang, Chunming Su. Recent Developments in Engineered Nanomaterials for Water Treatment and Environmental Remediation. 2018,,, 849-882. https://doi.org/10.1016/B978-0-12-813351-4.00048-1
  39. Susanne Makota, Arnaud I. Nde-Tchoupe, Hezron T. Mwakabona, Raoul Tepong-Tsindé, Chicgoua Noubactep, Achille Nassi, Karoli N. Njau. Metallic iron for water treatment: leaving the valley of confusion. Applied Water Science 2017, 7 (8) , 4177-4196. https://doi.org/10.1007/s13201-017-0601-x
  40. Xiaowan Li, Xitao Liu, Chunye Lin, Chengdu Qi, Huijuan Zhang, Jun Ma. Enhanced activation of periodate by iodine-doped granular activated carbon for organic contaminant degradation. Chemosphere 2017, 181 , 609-618. https://doi.org/10.1016/j.chemosphere.2017.04.134
  41. Oualid Hamdaoui, Slimane Merouani. Improvement of sonochemical degradation of Brilliant blue R in water using periodate ions: Implication of iodine radicals in the oxidation process. Ultrasonics Sonochemistry 2017, 37 , 344-350. https://doi.org/10.1016/j.ultsonch.2017.01.025
  42. Eun-Tae Yun, Ha-Young Yoo, Wooyul Kim, Hyung-Eun Kim, Gyeongho Kang, Hongshin Lee, Seunghak Lee, Taiho Park, Changha Lee, Jae-Hong Kim, Jaesang Lee. Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: Simultaneous decolorization of dyes and production of oxidizing radicals. Applied Catalysis B: Environmental 2017, 203 , 475-484. https://doi.org/10.1016/j.apcatb.2016.10.029
  43. Chengdu Qi, Xitao Liu, Yang Li, Chunye Lin, Jun Ma, Xiaowan Li, Huijuan Zhang. Enhanced degradation of organic contaminants in water by peroxydisulfate coupled with bisulfite. Journal of Hazardous Materials 2017, 328 , 98-107. https://doi.org/10.1016/j.jhazmat.2017.01.010
  44. Xiao-Bao Gong. Degradation of dye wastewater by persulfate activated with Fe3O4/graphene nanocomposite. Journal of Water Reuse and Desalination 2016, 6 (4) , 553-561. https://doi.org/10.2166/wrd.2016.187
  45. Xiaowan Li, Xitao Liu, Chengdu Qi, Chunye Lin. Activation of periodate by granular activated carbon for acid orange 7 decolorization. Journal of the Taiwan Institute of Chemical Engineers 2016, 68 , 211-217. https://doi.org/10.1016/j.jtice.2016.08.039
  46. Xiaoguang Duan, Chao Su, Li Zhou, Hongqi Sun, Alexandra Suvorova, Taiwo Odedairo, Zhonghua Zhu, Zongping Shao, Shaobin Wang. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental 2016, 194 , 7-15. https://doi.org/10.1016/j.apcatb.2016.04.043
  47. Slavica Koprivica, Martin Siller, Takashi Hosoya, Walter Roggenstein, Thomas Rosenau, Antje Potthast. Regeneration of Aqueous Periodate Solutions by Ozone Treatment: A Sustainable Approach for Dialdehyde Cellulose Production. ChemSusChem 2016, 9 (8) , 825-833. https://doi.org/10.1002/cssc.201501639
  48. Ravindra Kumar Gautam, Mahesh Chandra Chattopadhyaya. Nanotechnology for Water Cleanup. 2016,,, 1-18. https://doi.org/10.1016/B978-0-12-804609-8.00001-7
  49. Ravindra Kumar Gautam, Mahesh Chandra Chattopadhyaya. Bimetallic Nanomaterials for Remediation of Water and Wastewater. 2016,,, 273-295. https://doi.org/10.1016/B978-0-12-804609-8.00011-X
  50. Ravindra Kumar Gautam, Vandani Rawat, Sushmita Banerjee, Maria Angeles Sanroman, Shivani Soni, Sanjeev K. Singh, Mahesh Chandra Chattopadhyaya. Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. Journal of Molecular Liquids 2015, 212 , 227-236. https://doi.org/10.1016/j.molliq.2015.09.006