Preparation and Bifunctional Gas Sensing Properties of Porous In2O3−CeO2 Binary Oxide Nanotubes

View Author Information
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People’s Republic of China
*To whom correspondence should be addressed. E-mail: [email protected]. Tel./Fax: 86-431-85155129.
Cite this: Inorg. Chem. 2010, 49, 22, 10590–10597
Publication Date (Web):October 15, 2010
https://doi.org/10.1021/ic101602a
Copyright © 2010 American Chemical Society
Article Views
2417
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)

Abstract

The porous binary In2O3−CeO2 oxides nanotubes (NTs) in cubic phase were first fabricated by electrospinning (ESP) method and characterized by SEM, TEM, XRD, XPS and UV−vis absorption techniques. By adjusting the In2O3 and CeO2 molar ratio, the out diameters and wall thicknesses of the final composites were tuned ranging of 90−180 nm and 15−9 nm, respectively. The band gap of the binary oxides gradually decreases, and the ratio of Ce3+ to Ce4+ increases with the increase of CeO2, implying that surface oxygen vacancies gradually increase. The gas sensing test reveals that when the content of CeO2 is appropriate, the as fabricated In2O3−CeO2 NTs could be bifunctional gas sensors to detect H2S at low temperature(25−110 °C) while acetone at relative high temperature (300 °C). The In75Ce25 NTs sensor is an optimum one, which exhibits the highest response of 498 to H2S at 80 °C and the highest response of 30 to acetone at 300 °C. In contrast to the pure In2O3 sensor, the response and recovery times, as well as the sensing reaction barrier height, for In75Ce25 both degrade considerably. The above temperature-dependent sensing properties were attributed to two different gas sensing mechanisms, sulfuration at low temperature and adsorption at high temperature.

Cited By


This article is cited by 81 publications.

  1. Ahmad M. Al Shboul, Ricardo Izquierdo. Printed Chemiresistive In2O3 Nanoparticle-Based Sensors with ppb Detection of H2S Gas for Food Packaging. ACS Applied Nano Materials 2021, 4 (9) , 9508-9517. https://doi.org/10.1021/acsanm.1c01970
  2. Yale Wang, Arnab Maity, Xiaoyu Sui, Haihui Pu, Shun Mao, Niraj K. Singh, Junhong Chen. In Operando Impedance Spectroscopic Analysis on NiO–WO3 Nanorod Heterojunction Random Networks for Room-Temperature H2S Detection. ACS Omega 2018, 3 (12) , 18685-18693. https://doi.org/10.1021/acsomega.8b01981
  3. Shengjie Peng, Peining Zhu, Subodh G. Mhaisalkar, and Seeram Ramakrishna . Self-Supporting Three-Dimensional ZnIn2S4/PVDF–Poly(MMA-co-MAA) Composite Mats with Hierarchical Nanostructures for High Photocatalytic Activity. The Journal of Physical Chemistry C 2012, 116 (26) , 13849-13857. https://doi.org/10.1021/jp302741c
  4. Rafaela S. Andre, Murilo H.M. Facure, Luiza A. Mercante, Daniel S. Correa. Electronic nose based on hybrid free-standing nanofibrous mats for meat spoilage monitoring. Sensors and Actuators B: Chemical 2022, 353 , 131114. https://doi.org/10.1016/j.snb.2021.131114
  5. He Wang, Hongwei Zhao, Sirui Li, Hang Zhu, Liming Zhou, Hehan Zhang, Huilei Xu, Tianye Yang. Fast triethylamine gas sensing performance based on In 2 O 3 nanocuboids. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 2021, , 146442072110227. https://doi.org/10.1177/14644207211022768
