Oxidation and Reduction of Bis(imino)pyridine Iron Dicarbonyl Complexes

View Author Information
Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
Cite this: Inorg. Chem. 2011, 50, 20, 9888–9895
Publication Date (Web):June 13, 2011
Copyright © 2011 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (2)»


The oxidation and reduction of a redox-active aryl-substituted bis(imino)pyridine iron dicarbonyl has been explored to determine whether electron-transfer events are ligand- or metal-based or a combination of both. A series of bis(imino)pyridine iron dicarbonyl compounds, [(iPrPDI)Fe(CO)2], (iPrPDI)Fe(CO)2, and [(iPrPDI)Fe(CO)2]+ [iPrPDI = 2,6-(2,6-iPr2C6H3N═CMe)2C5H3N], which differ by three oxidation states, were prepared and the electronic structures evaluated using a combination of spectroscopic techniques and, in two cases, [(iPrPDI)Fe(CO)2]+ and [(iPrPDI)Fe(CO)2], metrical parameters from X-ray diffraction. The data establish that the cationic iron dicarbonyl complex is best described as a low-spin iron(I) compound (SFe = 1/2) with a neutral bis(imino)pyridine chelate. The anionic iron dicarbonyl, [(iPrPDI)Fe(CO)2], is also best described as an iron(I) compound but with a two-electron-reduced bis(imino)pyridine. The covalency of the neutral compound, (iPrPDI)Fe(CO)2, suggests that both the oxidative and reductive events are not ligand- or metal-localized but a result of the cooperativity of both entities.

Supporting Information

Jump To

Crystallographic details for [(iPrPDI)Fe(CO)2][BArF4] in CIF format and DFT-computed bond distances. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 55 publications.

  1. Jaylan R. Billups, Zoe N. Fokakis, Sidney E. Creutz. Octahedral Iron Complexes of Pyrazine(diimine) Pincers: Ligand Electronic Effects and Protonation. Inorganic Chemistry 2020, 59 (20) , 15228-15239. https://doi.org/10.1021/acs.inorgchem.0c02211
  2. Nicolas I. Regenauer, Simon Settele, Eckhard Bill, Hubert Wadepohl, Dragoş-Adrian Roşca. Bis(imino)pyrazine-Supported Iron Complexes: Ligand-Based Redox Chemistry, Dearomatization, and Reversible C–C Bond Formation. Inorganic Chemistry 2020, 59 (4) , 2604-2612. https://doi.org/10.1021/acs.inorgchem.9b03665
  3. Jan Pecak, Berthold Stöger, Matthias Mastalir, Luis F. Veiros, Liliana P. Ferreira, Marc Pignitter, Wolfgang Linert, Karl Kirchner. Five-Coordinate Low-Spin {FeNO}7 PNP Pincer Complexes. Inorganic Chemistry 2019, 58 (7) , 4641-4646. https://doi.org/10.1021/acs.inorgchem.9b00235
  4. Lukas Alig, Maximilian Fritz, Sven Schneider. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chemical Reviews 2019, 119 (4) , 2681-2751. https://doi.org/10.1021/acs.chemrev.8b00555
  5. John J. Kiernicki, Matthias Zeller, Nathaniel K. Szymczak. Requirements for Lewis Acid-Mediated Capture and N–N Bond Cleavage of Hydrazine at Iron. Inorganic Chemistry 2019, 58 (2) , 1147-1154. https://doi.org/10.1021/acs.inorgchem.8b02433
  6. Pui Man Cheung, Kyle T. Burns, Yubin M. Kwon, Megan Y. Deshaye, Kristopher J. Aguayo, Victoria F. Oswald, Takele Seda, Lev N. Zakharov, Tim Kowalczyk, John D. Gilbertson. Hemilabile Proton Relays and Redox Activity Lead to {FeNO}x and Significant Rate Enhancements in NO2– Reduction. Journal of the American Chemical Society 2018, 140 (49) , 17040-17050. https://doi.org/10.1021/jacs.8b08520
  7. Kyle T. Burns, Walker R. Marks, Pui Man Cheung, Takele Seda, Lev N. Zakharov, John D. Gilbertson. Uncoupled Redox-Inactive Lewis Acids in the Secondary Coordination Sphere Entice Ligand-Based Nitrite Reduction. Inorganic Chemistry 2018, 57 (16) , 9601-9610. https://doi.org/10.1021/acs.inorgchem.8b00032
