Synthesis, Structure, and Reactivity of New Tetranuclear Ru-Hbpp-Based Water-Oxidation Catalysts

View Author Information
Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain
Institute of Chemical Research of Catalonia, Avinguda Països Catalans 16, E-43007 Tarragona, Spain
*E-mail: [email protected] (L.E.), [email protected] (A.L.).
Cite this: Inorg. Chem. 2011, 50, 7, 2771–2781
Publication Date (Web):March 2, 2011
https://doi.org/10.1021/ic101802y
Copyright © 2011 American Chemical Society
Article Views
1607
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (4)»

Abstract

The preparation of three new octadentate tetranucleating ligands made out of two Ru-Hbpp-based units [where Hbpp is 3,5(bispyridyl)pyrazole], linked by a xylyl group attached at the pyrazolate moiety, of general formula (Hbpp)2-u-xyl (u = p, m, or o) is reported, together with its dinucleating counterpart substituted at the same position with a benzyl group, Hbpp-bz. All of these ligands have been characterized with the usual analytical and spectroscopic techniques. The corresponding tetranuclear ruthenium complexes of general formula {[Ru2(trpy)2(L)]2(μ-(bpp)2-u-xyl)}n+ [L = Cl or OAc, n = 4; L = (H2O)2, n = 6] and their dinuclear homologues {[Ru2(trpy)2(L)](μ-bpp-bz)}n+ [L = Cl or OAc, n = 2; L = (H2O)2, n = 3] have also been prepared and thoroughly characterized both in solution and in the solid state. In solution, all of the complexes have been characterized spectroscopically by UV−vis and NMR and their redox properties investigated by means of cyclic voltammetry techniques. In the solid state, monocrystal X-ray diffraction analysis has been carried out for two dinuclear complexes {[Ru2(trpy)2(L)](μ-bpp-bz)}2+ (L = Cl and OAc) and for the tetranuclear complex {[Ru2(trpy)2(μ-OAc)]2(μ-(bpp)2-m-xyl)}4+. The capacity of the tetranuclear aqua complexes {[Ru2(trpy)2(H2O)2]2(μ-(bpp)2-u-xyl)}6+ and the dinuclear homologue {[Ru2(trpy)2(H2O)2](μ-bpp-bz)}3+ to act as water-oxidation catalysts has been evaluated using cerium(IV) as the chemical oxidant in pH = 1.0 triflic acid solutions. It is found that these complexes, besides generating significant amounts of dioxygen, also generate carbon dioxide. The relative ratio of [O2]/[CO2] is dependent not only on para, meta, or ortho substitution of the xylylic group but also on the concentration of the starting materials. With regard to the tetranuclear complexes, the one that contains the more sterically constrained ortho-substituted ligand generates the highest [O2]/[CO2] ratio.

Supporting Information

ARTICLE SECTIONS
Jump To

CIF files and further spectroscopic (1D and 2D NMR) details for the reported complexes. This material is available free of charge via the Internet at http://pubs.acs.org. The supplementary crystallographic data can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax +44 1223 336033 or e-mail [email protected]).

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 58 publications.

  1. Shilin Chen, Yu Zhang, Yuxiu Liu, Qingmin Wang. Highly Efficient Synthesis and Acaricidal and Insecticidal Activities of Novel Oxazolines with N-Heterocyclic Substituents. Journal of Agricultural and Food Chemistry 2021, 69 (12) , 3601-3606. https://doi.org/10.1021/acs.jafc.0c05558
  2. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
  3. Roc Matheu, Laia Francàs, Petko Chernev, Mehmed Z. Ertem, Victor Batista, Michael Haumann, Xavier Sala, and Antoni Llobet . Behavior of the Ru-bda Water Oxidation Catalyst Covalently Anchored on Glassy Carbon Electrodes. ACS Catalysis 2015, 5 (6) , 3422-3429. https://doi.org/10.1021/acscatal.5b00132
