Electrochemical Incineration of 4-Chlorophenol and the Identification of Products and Intermediates by Mass Spectrometry

View Author Information
Ames Laboratory-U.S. Department of Energy, Microanalytical Instrumentation Center, Department of Chemistry, Iowa State University, Ames, Iowa 50011
Cite this: Environ. Sci. Technol. 1999, 33, 15, 2638–2644
Publication Date (Web):June 23, 1999
https://doi.org/10.1021/es981045r
Copyright © 1999 American Chemical Society
Article Views
1036
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (101 KB)

Abstract

This report summarizes results obtained as part of a larger effort to demonstrate the applicability of electrolytic procedures for the direct anodic (oxidative) degradation of toxic organic wastes. We refer to this process as “electrochemical incineration” (ECI) because the ultimate degradation products, e.g., carbon dioxide, are equivalent to those achieved by thermal incineration processes. In this work, the ECI of 4-chlorophenol is achieved in an aqueous medium using a platinum anode coated with a quaternary metal oxide film containing Ti, Ru, Sn, and Sb oxides. The electrode is stable and active when used with a solid Nafion membrane without the addition of soluble supporting electrolyte. Liquid chromatography (LC), including reverse phase and ion exchange chromatography, is coupled with electrospray mass spectrometry (ES-MS) and used, along with gas chromatography−mass spectrometry (GC-MS) and measurements of pH, chemical oxygen demand (COD), and total organic carbon (TOC), to study the reaction and identify the intermediate products from the ECI of 4-chlorophenol. Twenty-six intermediate products are identified and reported. The most abundant of these products are benzoquinone, 4-chlorocatechol, maleic acid, succinic acid, malonic acid, and the inorganic anions chloride, chlorate, and perchlorate. After 24 h of ECI, a solution that initially contained 108 ppm 4-chlorophenol yields only 1 ppm TOC with 98% of the original chlorine remaining in the specified inorganic forms. LC-ES-MS and direct infusion ES-MS detection limits are between 80 ppb and 4 ppm for these intermediate products. Elemental analysis of the electrolyzed solutions by inductively coupled plasma mass spectrometry ICP-MS showed that only trace amounts (<25 ppb) of the metallic elements comprising the metal oxide film were present in the solution.

 Present address:  Department of Chemistry, West Virginia Wesleyan College, Buckhannon, WV 26201.

*

In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

Cited By


This article is cited by 117 publications.

  1. Junjian Zheng, Zhiwei Wang, Jinxing Ma, Shaoping Xu, Zhichao Wu. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters. Environmental Science & Technology 2018, 52 (7) , 4117-4126. https://doi.org/10.1021/acs.est.7b06407
  2. Muhammad Humayun, Yang Qu, Fazal Raziq, Rui Yan, Zhijun Li, Xuliang Zhang, and Liqiang Jing . Exceptional Visible-Light Activities of TiO2-Coupled N-Doped Porous Perovskite LaFeO3 for 2,4-Dichlorophenol Decomposition and CO2 Conversion. Environmental Science & Technology 2016, 50 (24) , 13600-13610. https://doi.org/10.1021/acs.est.6b04958
  3. Hanspeter Zöllig, Annette Remmele, Cristina Fritzsche, Eberhard Morgenroth, and Kai M. Udert . Formation of Chlorination Byproducts and Their Emission Pathways in Chlorine Mediated Electro-Oxidation of Urine on Active and Nonactive Type Anodes. Environmental Science & Technology 2015, 49 (18) , 11062-11069. https://doi.org/10.1021/acs.est.5b01675