  6. A. Al Shboul, R. Izquierdo. Sensitivity Enhancement of Printed In 2 O 3 Sensors for H 2 S Gas Detection At Room Temperature. 2021,,, 1-4. https://doi.org/10.1109/FLEPS51544.2021.9469746
  7. Bapathi Kumaar Swamy Reddy, Pramod H. Borse. Review—Recent Material Advances and Their Mechanistic Approaches for Room Temperature Chemiresistive Gas Sensors. Journal of The Electrochemical Society 2021, 168 (5) , 057521. https://doi.org/10.1149/1945-7111/abf4ea
  8. Ahmad Al Shboul, Andy Shih, Ricardo Izquierdo. A Flexible Indium Oxide Sensor With Anti-Humidity Property for Room Temperature Detection of Hydrogen Sulfide. IEEE Sensors Journal 2021, 21 (8) , 9667-9674. https://doi.org/10.1109/JSEN.2020.3010843
  9. Vanish Kumar, Sanjit Manohar Majhi, Ki-Hyun Kim, Hyoun Woo Kim, Eilhann E. Kwon. Advances in In2O3-based materials for the development of hydrogen sulfide sensors. Chemical Engineering Journal 2021, 404 , 126472. https://doi.org/10.1016/j.cej.2020.126472
  10. Chao Huang, Noreen L. Thomas. Fabrication of porous fibers via electrospinning: strategies and applications. Polymer Reviews 2020, 60 (4) , 595-647. https://doi.org/10.1080/15583724.2019.1688830
  11. Yinglin Wang, Pengfei Cheng, Xu Li, Chen Wang, Changhao Feng, Geyu Lu. Revealing the relationship between the Au decoration method and the enhanced acetone sensing performance of a mesoporous In 2 O 3 -based gas sensor. Journal of Materials Chemistry C 2020, 8 (1) , 78-88. https://doi.org/10.1039/C9TC05082E
  12. Julakanti Shruthi, Nagabandi Jayababu, P. Ghosal, M.V. Ramana Reddy. Ultrasensitive sensor based on Y2O3-In2O3 nanocomposites for the detection of methanol at room temperature. Ceramics International 2019, 45 (17) , 21497-21504. https://doi.org/10.1016/j.ceramint.2019.07.141
  13. Changhui Zhao, Huimin Gong, Gaoqiang Niu, Fei Wang. Electrospun Ca-doped In2O3 nanotubes for ethanol detection with enhanced sensitivity and selectivity. Sensors and Actuators B: Chemical 2019, 299 , 126946. https://doi.org/10.1016/j.snb.2019.126946
  14. Ahmad Al Shboul, Andy Shih, Mimoun Oukachmih, Ricardo Izquierdo. ppb Sensing Level Hydrogen Sulphide at Room Temperature Using Indium Oxide Gas Sensors. 2019,,, 1-4. https://doi.org/10.1109/SENSORS43011.2019.8956528
  15. Zumin Wang, Ranbo Yu. Hollow Micro/Nanostructured Ceria‐Based Materials: Synthetic Strategies and Versatile Applications. Advanced Materials 2019, 31 (38) , 1800592. https://doi.org/10.1002/adma.201800592
  16. Shuqin Yang, Zhilong Song, Naibo Gao, Zhixiang Hu, Licheng Zhou, Jingyao Liu, Baohui Zhang, Guangzu Zhang, Shenglin Jiang, Hua-Yao Li, Huan Liu. Near room temperature operable H2S sensors based on In2O3 colloidal quantum dots. Sensors and Actuators B: Chemical 2019, 286 , 22-31. https://doi.org/10.1016/j.snb.2019.01.110
  17. Lanlan Guo, Fang Chen, Ning Xie, Xueying Kou, Chong Wang, Yanfeng Sun, Fangmeng Liu, Xishuang Liang, Yuan Gao, Xu Yan, Tong Zhang, Geyu Lu. Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sensors and Actuators B: Chemical 2018, 272 , 185-194. https://doi.org/10.1016/j.snb.2018.05.161
  18. Wen-Qi Chen, Hao Wang, Yi Mu, Cui-E Hu, Yan Cheng. First-principles calculations of structural, electronic, magnetic, elastic and optical properties of tetragonal zircon-type CeVO 4. International Journal of Modern Physics B 2018, 32 (22) , 1850239. https://doi.org/10.1142/S0217979218502399