  8. Michael E. Noss, Anne T. Hylden, Patrick J. Carroll, and Donald H. Berry . Electrochemistry of Ruthenium Bis(imino)pyridine Compounds: Evidence for an ECE Mechanism and Isolation of Mono and Dicationic Complexes. Inorganic Chemistry 2018, 57 (1) , 435-445. https://doi.org/10.1021/acs.inorgchem.7b02677
  9. Alexander V. Polezhaev, Chun-Hsing Chen, Adam S. Kinne, Alyssa C. Cabelof, Richard L. Lord, and Kenneth G. Caulton . Ligand Design toward Multifunctional Substrate Reductive Transformations. Inorganic Chemistry 2017, 56 (16) , 9505-9514. https://doi.org/10.1021/acs.inorgchem.7b00785
  10. Sean F. McWilliams, Emma Brennan-Wydra, K. Cory MacLeod, and Patrick L. Holland . Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes. ACS Omega 2017, 2 (6) , 2594-2606. https://doi.org/10.1021/acsomega.7b00595
  11. Garvin M. Peters, Jacob B. Winegrad, Michael R. Gau, Gregory H. Imler, Beibei Xu, Shenqiang Ren, Bradford B. Wayland, and Michael J. Zdilla . Synthesis and Structure of 2,5-Bis[N-(2,6-mesityl)iminomethyl]pyrrolylcobalt(II): Evidence for One-Electron-Oxidized, Redox Noninnocent Ligand Behavior. Inorganic Chemistry 2017, 56 (6) , 3377-3385. https://doi.org/10.1021/acs.inorgchem.6b02898
  12. Anne K. Hickey, Wei-Tsung Lee, Chun-Hsing Chen, Maren Pink, and Jeremy M. Smith . A Bidentate Carbene Ligand Stabilizes a Low-Coordinate Iron(0) Carbonyl Complex. Organometallics 2016, 35 (17) , 3069-3073. https://doi.org/10.1021/acs.organomet.6b00599
  13. Mayra Delgado, Joshua M. Ziegler, Takele Seda, Lev N. Zakharov, and John D. Gilbertson . Pyridinediimine Iron Complexes with Pendant Redox-Inactive Metals Located in the Secondary Coordination Sphere. Inorganic Chemistry 2016, 55 (2) , 555-557. https://doi.org/10.1021/acs.inorgchem.5b02544
  14. Anne K. Hickey, Chun-Hsing Chen, Maren Pink, and Jeremy M. Smith . Low-Valent Iron Carbonyl Complexes with a Tripodal Carbene Ligand. Organometallics 2015, 34 (18) , 4560-4566. https://doi.org/10.1021/acs.organomet.5b00646
  15. Mayra Delgado, Samantha K. Sommer, Seth P. Swanson, Robert F. Berger, Takele Seda, Lev N. Zakharov, and John D. Gilbertson . Probing the Protonation State and the Redox-Active Sites of Pendant Base Iron(II) and Zinc(II) Pyridinediimine Complexes. Inorganic Chemistry 2015, 54 (15) , 7239-7248. https://doi.org/10.1021/acs.inorgchem.5b00633
  16. Ryan Gilbert-Wilson, Wan-Yi Chu, and Thomas B. Rauchfuss . Phosphine-Iminopyridines as Platforms for Catalytic Hydrofunctionalization of Alkenes. Inorganic Chemistry 2015, 54 (11) , 5596-5603. https://doi.org/10.1021/acs.inorgchem.5b00692
  17. Burkhard Butschke, Kathlyn L. Fillman, Tatyana Bendikov, Linda J. W. Shimon, Yael Diskin-Posner, Gregory Leitus, Serge I. Gorelsky, Michael L. Neidig, and David Milstein . How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Inorganic Chemistry 2015, 54 (10) , 4909-4926. https://doi.org/10.1021/acs.inorgchem.5b00509
  18. Subramaniam Kuppuswamy, Tamara M. Powers, Bruce M. Johnson, Carl K. Brozek, Jeremy P. Krogman, Mark W. Bezpalko, Louise A. Berben, Jason M. Keith, Bruce M. Foxman, and Christine M. Thomas . One-Electron Oxidation Chemistry and Subsequent Reactivity of Diiron Imido Complexes. Inorganic Chemistry 2014, 53 (11) , 5429-5437. https://doi.org/10.1021/ic403039x