  4. R. Berenguer, J. P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós and E. Morallón . Comparison among Chemical, Thermal, and Electrochemical Regeneration of Phenol-Saturated Activated Carbon. Energy & Fuels 2010, 24 (6) , 3366-3372. https://doi.org/10.1021/ef901510c
  5. Marco Panizza and Giacomo Cerisola. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews 2009, 109 (12) , 6541-6569. https://doi.org/10.1021/cr9001319
  6. Bo Wang, Xin Chang and Hongzhu Ma. Electrochemical Oxidation of Refractory Organics in the Coking Wastewater and Chemical Oxygen Demand (COD) Removal under Extremely Mild Conditions. Industrial & Engineering Chemistry Research 2008, 47 (21) , 8478-8483. https://doi.org/10.1021/ie800826v
  7. Marco Panizza and Giacomo Cerisola. Electrochemical Degradation of Methyl Red Using BDD and PbO2 Anodes. Industrial & Engineering Chemistry Research 2008, 47 (18) , 6816-6820. https://doi.org/10.1021/ie8001292
  8. Yanqing Cong and, Zucheng Wu. Electrocatalytic Generation of Radical Intermediates over Lead Dioxide Electrode Doped with Fluoride. The Journal of Physical Chemistry C 2007, 111 (8) , 3442-3446. https://doi.org/10.1021/jp066362w
  9. Marco Panizza and, Giacomo Cerisola. Electrochemical Oxidation as a Final Treatment of Synthetic Tannery Wastewater. Environmental Science & Technology 2004, 38 (20) , 5470-5475. https://doi.org/10.1021/es049730n
  10. Grace W. Muna,, Natasha Tasheva, and, Greg M. Swain. Electro-oxidation and Amperometric Detection of Chlorinated Phenols at Boron-Doped Diamond Electrodes:  A Comparison of Microcrystalline and Nanocrystalline Thin Films. Environmental Science & Technology 2004, 38 (13) , 3674-3682. https://doi.org/10.1021/es034656e
  11. Pablo Cañizares,, Jesús García-Gómez,, Justo Lobato, and, Manuel A. Rodrigo. Modeling of Wastewater Electro-oxidation Processes Part II. Application to Active Electrodes. Industrial & Engineering Chemistry Research 2004, 43 (9) , 1923-1931. https://doi.org/10.1021/ie0341303
  12. Birame Boye,, Momar M. Dieng, and, Enric Brillas. Degradation of Herbicide 4-Chlorophenoxyacetic Acid by Advanced Electrochemical Oxidation Methods. Environmental Science & Technology 2002, 36 (13) , 3030-3035. https://doi.org/10.1021/es0103391
  13. S.R. Kunst, A.C.V. Bianchin, L.T. Mueller, J.A. Santana, T.M. Volkmer, F.D.P. Morisso, C.L.P. Carone, J.Z. Ferreira, I.L. Mueller, C.T. Oliveira. Model of anodized layers formation in Zn–Al (Zamak) aiming to corrosion resistance. Journal of Materials Research and Technology 2021, 12 , 831-847. https://doi.org/10.1016/j.jmrt.2021.03.027
  14. Baskar Thangaraj, Pravin Raj Solomon. Biodiesel production by the electrocatalytic process: a review. Clean Energy 2021, 5 (1) , 19-31. https://doi.org/10.1093/ce/zkaa026
  15. Jih-Hsing Chang, Shan-Yi Shen, Cheng-Di Dong, Balasubramanian Dakshinamoorthy, Mohanraj Kumar. Study on the efficacy of sterilization in tap water by electrocatalytic technique. Journal of Applied Electrochemistry 2021, 51 (3) , 539-550. https://doi.org/10.1007/s10800-020-01513-1
  16. Kejian Li, Xiaozhong Fang, Zhaoyang Fu, Yang Yang, Iqra Nabi, Yiqing Feng, Aziz-Ur-Rahim Bacha, Liwu Zhang. Boosting photocatalytic chlorophenols remediation with addition of sulfite and mechanism investigation by in-situ DRIFTs. Journal of Hazardous Materials 2020, 398 , 123007. https://doi.org/10.1016/j.jhazmat.2020.123007