  4. Isidoro López, Somnath Maji, J. Benet-Buchholz, and Antoni Llobet . Oxo-Bridge Scenario behind Single-Site Water-Oxidation Catalysts. Inorganic Chemistry 2015, 54 (2) , 658-666. https://doi.org/10.1021/ic502603e
  5. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  6. Ana Petronilho, Antoni Llobet, and Martin Albrecht . Ligand Exchange and Redox Processes in Iridium Triazolylidene Complexes Relevant to Catalytic Water Oxidation. Inorganic Chemistry 2014, 53 (24) , 12896-12901. https://doi.org/10.1021/ic501894u
  7. Laia Francàs, Rosa María González-Gil, Daniel Moyano, Jordi Benet-Buchholz, Jordi García-Antón, Lluís Escriche, Antoni Llobet, and Xavier Sala . Dinuclear Ruthenium Complexes Containing the Hpbl Ligand: Synthesis, Characterization, Linkage Isomerism, and Epoxidation Catalysis. Inorganic Chemistry 2014, 53 (19) , 10394-10402. https://doi.org/10.1021/ic501483s
  8. Laia Francàs, Rosa M. González-Gil, Albert Poater, Xavier Fontrodona, Jordi García-Antón, Xavier Sala, Lluís Escriche, and Antoni Llobet . Synthesis, Characterization, and Linkage Isomerism in Mononuclear Ruthenium Complexes Containing the New Pyrazolate-Based Ligand Hpbl. Inorganic Chemistry 2014, 53 (15) , 8025-8035. https://doi.org/10.1021/ic5009076
  9. Xavier Sala, Somnath Maji, Roger Bofill, Jordi García-Antón, Lluís Escriche, and Antoni Llobet . Molecular Water Oxidation Mechanisms Followed by Transition Metals: State of the Art. Accounts of Chemical Research 2014, 47 (2) , 504-516. https://doi.org/10.1021/ar400169p
  10. Sven Neudeck, Somnath Maji, Isidoro López, Steffen Meyer, Franc Meyer, and Antoni Llobet . New Powerful and Oxidatively Rugged Dinuclear Ru Water Oxidation Catalyst: Control of Mechanistic Pathways by Tailored Ligand Design. Journal of the American Chemical Society 2014, 136 (1) , 24-27. https://doi.org/10.1021/ja409974b
  11. Javier J. Concepcion, Robert A. Binstead, Leila Alibabaei, and Thomas J. Meyer . Application of the Rotating Ring-Disc-Electrode Technique to Water Oxidation by Surface-Bound Molecular Catalysts. Inorganic Chemistry 2013, 52 (19) , 10744-10746. https://doi.org/10.1021/ic402240t
  12. Dachao Hong, Sukanta Mandal, Yusuke Yamada, Yong-Min Lee, Wonwoo Nam, Antoni Llobet, and Shunichi Fukuzumi . Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous?. Inorganic Chemistry 2013, 52 (16) , 9522-9531. https://doi.org/10.1021/ic401180r
  13. Carlo Di Giovanni, Lydia Vaquer, Xavier Sala, Jordi Benet-Buchholz, and Antoni Llobet . New Dinuclear Ruthenium Complexes: Structure and Oxidative Catalysis. Inorganic Chemistry 2013, 52 (8) , 4335-4345. https://doi.org/10.1021/ic302481s
  14. Bhasker Radaram, Jeffrey A. Ivie, Wangkheimayum Marjit Singh, Rafal M. Grudzien, Joseph H. Reibenspies, Charles Edwin Webster, and Xuan Zhao . Water Oxidation by Mononuclear Ruthenium Complexes with TPA-Based Ligands. Inorganic Chemistry 2011, 50 (21) , 10564-10571. https://doi.org/10.1021/ic200050g
  15. Abolfazl Ghaderian, Samrana Kazim, Mohammad Khaja Nazeeruddin, Shahzada Ahmad. Strategic factors to design the next generation of molecular water oxidation catalysts: Lesson learned from ruthenium complexes. Coordination Chemistry Reviews 2022, 450 , 214256. https://doi.org/10.1016/j.ccr.2021.214256
  16. Chieh‐Chih George Yeh, Gerald Hörner, Sam P. Visser. Computational Study on O–O Bond Formation on a Mononuclear Non‐Heme Iron Center. European Journal of Inorganic Chemistry 2020, 2020 (27) , 2573-2581. https://doi.org/10.1002/ejic.202000321
  17. Hong-Tao Zhang, Ming-Tian Zhang. The Application of Pincer Ligand in Catalytic Water Splitting. 2020,,, 379-449. https://doi.org/10.1007/3418_2020_71