  19. Kyriaki Polychronopoulou, Maguy Abi Jaoudé. Nano-architectural advancement of CeO2-driven catalysis via electrospinning. Surface and Coatings Technology 2018, 350 , 245-280. https://doi.org/10.1016/j.surfcoat.2018.07.014
  20. Peng Wang, Fanming Meng, Chao Gao, Wei Xie, Jie Wang, Aixia Li. Structural, morphological and optical characteristics of fusiform Co-doped CeO2 via a facile hydrothermal method. Journal of Materials Science: Materials in Electronics 2018, 29 (13) , 11482-11488. https://doi.org/10.1007/s10854-018-9243-5
  21. Zhi-Guang Zhang, Xiao-Xiong Wang, Jun Zhang, Miao Yu, Jun-Cheng Zhang, Hong-Di Zhang, Yun-Ze Long. Recent advances in 1D micro- and nanoscale indium oxide structures. Journal of Alloys and Compounds 2018, 752 , 359-375. https://doi.org/10.1016/j.jallcom.2018.04.188
  22. K. Rackesh Jawaher, R. Indirajith, S. Krishnan, R. Robert, S.K. Khadheer Pasha, Kalim Deshmukh, S. Jerome Das. Hydrothermal synthesis of CeO 2 SnO 2 nanocomposites with highly enhanced gas sensing performance towards n-butanol. Journal of Science: Advanced Materials and Devices 2018, 3 (2) , 139-144. https://doi.org/10.1016/j.jsamd.2018.03.006
  23. Zhijie Li, Junqiang Wang, Sa Zhang, Shengnan Yan, Baobao Cao, Wenzhong Shen, Zhiguo Wang, Yong Qing Fu. Highly sensitive NH3 gas sensor based on the porous Ce0.94Zr0.06O2 nano-sheets with ppb level detection limit. Journal of Alloys and Compounds 2018, 742 , 712-720. https://doi.org/10.1016/j.jallcom.2018.01.327
  24. Haojie Duan, Yifang Wang, Shuo Li, Haiying Li, Li Liu, Liting Du, Yali Cheng. Controllable synthesis of Ho-doped In2O3 porous nanotubes by electrospinning and their application as an ethanol gas sensor. Journal of Materials Science 2018, 53 (5) , 3267-3279. https://doi.org/10.1007/s10853-017-1796-9
  25. Guo Lin, Hong Wang, Xuefei Li, Xiaoyong Lai, Yanzhao Zou, Xiaofei Zhou, Di Liu, Jiawei Wan, Hong Xin. Chestnut-like [email protected]@In2O3 nanocomposite microspheres with enhanced acetone sensing property. Sensors and Actuators B: Chemical 2018, 255 , 3364-3373. https://doi.org/10.1016/j.snb.2017.09.163
  26. Muhammad Imran, Nunzio Motta, Mahnaz Shafiei. Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials. Beilstein Journal of Nanotechnology 2018, 9 , 2128-2170. https://doi.org/10.3762/bjnano.9.202
  27. Tokeer Ahmad, Mohd Shahazad, Mohd Ubaidullah, Jahangeer Ahmed, Aslam Khan, Ahmed Mohamed El-Toni. Structural characterization and dielectric properties of ceria–titania nanocomposites in low ceria region. Materials Research Express 2017, 4 (12) , 125016. https://doi.org/10.1088/2053-1591/aa9c51
  28. Huijie Li, Fanming Meng, Jinfeng Gong, Zhenghua Fan, Rui Qin. Structural, morphological and optical properties of shuttle-like CeO2 synthesized by a facile hydrothermal method. Journal of Alloys and Compounds 2017, 722 , 489-498. https://doi.org/10.1016/j.jallcom.2017.06.156
  29. G. N. Gerasimov, V. F. Gromov, T. V. Belysheva, M. I. Ikim, L. I. Trakhtenberg. Effect of the composition and structure of metal oxide nanocomposites on the sensor process when detecting reducing gases. Russian Journal of Physical Chemistry A 2017, 91 (9) , 1609-1620. https://doi.org/10.1134/S0036024417090114