  17. Philipp Otter, Katharina Mette, Robert Wesch, Tobias Gerhardt, Frank-Marc Krüger, Alexander Goldmaier, Florian Benz, Pradyut Malakar, Thomas Grischek. Oxidation of Selected Trace Organic Compounds through the Combination of Inline Electro-Chlorination with UV Radiation (UV/ECl2) as Alternative AOP for Decentralized Drinking Water Treatment. Water 2020, 12 (11) , 3275. https://doi.org/10.3390/w12113275
  18. Dushyant Kumar, Chhaya Sharma. Reduction of chlorophenols and sludge management from paper industry wastewater using electrocoagulation process. Separation Science and Technology 2020, 55 (15) , 2844-2854. https://doi.org/10.1080/01496395.2019.1646761
  19. A. Dennyson Savariraj, R. V. Mangalaraja, K. Prabakar, C. Viswanathan. Electrochemical Aspects for Wastewater Treatment. 2020,,, 121-149. https://doi.org/10.1007/978-3-030-16427-0_6
  20. Abdullah Al-Hamdi, Mika Sillanpää. Photocatalytic activities of antimony, iodide, and rare earth metals on SnO2 for the photodegradation of phenol under UV, solar, and visible light irradiations. 2020,,, 129-288. https://doi.org/10.1016/B978-0-12-819225-2.00004-1
  21. Suprakas Sinha Ray, Rashi Gusain, Neeraj Kumar. Water purification using various technologies and their advantages and disadvantages. 2020,,, 37-66. https://doi.org/10.1016/B978-0-12-821959-1.00003-9
  22. Alireza Shakeri, Hasan Salehi, Masoud Rastgar. Antifouling electrically conductive membrane for forward osmosis prepared by polyaniline/graphene nanocomposite. Journal of Water Process Engineering 2019, 32 , 100932. https://doi.org/10.1016/j.jwpe.2019.100932
  23. Junjian Zheng, Shaoping Xu, Zhichao Wu, Zhiwei Wang. Removal of p-chloroaniline from polluted waters using a cathodic electrochemical ceramic membrane reactor. Separation and Purification Technology 2019, 211 , 753-763. https://doi.org/10.1016/j.seppur.2018.10.046
  24. Masoud Rastgar, Ali Bozorg, Alireza Shakeri, Mohtada Sadrzadeh. Substantially improved antifouling properties in electro-oxidative graphene laminate forward osmosis membrane. Chemical Engineering Research and Design 2019, 141 , 413-424. https://doi.org/10.1016/j.cherd.2018.11.010
  25. Lisha Yang, Zhaohan Zhang, Junfeng Liu, Linlin Huang, Liu Jia, Yujie Feng. Influence of Gd Doping on the Structure and Electrocatalytic Performance of TiO 2 Nanotube/SnO 2 −Sb Nano-coated Electrode. ChemElectroChem 2018, 5 (22) , 3451-3459. https://doi.org/10.1002/celc.201801079
  26. Gelavizh Barzegar, Sahand Jorfi, Vahid Zarezade, Masoumeh Khatebasreh, Fayyaz Mehdipour, Farshid Ghanbari. 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: Reusability, identification of degradation intermediates and potential application for real wastewater. Chemosphere 2018, 201 , 370-379. https://doi.org/10.1016/j.chemosphere.2018.02.143
  27. Fan Li, Penghui Du, Wen Liu, Xushuang Li, Haodong Ji, Jun Duan, Dongye Zhao. Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: Solar-light-driven photocatalytic activity and computational chemistry analysis. Chemical Engineering Journal 2018, 331 , 685-694. https://doi.org/10.1016/j.cej.2017.09.036
  28. Wei Sun, Li-Mei Cao, Ji Yang. Effect of crystallographic structure of iridium based oxides on electrochemical degradation. Electrochimica Acta 2018, 260 , 483-488. https://doi.org/10.1016/j.electacta.2017.12.116