  18. Roc Matheu, Pablo Garrido-Barros, Marcos Gil-Sepulcre, Mehmed Z. Ertem, Xavier Sala, Carolina Gimbert-Suriñach, Antoni Llobet. The development of molecular water oxidation catalysts. Nature Reviews Chemistry 2019, 3 (5) , 331-341. https://doi.org/10.1038/s41570-019-0096-0
  19. Sanghyun Bae, Ji‐Eun Jang, Hyun‐Wook Lee, Jungki Ryu. Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial Photosynthesis. European Journal of Inorganic Chemistry 2019, 2019 (15) , 2040-2057. https://doi.org/10.1002/ejic.201801328
  20. Biaobiao Zhang, Licheng Sun. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews 2019, 48 (7) , 2216-2264. https://doi.org/10.1039/C8CS00897C
  21. Wei-Song Gao, Jin-Miao Wang, Ning-Ning Shi, Chang-Neng Chen, Yu-Hua Fan, Mei Wang. Electrocatalytic water oxidation studies of a tetranuclear Cu( ii ) complex with cubane-like core Cu 4 (μ 3 -O) 4. New Journal of Chemistry 2019, 43 (11) , 4640-4647. https://doi.org/10.1039/C8NJ06263C
  22. Qianqian Liu, Linlin Wu, Mingzhao Chen, Yuan Guo, Tingzheng Xie, Pingshan Wang. Aromatic TpyRu2+(L)2Cl derivatives as water oxidation catalysts (Tpy = 2,2′:6′,2″-terpyridine, Ru = ruthenium, L = pyridine or isoquinoline). Catalysis Communications 2019, 122 , 38-42. https://doi.org/10.1016/j.catcom.2018.12.021
  23. Santu Das, Kousik Das, Christian Kübel, Soumyajit Roy. Light Driven Water Oxidation Coupled With C-N Coupling Reaction Using a Hybrid Cu-PW 12 O 40 Based Soft-Oxometalate. ChemistrySelect 2019, 4 (6) , 1994-2000. https://doi.org/10.1002/slct.201803949
  24. Animesh Kundu, Srimoyee Khan, Subhasis Dey, Chiranjit Dutta, Anakuthil Anoop, Sukanta Mandal. Synthesis and Physicochemical Properties of Ruthenium(II) Complexes Having Pentadentate Scaffolds: Water Oxidation Activity and Deactivation Pathway. European Journal of Inorganic Chemistry 2019, 2019 (2) , 164-177. https://doi.org/10.1002/ejic.201801099
  25. Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions 2019, 48 (3) , 779-798. https://doi.org/10.1039/C8DT04341H
  26. T. S. Dzhabiev, Z. M. Dzhabieva, V. V. Dobrygin, E. N. Kabachkov, L. I. Tkachenko. Photoinduced Oxidation of Water with Potassium Persulfate in the Presence of Ruthenium Trinuclear Complex. High Energy Chemistry 2018, 52 (5) , 373-377. https://doi.org/10.1134/S0018143918050065
  27. Z. M. Dzhabieva, V. A. Dobrygin, T. S. Dzhabiev, L. I. Tkachenko. Oxidation of Water by Cerium(IV) Compounds in the Presence of Trinuclear Ruthenium Complexes. Russian Journal of Physical Chemistry A 2018, 92 (8) , 1463-1466. https://doi.org/10.1134/S0036024418080101
  28. З.М. Джабиева, В. А. Добрыгин, Т.С. Джабиев, Л.И. Ткаченко. ОКИСЛЕНИЕ ВОДЫ СОЕДИНЕНИЯМИ ЦЕРИЯ(IV) В ПРИСУТСТВИИ ТРЕХЪЯДЕРНЫХ КОМПЛЕКСОВ РУТЕНИЯ, "Журнал физической химии". Журнал физической химии 2018, (8) , 1223-1226. https://doi.org/10.7868/S0044453718080034
  29. Santu Das, Soumyajit Roy. Photochemical Water Oxidation Using {[email protected]} n Based Soft Oxometalate. Journal of Molecular and Engineering Materials 2017, 05 (01) , 1750001. https://doi.org/10.1142/S2251237317500010
  30. Hai-Jie Liu, Marcos Gil-Sepulcre, Laia Francàs, Pau Nolis, Teodor Parella, Jordi Benet-Buchholz, Xavier Fontrodona, Jordi García-Antón, Nuria Romero, Antoni Llobet, Lluís Escriche, Roger Bofill, Xavier Sala. Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis. Dalton Transactions 2017, 46 (9) , 2829-2843. https://doi.org/10.1039/C6DT04729G
  31. J. Li, R. Güttinger, R. Moré, F. Song, W. Wan, G. R. Patzke. Frontiers of water oxidation: the quest for true catalysts. Chemical Society Reviews 2017, 46 (20) , 6124-6147. https://doi.org/10.1039/C7CS00306D