  19. Mariana R. Camilo, Carolina R. Cardoso, Rose M. Carlos, and A. B. P. Lever . Photosolvolysis of cis-[Ru(α-diimine)2(4-aminopyridine)2]2+ Complexes: Photophysical, Spectroscopic, and Density Functional Theory Analysis. Inorganic Chemistry 2014, 53 (7) , 3694-3708. https://doi.org/10.1021/ic5000205
  20. Dongjie Peng, Yanlu Zhang, Xiaoyong Du, Lei Zhang, Xuebing Leng, Marc D. Walter, and Zheng Huang . Phosphinite-Iminopyridine Iron Catalysts for Chemoselective Alkene Hydrosilylation. Journal of the American Chemical Society 2013, 135 (51) , 19154-19166. https://doi.org/10.1021/ja404963f
  21. Leland R. Widger, Yunbo Jiang, Maxime A. Siegler, Devesh Kumar, Reza Latifi, Sam P. de Visser, Guy N. L. Jameson, and David P. Goldberg . Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes. Inorganic Chemistry 2013, 52 (18) , 10467-10480. https://doi.org/10.1021/ic4013558
  22. Daniel L. M. Suess and Jonas C. Peters . A CO-Derived Iron Dicarbyne That Releases Olefin upon Hydrogenation. Journal of the American Chemical Society 2013, 135 (34) , 12580-12583. https://doi.org/10.1021/ja406874k
  23. Aaron M. Tondreau, S. Chantal E. Stieber, Carsten Milsmann, Emil Lobkovsky, Thomas Weyhermüller, Scott P. Semproni, and Paul J. Chirik . Oxidation and Reduction of Bis(imino)pyridine Iron Dinitrogen Complexes: Evidence for Formation of a Chelate Trianion.. Inorganic Chemistry 2013, 52 (2) , 635-646. https://doi.org/10.1021/ic301675t
  24. Maria Kapovsky, Christopher Dares, Elaine S. Dodsworth, Rowshan Ara Begum, Vanessa Raco, and A. B. P. Lever . Proton-Induced Disproportionation of a Ruthenium Noninnocent Ligand Complex Yielding a Strong Oxidant and a Strong Reductant. Inorganic Chemistry 2013, 52 (1) , 169-181. https://doi.org/10.1021/ic301573c
  25. Chelsea D. Cates, Thomas W. Myers, and Louise A. Berben . (IP)2GaIII Complexes Facilitate Net Two-Electron Redox Transformations (IP = α-Iminopyridine). Inorganic Chemistry 2012, 51 (21) , 11891-11897. https://doi.org/10.1021/ic301792w
  26. Zachary Thammavongsy, Takele Seda, Lev N. Zakharov, Werner Kaminsky, and John D. Gilbertson . Ligand-Based Reduction of CO2 and Release of CO on Iron(II). Inorganic Chemistry 2012, 51 (17) , 9168-9170. https://doi.org/10.1021/ic3015404
  27. Jonathan M. Darmon, Zoë R. Turner, Emil Lobkovsky, and Paul J. Chirik . Electronic Effects in 4-Substituted Bis(imino)pyridines and the Corresponding Reduced Iron Compounds. Organometallics 2012, 31 (6) , 2275-2285. https://doi.org/10.1021/om201212m
  28. S. Chantal E. Stieber, Carsten Milsmann, Jordan M. Hoyt, Zoë R. Turner, Kenneth D. Finkelstein, Karl Wieghardt, Serena DeBeer, and Paul J. Chirik . Bis(imino)pyridine Iron Dinitrogen Compounds Revisited: Differences in Electronic Structure Between Four- and Five-Coordinate Derivatives.. Inorganic Chemistry 2012, 51 (6) , 3770-3785. https://doi.org/10.1021/ic202750n
  29. Yumiko Nakajima and Fumiyuki Ozawa . Redox Chemistry of Bis(phosphaethenyl)pyridine Iron Complexes. Organometallics 2012, 31 (5) , 2009-2015. https://doi.org/10.1021/om201280z
  30. Boon-Ying Tay, Cun Wang, Sze-Chen Chia, Ludger P. Stubbs, Pui-Kwan Wong, and Martin van Meurs . Synthesis of Bis(amino)pyridines by the Stepwise Alkylation of Bis(imino)pyridines: An Unexpected and Selective Alkylation of the Aminoiminopyridine by AlMe3. Organometallics 2011, 30 (21) , 6028-6033. https://doi.org/10.1021/om200899f
  31. Wolfgang Eder, Daniel Himmelbauer, Berthold Stöger, Luis F. Veiros, Marc Pignitter, Karl Kirchner. Manganese and iron PCP pincer complexes – the influence of sterics on structure and reactivity. Dalton Transactions 2021, 50 (39) , 13915-13924. https://doi.org/10.1039/D1DT02407H