  30. Huijie Li, Fanming Meng, Jinfeng Gong, Zhenghua Fan, Rui Qin. Morphology control and magnetic properties of cauliflower-like CeO2 synthesized by a facile template-free hydrothermal method. Journal of Materials Science: Materials in Electronics 2017, 28 (13) , 9584-9588. https://doi.org/10.1007/s10854-017-6706-z
  31. Meishan Li, Wei Ren, Rong Wu, Min Zhang. CeO2 Enhanced Ethanol Sensing Performance in a CdS Gas Sensor. Sensors 2017, 17 (7) , 1577. https://doi.org/10.3390/s17071577
  32. Su Zhang, Peng Song, Jia Zhang, Huihui Yan, Jia Li, Zhongxi Yang, Qi Wang. Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sensors and Actuators B: Chemical 2017, 242 , 983-993. https://doi.org/10.1016/j.snb.2016.09.155
  33. Xuesong Wang, Guoguang Wang, Xin Guo, Lianyuan Wang, Li Liu, Yu Li, Han Wang. Novel ruptured Sm 2 O 3 –In 2 O 3 porous nanotubes with excellent formaldehyde sensing properties. Functional Materials Letters 2017, 10 (02) , 1650072. https://doi.org/10.1142/S1793604716500727
  34. Muthukumaraswamy Ranagraj Vengatesan, Anish Mathai Varghese, Vikas Mittal. Nanotubes. 2017,,, 1-24. https://doi.org/10.1002/0471238961.koe00026
  35. G.N. Gerasimov, V.F. Gromov, O.J. Ilegbusi, L.I. Trakhtenberg. The mechanisms of sensory phenomena in binary metal-oxide nanocomposites. Sensors and Actuators B: Chemical 2017, 240 , 613-624. https://doi.org/10.1016/j.snb.2016.09.007
  36. Shilpi Agarwal, Inderjeet Tyagi, Vinod Kumar Gupta, Ali Fakhri, Sara Shahidi. Sonocatalytic, sonophotocatalytic and photocatalytic degradation of morphine using molybdenum trioxide and molybdenum disulfide nanoparticles photocatalyst. Journal of Molecular Liquids 2017, 225 , 95-100. https://doi.org/10.1016/j.molliq.2016.11.029
  37. Jian Zhang, Ziyu Qin, Dawen Zeng, Changsheng Xie. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Physical Chemistry Chemical Physics 2017, 19 (9) , 6313-6329. https://doi.org/10.1039/C6CP07799D
  38. Hongzhi Shen, Liang Li, Dapeng Xu. Preparation of one-dimensional SnO 2 –In 2 O 3 nano-heterostructures and their gas-sensing property. RSC Advances 2017, 7 (53) , 33098-33105. https://doi.org/10.1039/C6RA28520A
  39. Qili Gao, Guanglin Xia, Xuebin Yu. Confined NaAlH 4 nanoparticles inside CeO 2 hollow nanotubes towards enhanced hydrogen storage. Nanoscale 2017, 9 (38) , 14612-14619. https://doi.org/10.1039/C7NR03512H
  40. Tian-Li Han, Yu-Teng Wan, Jin-Jin Li, Hui-Gang Zhang, Jin-Huai Liu, Xing-Jiu Huang, Jin-Yun Liu. In situ gold nanoparticle-decorated three-dimensional tin dioxide nanostructures for sensitive and selective gas-sensing detection of volatile organic compounds. Journal of Materials Chemistry C 2017, 5 (25) , 6193-6201. https://doi.org/10.1039/C7TC01496A
  41. Shilpi Agarwal, Inderjeet Tyagi, Vinod Kumar Gupta, Maryam Sohrabi, Sanaz Mohammadi, Ahmad Nozad Golikand, Ali Fakhri. Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation. Materials Science and Engineering: C 2017, 70 , 178-183. https://doi.org/10.1016/j.msec.2016.08.062
  42. , Jae-Hun Kim, Yifang Zheng, Ali Mirzaei, Sang Sub Kim. Excellent Carbon Monoxide Sensing Performance of Au-Decorated SnO2 Nanofibers. Korean Journal of Materials Research 2016, 26 (12) , 741-750. https://doi.org/10.3740/MRSK.2016.26.12.741
  43. Changbai Liu, Xuesong Wang, Feng Xie, Li Liu, Shengping Ruan. Fabrication of Sm-doped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties. Journal of Materials Science: Materials in Electronics 2016, 27 (9) , 9870-9876. https://doi.org/10.1007/s10854-016-5055-7