  32. Roc Matheu, Sven Neudeck, Franc Meyer, Xavier Sala, Antoni Llobet. Foot of the Wave Analysis for Mechanistic Elucidation and Benchmarking Applications in Molecular Water Oxidation Catalysis. ChemSusChem 2016, 9 (23) , 3361-3369. https://doi.org/10.1002/cssc.201601286
  33. Take-aki Koizumi, Yusuke Ohkura, Erika Tsuda. Synthesis, structure, and electrochemical behavior of a new dinuclear Rh(III) complex bridged by a bpp− ligand (bpp−=3,5-bis(2-pyridyl)pyrazolate). Inorganic Chemistry Communications 2016, 67 , 25-28. https://doi.org/10.1016/j.inoche.2016.02.022
  34. Md. Ali Asraf, Hussein A. Younus, Chizoba I. Ezugwu, Akshay Mehta, Francis Verpoort. Cobalt salophen complexes for light-driven water oxidation. Catalysis Science & Technology 2016, 6 (12) , 4271-4282. https://doi.org/10.1039/C5CY02157J
  35. Santu Das, Archismita Misra, Soumyajit Roy. Enhancement of photochemical heterogeneous water oxidation by a manganese based soft oxometalate immobilized on a graphene oxide matrix. New Journal of Chemistry 2016, 40 (2) , 994-1003. https://doi.org/10.1039/C5NJ01099C
  36. Stephan Roeser, Fernando Bozoglian, Craig J. Richmond, Aaron B. League, Mehmed Z. Ertem, Laia Francàs, Pere Miró, Jordi Benet-Buchholz, Christopher J. Cramer, Antoni Llobet. Water oxidation catalysis with ligand substituted Ru–bpp type complexes. Catalysis Science & Technology 2016, 6 (13) , 5088-5101. https://doi.org/10.1039/C6CY00197A
  37. Craig J. Richmond, Antoni Llobet. Incorporation of a ruthenium–bis(pyridine)pyrazolate (Ru–bpp) water oxidation catalyst in a hexametallic macrocycle. Catalysis Science & Technology 2016, 6 (17) , 6697-6704. https://doi.org/10.1039/C6CY01077F
  38. Andrey Shatskiy, Reiner Lomoth, Ahmed F. Abdel-Magied, Wangchuk Rabten, Tanja M. Laine, Hong Chen, Junliang Sun, Pher G. Andersson, Markus D. Kärkäs, Eric V. Johnston, Björn Åkermark. Catalyst–solvent interactions in a dinuclear Ru-based water oxidation catalyst. Dalton Transactions 2016, 45 (47) , 19024-19033. https://doi.org/10.1039/C6DT03789E
  39. Qiang Zeng, Frank W. Lewis, Laurence M. Harwood, František Hartl. Role of ligands in catalytic water oxidation by mononuclear ruthenium complexes. Coordination Chemistry Reviews 2015, 304-305 , 88-101. https://doi.org/10.1016/j.ccr.2015.03.003
  40. Douglas W. Crandell, Soumya Ghosh, Curtis P. Berlinguette, Mu-Hyun Baik. How a [Co IV ${^{\underline{.....}}}$O] 2+ Fragment Oxidizes Water: Involvement of a Biradicaloid [Co II -(⋅O⋅)] 2+ Species in Forming the OO Bond. ChemSusChem 2015, 8 (5) , 844-852. https://doi.org/10.1002/cssc.201403024
  41. Alessandro Venturini, Andrea Barbieri, Joost N. H. Reek, Dennis G. H. Hetterscheid. Catalytic Water Splitting with an Iridium Carbene Complex: A Theoretical Study. Chemistry - A European Journal 2014, 20 (18) , 5358-5368. https://doi.org/10.1002/chem.201303796
  42. Pere Miró, Mehmed Z. Ertem, Laura Gagliardi, Christopher J. Cramer. Quantum Chemical Characterization of Water Oxidation Catalysts. 2014,,, 233-255. https://doi.org/10.1002/9781118698648.ch12
  43. Laia Francàs, Roger Bofill, Jordi García-Antón, Lluis Escriche, Xavier Sala, Antoni Llobet. Ru-Based Water Oxidation Catalysts. 2014,,, 29-50. https://doi.org/10.1002/9781118698648.ch3
  44. Tohru Wada, Koji Tanaka, James T. Muckerman, Etsuko Fujita. Water Oxidation by Ruthenium Catalysts with Non-Innocent Ligands. 2014,,, 77-111. https://doi.org/10.1002/9781118698648.ch5
  45. Shunichi Fukuzumi, Dachao Hong. Homogeneous versus Heterogeneous Catalysts in Water Oxidation. European Journal of Inorganic Chemistry 2014, 2014 (4) , 645-659. https://doi.org/10.1002/ejic.201300684