  29. Lisha Yang, Junfeng Liu, Linlin Huang, Zhaohan Zhang, Yanling Yu, Jia Liu, Bruce E. Logan, Yujie Feng. Fabrication of Nano-Structured Stacked Sphere SnO 2 -Sb Electrode with Enhanced Performance Using a Situ Solvothermal Synthesis Method. Journal of The Electrochemical Society 2018, 165 (5) , E208-E213. https://doi.org/10.1149/2.0711805jes
  30. Akbar Eslami, Mohammad Mehralian, Ahmad Moheb. A study of 4-chlorophenol continuous adsorption on nano graphene oxide column: model comparison and breakthrough behaviors. Journal of Water Reuse and Desalination 2017, 7 (3) , 272-279. https://doi.org/10.2166/wrd.2016.044
  31. Wen Liu, Weiling Sun, Alistair G.L. Borthwick, Ting Wang, Fan Li, Yidong Guan. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping. Journal of Hazardous Materials 2016, 317 , 385-393. https://doi.org/10.1016/j.jhazmat.2016.06.002
  32. Ronald Vargas, Carlos Borrás, Daniel Méndez, Jorge Mostany, Benjamín R. Scharifker. Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. Journal of Solid State Electrochemistry 2016, 20 (4) , 875-893. https://doi.org/10.1007/s10008-015-2984-7
  33. Lazhar Labiadh, Antonio Barbucci, Maria Paola Carpanese, Abdellatif Gadri, Salah Ammar, Marco Panizza. Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes. Journal of Electroanalytical Chemistry 2016, 766 , 94-99. https://doi.org/10.1016/j.jelechem.2016.01.036
  34. Maryam Khashij, Ahmad Moheb, Mohammad Mehralian, Mostafa Gharloghi. Modeling of the adsorption breakthrough behaviors of 4-chlorophenol in a fixed bed of nano graphene oxide adsorbent. Journal of Water Supply: Research and Technology-Aqua 2016, 65 (2) , 127-134. https://doi.org/10.2166/aqua.2015.077
  35. M. Mohammadi, S. Sabbaghi, H. Sadeghi, M.M. Zerafat, R. Pooladi. Preparation and characterization of TiO 2 /ZnO/CuO nanocomposite and application for phenol removal from wastewaters. Desalination and Water Treatment 2016, 57 (2) , 799-809. https://doi.org/10.1080/19443994.2014.968877
  36. Yujie Feng, Lisha Yang, Junfeng Liu, Bruce E. Logan. Electrochemical technologies for wastewater treatment and resource reclamation. Environmental Science: Water Research & Technology 2016, 2 (5) , 800-831. https://doi.org/10.1039/C5EW00289C
  37. Wenli Zhang, Haishen Kong, Haibo Lin, Haiyan Lu, Weimin Huang, Jian Yin, Zheqi Lin, Jinpeng Bao. Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate. Journal of Alloys and Compounds 2015, 650 , 705-711. https://doi.org/10.1016/j.jallcom.2015.07.222
  38. Muthuraman Govindan, Il Shik Moon. Expeditious removal of PCDD/Fs from industrial waste incinerator fly ash using electrogenerated homogeneous Ag(II) ions. Chemical Engineering Journal 2015, 272 , 145-150. https://doi.org/10.1016/j.cej.2015.02.043
  39. A. K. Chopra, Arun Kumar Sharma. Disinfection of Biologically Treated Municipal Wastewater using Electrochemical Process. Separation Science and Technology 2014, 49 (17) , 2613-2619. https://doi.org/10.1080/01496395.2014.937815
  40. A. Zieliński, R. Bogdanowicz, J. Ryl, L. Burczyk, K. Darowicki. Local impedance imaging of boron-doped polycrystalline diamond thin films. Applied Physics Letters 2014, 105 (13) , 131908. https://doi.org/10.1063/1.4897346