  44. Ali Fakhri, Pedram Afshar Nejad. Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. Journal of Photochemistry and Photobiology B: Biology 2016, 159 , 211-217. https://doi.org/10.1016/j.jphotobiol.2016.04.002
  45. G. Sarala Devi, P. Siva Prasada Reddy, K. Ramya. Sol-Gel Derived ZnO: Nb2O5 Nanocomposite as Selective Hydrogen (H2) Gas Sensor. Materials Today: Proceedings 2016, 3 (2) , 224-229. https://doi.org/10.1016/j.matpr.2016.01.061
  46. Lucas H.G. Kalinke, Humberto O. Stumpf, Italo O. Mazali, Danielle Cangussu. Bimetallic oxamato complexes synthesized into mesoporous matrix as precursor to tunable nanosized oxide. Materials Research Bulletin 2015, 70 , 743-747. https://doi.org/10.1016/j.materresbull.2015.05.042
  47. Ping Lu, Botao Qiao, Ning Lu, Dong Choon Hyun, Jinguo Wang, Moon J. Kim, Jingyue Liu, Younan Xia. Photochemical Deposition of Highly Dispersed Pt Nanoparticles on Porous CeO 2 Nanofibers for the Water-Gas Shift Reaction. Advanced Functional Materials 2015, 25 (26) , 4153-4162. https://doi.org/10.1002/adfm.201501392
  48. Xishuang Liang, Tae-Hyung Kim, Ji-Wook Yoon, Chang-Hoon Kwak, Jong-Heun Lee. Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sensors and Actuators B: Chemical 2015, 209 , 934-942. https://doi.org/10.1016/j.snb.2014.11.130
  49. L.I. Trakhtenberg, G.N. Gerasimov, V.F. Gromov, T.V. Belysheva, O.J. Ilegbusi. Effect of composition and temperature on conductive and sensing properties of CeO2+In2O3 nanocomposite films. Sensors and Actuators B: Chemical 2015, 209 , 562-569. https://doi.org/10.1016/j.snb.2014.12.022
  50. Changhui Zhao, Baoyu Huang, Erqing Xie, Jinyuan Zhou, Zhenxing Zhang. Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping. Sensors and Actuators B: Chemical 2015, 207 , 313-320. https://doi.org/10.1016/j.snb.2014.10.087
  51. Pei Li, Huiqing Fan. Porous In2O3 microstructures: Hydrothermal synthesis and enhanced Cl2 sensing performance. Materials Science in Semiconductor Processing 2015, 29 , 83-89. https://doi.org/10.1016/j.mssp.2013.09.026
  52. Heng-Guo Wang, Shuang Yuan, De-Long Ma, Xin-Bo Zhang, Jun-Min Yan. Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy & Environmental Science 2015, 8 (6) , 1660-1681. https://doi.org/10.1039/C4EE03912B
  53. Guozhu Chen, Federico Rosei, Dongling Ma. Template engaged synthesis of hollow ceria-based composites. Nanoscale 2015, 7 (13) , 5578-5591. https://doi.org/10.1039/C4NR07674E
  54. Arpan Kumar Nayak, Ruma Ghosh, Sumita Santra, Prasanta Kumar Guha, Debabrata Pradhan. Hierarchical nanostructured WO 3 –SnO 2 for selective sensing of volatile organic compounds. Nanoscale 2015, 7 (29) , 12460-12473. https://doi.org/10.1039/C5NR02571K
  55. Fengyan Ma, Zhi Geng, Xia Yang, Jiyan Leng. Fabrication and enhanced simulated sunlight photocatalytic activity of metallic platinum and indium oxide codoped titania nanotubes. RSC Advances 2015, 5 (58) , 46677-46685. https://doi.org/10.1039/C5RA05404D
  56. Yang Cao, Xiaoxi Huang, Yuanyuan Wu, Yong-Cun Zou, Jun Zhao, Guo-Dong Li, Xiaoxin Zou. Three-dimensional ultrathin In 2 O 3 nanosheets with morphology-enhanced activity for amine sensing. RSC Advances 2015, 5 (74) , 60541-60548. https://doi.org/10.1039/C5RA09063F