  32. Mathias Glatz, Nikolaus Gorgas, Berthold Stöger, Ernst Pittenauer, Liliana Ferreira, Luis F. Veiros, Maria José Calhorda, Karl Kirchner. Structural and Electronic Properties of Iron(0) PNP Pincer Complexes. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (14) , 1429-1435. https://doi.org/10.1002/zaac.202100015
  33. Sebastian Haaf, Elisabeth Kaifer, Hubert Wadepohl, Hans‐Jörg Himmel. Use of Crown Ether Functions as Secondary Coordination Spheres for the Manipulation of Ligand–Metal Intramolecular Electron Transfer in Copper–Guanidine Complexes. Chemistry – A European Journal 2021, 27 (3) , 959-970. https://doi.org/10.1002/chem.202003469
  34. Nicolas I. Regenauer, Sven Jänner, Hubert Wadepohl, Dragoş‐Adrian Roşca. Ein redoxaktives, heterobimetallisches N‐heterocyclisches Carben auf Basis eines Bis(imino)pyrazin‐Liganden. Angewandte Chemie 2020, 132 (43) , 19482-19491. https://doi.org/10.1002/ange.202005865
  35. Nicolas I. Regenauer, Sven Jänner, Hubert Wadepohl, Dragoş‐Adrian Roşca. A Redox‐Active Heterobimetallic N‐Heterocyclic Carbene Based on a Bis(imino)pyrazine Ligand Scaffold. Angewandte Chemie International Edition 2020, 59 (43) , 19320-19328. https://doi.org/10.1002/anie.202005865
  36. Manas Khatua, Bappaditya Goswami, Subhas Samanta. Dehydrogenation of amines in aryl-amine functionalized pincer-like nitrogen-donor redox non-innocent ligands via ligand reduction on a Ni( ii ) template. Dalton Transactions 2020, 49 (20) , 6816-6831. https://doi.org/10.1039/D0DT00466A
  37. Mathias Glatz, Berthold Stöger, Bernhard Bichler, Gerald Bauer, Luis F. Veiros, Marc Pignitter, Karl Kirchner. Base‐Initiated Formation of Fe I –PNP Pincer Complexes. European Journal of Inorganic Chemistry 2020, 2020 (11-12) , 1101-1105. https://doi.org/10.1002/ejic.201900895
  38. Christina Römelt, Thomas Weyhermüller, Karl Wieghardt. Structural characteristics of redox-active pyridine-1,6-diimine complexes: Electronic structures and ligand oxidation levels. Coordination Chemistry Reviews 2019, 380 , 287-317. https://doi.org/10.1016/j.ccr.2018.09.018
  39. Ryan L. Hollingsworth, Jeffrey W. Beattie, Amanda Grass, Philip D. Martin, Stanislav Groysman, Richard L. Lord. Reactions of dicobalt octacarbonyl with dinucleating and mononucleating bis(imino)pyridine ligands. Dalton Transactions 2018, 47 (43) , 15353-15363. https://doi.org/10.1039/C8DT03405B
  40. Alexander V. Polezhaev, Cameron J. Liss, Joshua Telser, Chun‐Hsing Chen, Kenneth G. Caulton. A PNNH Pincer Ligand Allows Access to Monovalent Iron. Chemistry – A European Journal 2018, 24 (6) , 1330-1341. https://doi.org/10.1002/chem.201703795
  41. David J. R. Brook, Connor Fleming, Dorothy Chung, Cardius Richardson, Servando Ponce, Raja Das, Hariharan Srikanth, Ranko Heindl, Bruce C. Noll. An electron transfer driven magnetic switch: ferromagnetic exchange and spin delocalization in iron verdazyl complexes. Dalton Transactions 2018, 47 (18) , 6351-6360. https://doi.org/10.1039/C8DT00805A
  42. Yusuke Sunada, Shintaro Ishida, Fumiya Hirakawa, Yoshihito Shiota, Kazunari Yoshizawa, Shinji Kanegawa, Osamu Sato, Hideo Nagashima, Takeaki Iwamoto. Persistent four-coordinate iron-centered radical stabilized by π-donation. Chemical Science 2016, 7 (1) , 191-198. https://doi.org/10.1039/C5SC02601F