  41. Xuan He, Hui Wang, Qi Zhang, Zhongbo Li, Xiaochuan Wang. Exotic 3D Hierarchical ZnO–Ag Hybrids as Recyclable Surface‐Enhanced Raman Scattering Substrates for Multifold Organic Pollutant Detection. European Journal of Inorganic Chemistry 2014, 2014 (14) , 2432-2439. https://doi.org/10.1002/ejic.201402014
  42. Jinren Ni. Degradation of Organics, Use of Combined Electrochemical-Ultrasound. 2014,,, 307-310. https://doi.org/10.1007/978-1-4419-6996-5_141
  43. Aleksandra Fabiańska, Robert Bogdanowicz, Patrycja Zięba, Tadeusz Ossowski, Marcin Gnyba, Jacek Ryl, Artur Zielinski, Stoffel D. Janssens, Ken Haenen, Ewa M. Siedlecka. Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes: Influence of boron concentration. physica status solidi (a) 2013, 210 (10) , 2040-2047. https://doi.org/10.1002/pssa.201300094
  44. Young-Seek Park. Phenol Removal Using Oxygen-Plasma Discharge in the Water. Journal of the Environmental Sciences international 2013, 22 (7) , 915-923. https://doi.org/10.5322/JESI.2013.22.7.915
  45. Greg L. Saylor, Linxi Chen, Margaret J. Kupferle. Time Varying Toxicity of Effluents from the Electrochemical Oxidation of Phenol. Procedia Environmental Sciences 2013, 18 , 451-463. https://doi.org/10.1016/j.proenv.2013.04.061
  46. . Abiotic Reactions. 2012,,, 3-52. https://doi.org/10.1201/b12492-3
  47. Aleksandra Fabiańska, Tadeusz Ossowski, Robert Bogdanowicz, Justyna Czupryniak, Marcin Gnyba, Tomasz Odzga, Stoffel D. Janssens, Ken Haenen, Ewa M. Siedlecka. Electrochemical oxidation of ionic liquids at highly boron doped diamond electrodes. physica status solidi (a) 2012, 209 (9) , 1797-1803. https://doi.org/10.1002/pssa.201200056
  48. Haiqing Xu, Ai-Ping Li, Qi Qi, Wei Jiang, Yue-Ming Sun. Electrochemical degradation of phenol on the La and Ru doped Ti/SnO2-Sb electrodes. Korean Journal of Chemical Engineering 2012, 29 (9) , 1178-1186. https://doi.org/10.1007/s11814-012-0014-3
  49. Xiaoyue Duan, Fang Ma, Zhongxin Yuan, Limin Chang, Xintong Jin. Lauryl benzene sulfonic acid sodium-carbon nanotube-modified PbO2 electrode for the degradation of 4-chlorophenol. Electrochimica Acta 2012, 76 , 333-343. https://doi.org/10.1016/j.electacta.2012.05.036
  50. Jian-gong Wang, Xue-min Li. Electrochemical treatment of wastewater containing chlorophenols using boron-doped diamond film electrodes. Journal of Central South University 2012, 19 (7) , 1946-1952. https://doi.org/10.1007/s11771-012-1230-z
  51. Yingwu Yao, Chunmei Zhao, Jin Zhu. Preparation and characterization of PbO2–ZrO2 nanocomposite electrodes. Electrochimica Acta 2012, 69 , 146-151. https://doi.org/10.1016/j.electacta.2012.02.103
  52. Justyna Czupryniak, Aleksandra Fabiańska, Piotr Stepnowski, Tadeusz Ossowski, Robert Bogdanowicz, Marcin Gnyba, Ewa Siedlecka. Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds. Open Physics 2012, 10 (5) https://doi.org/10.2478/s11534-012-0058-3
  53. V. Sáez, M.D. Esclapez, A.J. Frías-Ferrer, P. Bonete, I. Tudela, M.I. Díez-García, J. González-García. Lead dioxide film sonoelectrodeposition in acidic media: Preparation and performance of stable practical anodes. Ultrasonics Sonochemistry 2011, 18 (4) , 873-880. https://doi.org/10.1016/j.ultsonch.2010.11.018
  54. Kumaresan Loganathan, Palanisamy Bommusamy, Palanichamy Muthaiahpillai, Murugesan Velayutham. The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO 2 Nanoparticles. Environmental Engineering Research 2011, 16 (2) , 81-90. https://doi.org/10.4491/eer.2011.16.2.81