  57. Xiaoping Shen, Lijun Guo, Guoxing Zhu, Chunyan Xi, Zhenyuan Ji, Hu Zhou. Facile synthesis and gas-sensing performance of Sr- or Fe-doped In 2 O 3 hollow sub-microspheres. RSC Advances 2015, 5 (79) , 64228-64234. https://doi.org/10.1039/C5RA14052H
  58. Yunshi Liu, Ping Yang, Jia Li, Katarzyna Matras-Postolek, Yunlong Yue, Baibiao Huang. Morphology adjustment of SnO 2 and SnO 2 /CeO 2 one dimensional nanostructures towards applications in gas sensing and CO oxidation. RSC Advances 2015, 5 (119) , 98500-98507. https://doi.org/10.1039/C5RA23446H
  59. Bin Xu, Qitao Zhang, Saisai Yuan, Ming Zhang, Teruhisa Ohno. Morphology control and characterization of broom-like porous CeO2. Chemical Engineering Journal 2015, 260 , 126-132. https://doi.org/10.1016/j.cej.2014.09.001
  60. Li Yin, Deliang Chen, Hanwen Zhang, Gang Shao, Bingbing Fan, Rui Zhang, Guosheng Shao. In situ formation of Au/SnO 2 nanocrystals on WO 3 nanoplates as excellent gas-sensing materials for H 2 S detection. Materials Chemistry and Physics 2014, 148 (3) , 1099-1107. https://doi.org/10.1016/j.matchemphys.2014.09.025
  61. Jing Cao, Huimin Dou, Hao Zhang, Haixia Mei, Sen Liu, Teng Fei, Rui Wang, Lijie Wang, Tong Zhang. Controllable synthesis and HCHO-sensing properties of In2O3 micro/nanotubes with different diameters. Sensors and Actuators B: Chemical 2014, 198 , 180-187. https://doi.org/10.1016/j.snb.2014.03.015
  62. Xiaohong Sun, Huiming Ji, Xiaolei Li, Shu Cai, Chunming Zheng. Mesoporous In2O3 with enhanced acetone gas-sensing property. Materials Letters 2014, 120 , 287-291. https://doi.org/10.1016/j.matlet.2014.01.114
  63. G. N. Gerasimov, V. F. Gromov, L. I. Trakhtenberg, T. V. Belysheva, E. Yu. Spiridonova, V. M. Rozenbaum. Sensor properties of the nanostructured In2O3-CeO2 system in detection of reducing gases. Russian Journal of Physical Chemistry A 2014, 88 (3) , 503-508. https://doi.org/10.1134/S0036024414030066
  64. Il-Doo Kim, Seon-Jin Choi, Won-Hee Ryu. Electrospun Functional Nanofibers and Their Applications in Chemical Sensors and Li-Ion Batteries. 2014,,, 793-838. https://doi.org/10.1007/978-3-642-31107-9_6
  65. Pei Li, Huiqing Fan, Yu Cai, Mengmeng Xu. Zn-doped In 2 O 3 hollow spheres: mild solution reaction synthesis and enhanced Cl 2 sensing performance. CrystEngComm 2014, 16 (13) , 2715-2722. https://doi.org/10.1039/C3CE42325E
  66. Shouli Bai, Haiyan Liu, Ruixian Luo, Aifan Chen, Dianqing Li. SnO 2 @Co 3 O 4 p–n heterostructures fabricated by electrospinning and mechanism analysis enhanced acetone sensing. RSC Adv. 2014, 4 (108) , 62862-62868. https://doi.org/10.1039/C4RA09766A
  67. Li Yin, Deliang Chen, Mingxiang Hu, Haiyue Shi, Dewei Yang, Bingbing Fan, Gang Shao, Rui Zhang, Guosheng Shao. Microwave-assisted growth of In 2 O 3 nanoparticles on WO 3 nanoplates to improve H 2 S-sensing performance. J. Mater. Chem. A 2014, 2 (44) , 18867-18874. https://doi.org/10.1039/C4TA03426K
  68. Heng-guo Wang, Yan-hui Li, Wan-qiang Liu, Yu-chun Wan, Yan-wei Li, Qian Duan. One-step facile synthesis of TiO2/Fe2O3 fiber-in-tube hierarchical heterostructures with improved lithium-ion battery performance. RSC Advances 2014, 4 (44) , 23125. https://doi.org/10.1039/c4ra02062f