  43. Yubin M. Kwon, Mayra Delgado, Lev N. Zakharov, Takele Seda, John D. Gilbertson. Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere. Chemical Communications 2016, 52 (73) , 11016-11019. https://doi.org/10.1039/C6CC05962G
  44. Mei Wang, Thomas Weyhermüller, Karl Wieghardt. Determining the Electronic Structure of a Series of [(phen) 3 M] 0 (M = Ti, V, Mo) and [(pdi) 2 M] n + (M = Cr, Mo) Complexes: Coordination of Neutral Ligands vs. π‐Radical Anions. European Journal of Inorganic Chemistry 2015, 2015 (20) , 3246-3254. https://doi.org/10.1002/ejic.201500420
  45. Blake R. Reed, Sebastian A. Stoian, Richard L. Lord, Stanislav Groysman. The aldimine effect in bis(imino)pyridine complexes: non-planar nickel( i ) complexes of a bis(aldimino)pyridine ligand. Chemical Communications 2015, 51 (30) , 6496-6499. https://doi.org/10.1039/C5CC00203F
  46. Jonah W. Jurss, Rony S. Khnayzer, Julien A. Panetier, Karim A. El Roz, Eva M. Nichols, Martin Head-Gordon, Jeffrey R. Long, Felix N. Castellano, Christopher J. Chang. Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water. Chemical Science 2015, 6 (8) , 4954-4972. https://doi.org/10.1039/C5SC01414J
  47. Paul J. Chirik. Electronic Structures of Reduced Manganese, Iron, and Cobalt Complexes Bearing Redox-Active Bis(imino)pyridine Pincer Ligands. 2014,,, 189-212. https://doi.org/10.1002/9783527681303.ch7
  48. Jon M. Kuchenreuther, William K. Myers, Daniel L. M. Suess, Troy A. Stich, Vladimir Pelmenschikov, Stacey A. Shiigi, Stephen P. Cramer, James R. Swartz, R. David Britt, Simon J. George. The HydG Enzyme Generates an Fe(CO) 2 (CN) Synthon in Assembly of the FeFe Hydrogenase H-Cluster. Science 2014, 343 (6169) , 424-427. https://doi.org/10.1126/science.1246572
  49. Anna Eiβler, Paul Kläring, Franziska Emmerling, Thomas Braun. α‐Dialdimine Complexes of Rhodium(I) and Iridium(I): Their Reactivity with Dioxygen and Dihydrogen. European Journal of Inorganic Chemistry 2013, 2013 (27) , 4775-4788. https://doi.org/10.1002/ejic.201300625
  50. Zachary Thammavongsy, Micah E. LeDoux, Andrew G. Breuhaus‐Alvarez, Takele Seda, Lev N. Zakharov, John D. Gilbertson. Pyridinediimine Iron Dicarbonyl Complexes with Pendant Lewis Bases and Lewis Acids Located in the Secondary Coordination Sphere. European Journal of Inorganic Chemistry 2013, 2013 (22-23) , 4008-4015. https://doi.org/10.1002/ejic.201300376
  51. Subramaniam Kuppuswamy, Tamara M. Powers, Jeremy P. Krogman, Mark W. Bezpalko, Bruce M. Foxman, Christine M. Thomas. Vanadium–iron complexes featuring metal–metal multiple bonds. Chemical Science 2013, 4 (9) , 3557. https://doi.org/10.1039/c3sc51337h
  52. Daniel B. Leznoff, Cassandra E. Hayes, Garry Mund. Paramagnetic Organometallic ComplexesUpdate based on the original article by Daniel B. Leznoff and Garry Mund, Encyclopedia of Inorganic Chemistry Second Edition © 2005, John Wiley & Sons, Ltd. 2012,,https://doi.org/10.1002/9781119951438.eibc0166.pub2
  53. Alexander P. Sadimenko. Organometallic Complexes of Pyridyl Schiff Bases. 2012,,, 133-218. https://doi.org/10.1016/B978-0-12-396532-5.00004-4
  54. Wen Zhou, Linus Chiang, Brian O. Patrick, Tim Storr, Kevin M. Smith. Cyclopentadienyl chromium diimine and pyridine-imine complexes: ligand-based radicals and metal-based redox chemistry. Dalton Transactions 2012, 41 (26) , 7920. https://doi.org/10.1039/c2dt30160a
  55. Jarl Ivar van der Vlugt. Cooperative Catalysis with First‐Row Late Transition Metals. European Journal of Inorganic Chemistry 2012, 2012 (3) , 363-375. https://doi.org/10.1002/ejic.201100752