  55. Piriyaporn Wongwisate, Sumaeth Chavadej, Erdogan Gulari, Thammanoon Sreethawong, Pramoch Rangsunvigit. Effects of monometallic and bimetallic Au–Ag supported on sol–gel TiO2 on photocatalytic degradation of 4-chlorophenol and its intermediates. Desalination 2011, 272 (1-3) , 154-163. https://doi.org/10.1016/j.desal.2011.01.016
  56. Jiann-Long Chen, Jun-Yi Wang, Chih-Chao Wu, Kung-Yuh Chiang. Electrocatalytic degradation of 2,4-dichlorophenol by granular graphite electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 379 (1-3) , 163-168. https://doi.org/10.1016/j.colsurfa.2010.11.035
  57. Hala A. Talaat, Montaser Y. Ghaly, Eman M. Kamel, Ahmed M. Awad, Enas M. Ahmed. Combined electro-photochemical oxidation for iron removal from ground water. Desalination and Water Treatment 2011, 28 (1-3) , 265-269. https://doi.org/10.5004/dwt.2011.1160
  58. Jiann-Long Chen, Guan-Chang Chiou, Chih-Chao Wu. Electrochemical oxidation of 4-chlorophenol with granular graphite electrodes. Desalination 2010, 264 (1-2) , 92-96. https://doi.org/10.1016/j.desal.2010.07.009
  59. Ravindra Nath Singh, Anindita, Madhu. Thin films of Pd and Pd–1% MWCNT as new electrocatalysts for oxidation of phenol in acid medium. Journal of Solid State Electrochemistry 2010, 14 (11) , 2113-2120. https://doi.org/10.1007/s10008-010-1047-3
  60. Xuanhua Li, Guangyu Chen, Liangbao Yang, Zhen Jin, Jinhuai Liu. Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection. Advanced Functional Materials 2010, 20 (17) , 2815-2824. https://doi.org/10.1002/adfm.201000792
  61. R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón. Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium. Carbon 2010, 48 (10) , 2734-2745. https://doi.org/10.1016/j.carbon.2010.03.071
  62. Xiuping Zhu, Jinren Ni, Hongna Li, Yi Jiang, Xuan Xing, Alistair G.L. Borthwick. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes. Electrochimica Acta 2010, 55 (20) , 5569-5575. https://doi.org/10.1016/j.electacta.2010.04.072
  63. Erling Ni, Lingfeng Qiu. Electrocatalytic Oxidation of Phenol in the Presence of NaCl. 2010,,, 1-4. https://doi.org/10.1109/ICBBE.2010.5517061
  64. Djamel Ghernaout, Badiaa Ghernaout. From chemical disinfection to electrodisinfection: The obligatory itinerary?. Desalination and Water Treatment 2010, 16 (1-3) , 156-175. https://doi.org/10.5004/dwt.2010.1085
  65. Shuang Song, Liyong Zhan, Zhiqiao He, Lili Lin, Jinjun Tu, Zhehao Zhang, Jianmeng Chen, Lejin Xu. Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2–Sb/PbO2 electrodes. Journal of Hazardous Materials 2010, 175 (1-3) , 614-621. https://doi.org/10.1016/j.jhazmat.2009.10.051
  66. Yujie Feng, Junfeng Liu, Haiyang Ding. Preparation, Analysis and Behaviors of Ti-Based SnO2 Electrode and the Function of Rare-Earth Doping in Aqueous Wastes Treatment. 2010,,, 325-352. https://doi.org/10.1007/978-0-387-68318-8_14
  67. Marco Panizza. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants. 2010,,, 25-54. https://doi.org/10.1007/978-0-387-68318-8_2
  68. Yi Zhang, Shengwen Wu, Bo Fu, Ting Yu, Xue Gao, Dong Han. Application of Electrochemical Oxidation Process in Water Quality Control of the Oily Wastewater. 2009,,, 1710-1722. https://doi.org/10.1061/41073(361)180
  69. Marco Panizza, Giacomo Cerisola. Electro-Fenton degradation of synthetic dyes. Water Research 2009, 43 (2) , 339-344. https://doi.org/10.1016/j.watres.2008.10.028