  69. Min Liu, Zhen-Long Lv, Yan Cheng, Guang-Fu Ji, Min Gong. Structural, elastic and electronic properties of CeVO4 via first-principles calculations. Computational Materials Science 2013, 79 , 811-816. https://doi.org/10.1016/j.commatsci.2013.07.024
  70. Linlin Li, Shengjie Peng, Yanling Cheah, Yahwen Ko, Peifen Teh, Grace Wee, Chuiling Wong, Madhavi Srinivasan. Electrospun Hierarchical CaCo 2 O 4 Nanofibers with Excellent Lithium Storage Properties. Chemistry - A European Journal 2013, 19 (44) , 14823-14830. https://doi.org/10.1002/chem.201302849
  71. Weifeng Qin, Lin Xu, Jian Song, Ruiqing Xing, Hongwei Song. Highly enhanced gas sensing properties of porous SnO2–CeO2 composite nanofibers prepared by electrospinning. Sensors and Actuators B: Chemical 2013, 185 , 231-237. https://doi.org/10.1016/j.snb.2013.05.001
  72. Ting Zhang, Fubo Gu, Dongmei Han, Zhihua Wang, Guangsheng Guo. Synthesis, characterization and alcohol-sensing properties of rare earth doped In2O3 hollow spheres. Sensors and Actuators B: Chemical 2013, 177 , 1180-1188. https://doi.org/10.1016/j.snb.2012.12.024
  73. Zhonghao Li, Yang Li, Yuxia Luan, Junchao Li, Aixin Song. In(OH) 3 particles from an ionic liquid precursor and their conversion to porous In 2 O 3 particles for enhanced gas sensing properties. CrystEngComm 2013, 15 (9) , 1706-1714. https://doi.org/10.1039/C2CE26733K
  74. Jing Cao, Tong Zhang, Feng Li, Hui Yang, Sen Liu. Enhanced ethanol sensing of SnO2 hollow micro/nanofibers fabricated by coaxial electrospinning. New Journal of Chemistry 2013, 37 (7) , 2031. https://doi.org/10.1039/c3nj00096f
  75. Pei Li, Yu Cai, Huiqing Fan. Porous thin sheet-based α-Fe2O3-doped In2O3 structures: hydrothermal synthesis and enhanced Cl2 sensing performance. RSC Advances 2013, 3 (44) , 22239. https://doi.org/10.1039/c3ra43616k
  76. Guozhu Chen, Federico Rosei, Dongling Ma. Interfacial Reaction-Directed Synthesis of Ce-Mn Binary Oxide Nanotubes and Their Applications in CO Oxidation and Water Treatment. Advanced Functional Materials 2012, 22 (18) , 3914-3920. https://doi.org/10.1002/adfm.201200900
  77. Heng-guo Wang, De-long Ma, Yun Huang, Xin-bo Zhang. Electrospun V2O5 Nanostructures with Controllable Morphology as High-Performance Cathode Materials for Lithium-Ion Batteries. Chemistry - A European Journal 2012, 18 (29) , 8987-8993. https://doi.org/10.1002/chem.201200434
  78. Elias de Barros Santos, Fernando Aparecido Sigoli, Italo Odone Mazali. Structural evolution in crystalline MoO3 nanoparticles with tunable size. Journal of Solid State Chemistry 2012, 190 , 80-84. https://doi.org/10.1016/j.jssc.2012.02.012
  79. Caihui Feng, Wei Li, Chao Li, Linghui Zhu, Haifeng Zhang, Ying Zhang, Shengping Ruan, Weiyou Chen, Lianxiang Yu. Highly efficient rapid ethanol sensing based on In2−xNixO3 nanofibers. Sensors and Actuators B: Chemical 2012, 166-167 , 83-88. https://doi.org/10.1016/j.snb.2011.12.083
  80. Zhiyao Hou, Guogang Li, Hongzhou Lian, Jun Lin. One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application. Journal of Materials Chemistry 2012, 22 (12) , 5254. https://doi.org/10.1039/c2jm15638e
  81. M. R. Mohammadi, D. J. Fray. Synthesis of Nanostructured and Nanoporous TiO2-AgO Mixed Oxide Derived from a Particulate Sol-Gel Route: Physical and Sensing Characteristics. Metallurgical and Materials Transactions A 2011, 42 (8) , 2481-2492. https://doi.org/10.1007/s11661-011-0644-9