  46. Shao Fu, Yongdong Liu, Yong Ding, Xiaoqiang Du, Fangyuan Song, Rui Xiang, Baochun Ma. A mononuclear cobalt complex with an organic ligand acting as a precatalyst for efficient visible light-driven water oxidation. Chem. Commun. 2014, 50 (17) , 2167-2169. https://doi.org/10.1039/C3CC48059C
  47. Joan Aguiló, Laia Francàs, Hai Jie Liu, Roger Bofill, Jordi García-Antón, Jordi Benet-Buchholz, Antoni Llobet, Lluís Escriche, Xavier Sala. Characterization and performance of electrostatically adsorbed Ru–Hbpp water oxidation catalysts. Catal. Sci. Technol. 2014, 4 (1) , 190-199. https://doi.org/10.1039/C3CY00643C
  48. Duobin Chao, Wen-Fu Fu. Insight into highly selective photocatalytic oxidation of alcohols by a new trinuclear ruthenium complex with visible light. Dalton Trans. 2014, 43 (1) , 306-310. https://doi.org/10.1039/C3DT52157E
  49. Pau Farràs, Somnath Maji, Jordi Benet-Buchholz, Antoni Llobet. Synthesis, Characterization, and Reactivity of Dyad Ruthenium-Based Molecules for Light-Driven Oxidation Catalysis. Chemistry - A European Journal 2013, 19 (22) , 7162-7172. https://doi.org/10.1002/chem.201204381
  50. R. Bofill, J. García-Antón, L. Escriche, X. Sala, A. Llobet. Water Oxidation. 2013,,, 505-523. https://doi.org/10.1016/B978-0-08-097774-4.00821-4
  51. Hiroki Kon, Toshi Nagata. New ternary ligands consisting of an N4 bridging ligand and two terpyridines, and their Co(ii) and Ni(ii) dinuclear complexes. Structure, redox properties, and reaction with acid. Dalton Transactions 2013, 42 (16) , 5697. https://doi.org/10.1039/c3dt33011g
  52. Jordi García‐Antón, Roger Bofill, Lluís Escriche, Antoni Llobet, Xavier Sala. Transition‐Metal Complexes Containing the Dinucleating Tetra‐ N ‐Dentate 3,5‐Bis(2‐pyridyl)pyrazole (Hbpp) Ligand – A Robust Scaffold for Multiple Applications Including the Catalytic Oxidation of Water to Molecular Oxygen. European Journal of Inorganic Chemistry 2012, 2012 (30) , 4775-4789. https://doi.org/10.1002/ejic.201200661
  53. Bart Limburg, Elisabeth Bouwman, Sylvestre Bonnet. Molecular water oxidation catalysts based on transition metals and their decomposition pathways. Coordination Chemistry Reviews 2012, 256 (15-16) , 1451-1467. https://doi.org/10.1016/j.ccr.2012.02.021
  54. Wen-Qian Chen, Yan-Mei Chen, Tao Lei, Wei Liu, Yahong Li. V-shaped Fe3III and linear FeII/FeIII/FeII complexes supported by phenyl-pyridine-2-yl-methanone oxime ligand: Solvothermal syntheses, structures and magnetic property. Inorganic Chemistry Communications 2012, 19 , 4-9. https://doi.org/10.1016/j.inoche.2012.01.015
  55. Soumya Ghosh, Mu-Hyun Baik. The Mechanism of OO Bond Formation in Tanaka’s Water Oxidation Catalyst. Angewandte Chemie 2012, 124 (5) , 1247-1250. https://doi.org/10.1002/ange.201106337
  56. Soumya Ghosh, Mu-Hyun Baik. The Mechanism of OO Bond Formation in Tanaka’s Water Oxidation Catalyst. Angewandte Chemie International Edition 2012, 51 (5) , 1221-1224. https://doi.org/10.1002/anie.201106337
  57. Julie L. Boyer, Dmitry E. Polyansky, David J. Szalda, Ruifa Zong, Randolph P. Thummel, Etsuko Fujita. Effects of a Proximal Base on Water Oxidation and Proton Reduction Catalyzed by Geometric Isomers of [Ru(tpy)(pynap)(OH2)]2+. Angewandte Chemie 2011, 123 (52) , 12808-12812. https://doi.org/10.1002/ange.201102648
  58. Julie L. Boyer, Dmitry E. Polyansky, David J. Szalda, Ruifa Zong, Randolph P. Thummel, Etsuko Fujita. Effects of a Proximal Base on Water Oxidation and Proton Reduction Catalyzed by Geometric Isomers of [Ru(tpy)(pynap)(OH2)]2+. Angewandte Chemie International Edition 2011, 50 (52) , 12600-12604. https://doi.org/10.1002/anie.201102648