  70. Jae-Yong Ryu. Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper (II) chloride-catalyzed thermal process. Chemosphere 2008, 71 (6) , 1100-1109. https://doi.org/10.1016/j.chemosphere.2007.10.036
  71. Ilona Heidmann, Wolfgang Calmano. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation. Journal of Hazardous Materials 2008, 152 (3) , 934-941. https://doi.org/10.1016/j.jhazmat.2007.07.068
  72. Xiao-Mei Wang, Ji-Ming Hu, Jian-Qing Zhang, Chu-Nan Cao. Characterization of surface fouling of Ti/IrO2 electrodes in 4-chlorophenol aqueous solutions by electrochemical impedance spectroscopy. Electrochimica Acta 2008, 53 (8) , 3386-3394. https://doi.org/10.1016/j.electacta.2007.11.070
  73. Ignasi Sirés, Enric Brillas, Giacomo Cerisola, Marco Panizza. Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes. Journal of Electroanalytical Chemistry 2008, 613 (2) , 151-159. https://doi.org/10.1016/j.jelechem.2007.10.023
  74. Jiangtao Kong, Shaoyuan Shi, Lingcai Kong, Xiuping Zhu, Jinren Ni. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochimica Acta 2007, 53 (4) , 2048-2054. https://doi.org/10.1016/j.electacta.2007.09.003
  75. Huiling Liu, Yuan Liu, Cheng Zhang, Rongshu Shen. Electrocatalytic oxidation of nitrophenols in aqueous solution using modified PbO2 electrodes. Journal of Applied Electrochemistry 2007, 38 (1) , 101-108. https://doi.org/10.1007/s10800-007-9406-1
  76. Hui Wang, JianLong Wang. Comparative study on electrochemical degradation of 4-chlorophenol by different Pd/C gas diffusion electrodes. Science in China Series B: Chemistry 2007, 50 (5) , 692-699. https://doi.org/10.1007/s11426-007-0082-0
  77. Kelly L. Meaney, Sasha Omanovic. Sn0.86–Sb0.03–Mn0.10–Pt0.01-oxide/Ti anode for the electro-oxidation of aqueous organic wastes. Materials Chemistry and Physics 2007, 105 (2-3) , 143-147. https://doi.org/10.1016/j.matchemphys.2007.04.046
  78. . Electro-oxidation Kinetics of Cerium(III) in Nitric Acid Using Divided Electrochemical Cell for Application in the Mediated Electrochemical Oxidation of Phenol. Bulletin of the Korean Chemical Society 2007,,, 1329-1334. https://doi.org/10.5012/bkcs.2007.28.8.1329
  79. R. D. Coteiro, A. R. De Andrade. Electrochemical oxidation of 4-chlorophenol and its by-products using Ti/Ru0.3M0.7O2 (M = Ti or Sn) anodes: preparation route versus degradation efficiency. Journal of Applied Electrochemistry 2007, 37 (6) , 691-698. https://doi.org/10.1007/s10800-007-9301-9
  80. Di Wu, Miao Liu, Deming Dong, Xiling Zhou. Effects of some factors during electrochemical degradation of phenol by hydroxyl radicals. Microchemical Journal 2007, 85 (2) , 250-256. https://doi.org/10.1016/j.microc.2006.06.009
  81. Barry MacDougall, C. Bock, M. Gattrell. Environmental Electrochemistry. 2007,,https://doi.org/10.1002/9783527610426.bard050013
  82. Chiaki Terashima, Akira Fujishima. Chapter 11 Reproducible electrochemical analysis of phenolic compounds by high-pressure liquid chromatography with oxygen-terminated diamond sensor. 2007,,, 211-232. https://doi.org/10.1016/S0166-526X(06)49011-5
  83. Jiang-tao KONG, Shao-yuan SHI, Xiu-ping ZHU, Jin-ren NI. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol. Journal of Environmental Sciences 2007, 19 (11) , 1380-1386. https://doi.org/10.1016/S1001-0742(07)60225-3
  84. . Characteristics of Decomposition for Refractory Organic Compounds in Aqueous Solution by Sonolysis and Electrolysis. Journal of the Korean Chemical Society 2006,,, 454-463. https://doi.org/10.5012/jkcs.2006.50.6.454
  85. Y.H. Wang, K.Y. Chan, X.Y. Li, S.K. So. Electrochemical degradation of 4-chlorophenol at nickel–antimony doped tin oxide electrode. Chemosphere 2006, 65 (7) , 1087-1093. https://doi.org/10.1016/j.chemosphere.2006.04.061
  86. A. Heyl, J. Jörissen. Electrochemical detoxification of waste water without additives using solid polymer electrolyte (SPE) technology. Journal of Applied Electrochemistry 2006, 36 (11) , 1281-1290. https://doi.org/10.1007/s10800-006-9181-4
  87. Marco Panizza, Giacomo Cerisola. Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes. Water Research 2006, 40 (6) , 1179-1184. https://doi.org/10.1016/j.watres.2006.01.020
  88. Keisuke Ikehata, Mohamed Gamal El-Din. Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. Journal of Environmental Engineering and Science 2006, 5 (2) , 81-135. https://doi.org/10.1139/s05-046
  89. Carlos A. Martínez-Huitle, Sergio Ferro. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 2006, 35 (12) , 1324-1340. https://doi.org/10.1039/B517632H
  90. Xiao-yan Li, Yu-hong Cui, Yu-jie Feng, Zhao-ming Xie, Ji-Dong Gu. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research 2005, 39 (10) , 1972-1981. https://doi.org/10.1016/j.watres.2005.02.021
  91. Jae-Yong Ryu, James A. Mulholland. Metal-mediated chlorinated dibenzo-p-dioxin (CDD) and dibenzofuran (CDF) formation from phenols. Chemosphere 2005, 58 (7) , 977-988. https://doi.org/10.1016/j.chemosphere.2004.08.084
  92. Ge Chen, Zhenyao Wang, Dingguo Xia. Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium. Electrochimica Acta 2004, 50 (4) , 933-937. https://doi.org/10.1016/j.electacta.2004.06.019
  93. X. Y. Li, H. F. Diao, F. X. J. Fan, J. D. Gu, F. Ding, A. S. F. Tong. Electrochemical Wastewater Disinfection: Identification of Its Principal Germicidal Actions. Journal of Environmental Engineering 2004, 130 (10) , 1217-1221. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:10(1217)
  94. M. Panizza, G. Cerisola. Influence of anode material on the electrochemical oxidation of 2-naphthol. Electrochimica Acta 2004, 49 (19) , 3221-3226. https://doi.org/10.1016/j.electacta.2004.02.036
  95. H.F Diao, X.Y Li, J.D Gu, H.C Shi, Z.M Xie. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochemistry 2004, 39 (11) , 1421-1426. https://doi.org/10.1016/S0032-9592(03)00274-7
  96. M. Panizza, G. Cerisola. Influence of anode material on the electrochemical oxidation of 2-naphthol. Electrochimica Acta 2003, 48 (23) , 3491-3497. https://doi.org/10.1016/S0013-4686(03)00468-7
  97. Birame Boye, Momar Morième Dieng, Enric Brillas. Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid. Journal of Electroanalytical Chemistry 2003, 557 , 135-146. https://doi.org/10.1016/S0022-0728(03)00366-8
  98. Enric Brillas, Miguel Ángel Baños, José Antonio Garrido. Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Electrochimica Acta 2003, 48 (12) , 1697-1705. https://doi.org/10.1016/S0013-4686(03)00142-7
  99. Y.J Feng, X.Y Li. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Research 2003, 37 (10) , 2399-2407. https://doi.org/10.1016/S0043-1354(03)00026-5
  100. Enric Brillas, Birame Boye, Miguel Ángel Baños, Juan Carlos Calpe, José Antonio Garrido. Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method. Chemosphere 2003, 51 (4) , 227-235. https://doi.org/10.1016/S0045-6535(02)00836-6
Load all citations