Iridium Dihydroxybipyridine Complexes Show That Ligand Deprotonation Dramatically Speeds Rates of Catalytic Water Oxidation

View Author Information
Department of Chemistry and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
§ Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, United States
Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555, United States
Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
*E-mail: [email protected] (J.J.P.), [email protected] (E.T.P.).
Cite this: Inorg. Chem. 2013, 52, 16, 9175–9183
Publication Date (Web):February 6, 2013
https://doi.org/10.1021/ic302448d
Copyright © 2013 American Chemical Society
Article Views
3293
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (2)»

Abstract

We report highly active iridium precatalysts, [Cp*Ir(N,N)Cl]Cl (14), for water oxidation that are supported by recently designed dihydroxybipyridine (dhbp) ligands. These ligands can readily be deprotonated in situ to alter the electronic properties at the metal; thus, these catalyst precursors have switchable properties that are pH-dependent. The pKa values in water of the iridium complexes are 4.6(1) and 4.4(2) with (N,N) = 6,6′-dhbp and 4,4′-dhbp, respectively, as measured by UV–vis spectroscopy. For homogeneous water oxidation catalysis, the sacrificial oxidant NaIO4 was found to be superior (relative to CAN) and allowed for catalysis to occur at higher pH values. With NaIO4 as the oxidant at pH 5.6, water oxidation occurred most rapidly with (N,N) = 4,4′-dhbp, and activity decreased in the order 4,4′-dhbp (3) > 6,6′-dhbp (2) ≫ 4,4′-dimethoxybipyridine (4) > bipy (1). Furthermore, initial rate studies at pH 3–6 showed that the rate enhancement with dhbp complexes at high pH is due to ligand deprotonation rather than the pH alone accelerating water oxidation. Thus, the protic groups in dhbp improve the catalytic activity by tuning the complexes’ electronic properties upon deprotonation. Mechanistic studies show that the rate law is first-order in an iridium precatalyst, and dynamic light scattering studies indicate that catalysis appears to be homogeneous. It appears that a higher pH facilitates oxidation of precatalysts 2 and 3 and their [B(ArF)4] salt analogues 5 and 6. Both 2 and 5 were crystallographically characterized.

Supporting Information

ARTICLE SECTIONS
Jump To

Further experimental details, methods, and characterization data relevant to the synthesis of ligands and known complexes, thermodynamic acidity measurements, water oxidation experiments, DLS, mechanistic studies, electrochemistry experiments (CV), computational methods and resulting xyz coordinates, and crystallographic data for 2 and 5 in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org. The atomic coordinates for these structures have also been deposited with the Cambridge Crystallographic Data Centre as CCDC 909508–909509. The coordinates can be obtained, upon request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 122 publications.

  1. Gabriel Menendez Rodriguez, Francesco Zaccaria, Sybren Van Dijk, Cristiano Zuccaccia, Alceo Macchioni. Substituent Effects on the Activity of Cp*Ir(pyridine-carboxylate) Water Oxidation Catalysts: Which Ligand Fragments Remain Coordinated to the Active Ir Centers?. Organometallics 2021, 40 (20) , 3445-3453. https://doi.org/10.1021/acs.organomet.1c00464
  2. Gongfang Hu, Jennifer L. Troiano, Uriel T. Tayvah, Liam S. Sharninghausen, Shashi Bhushan Sinha, Dimitar Y. Shopov, Brandon Q. Mercado, Robert H. Crabtree, Gary W. Brudvig. Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorganic Chemistry 2021, 60 (18) , 14349-14356. https://doi.org/10.1021/acs.inorgchem.1c02025
  3. Koteswara Rao Gorantla, Bhabani S. Mallik. Mechanistic Insight into the O2 Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands. The Journal of Physical Chemistry A 2021, 125 (29) , 6461-6473. https://doi.org/10.1021/acs.jpca.1c06008
  4. Koteswara Rao Gorantla, Bhabani S. Mallik. Mechanism and Electronic Perspective of Oxygen Evolution Reactions Catalyzed by [Fe(OTf)2(bpbp)]. The Journal of Physical Chemistry C 2021, 125 (2) , 1313-1322. https://doi.org/10.1021/acs.jpcc.0c08495
  5. Koteswara Rao Gorantla, Bhabani S. Mallik. Mechanism and Dynamics of Formation of Bisoxo Intermediates and O–O Bond in the Catalytic Water Oxidation Process. The Journal of Physical Chemistry A 2021, 125 (1) , 279-290. https://doi.org/10.1021/acs.jpca.0c09943
  6. Pragati Pandey, Prosenjit Daw, Noor U Din Reshi, Kira R. Ehmann, Markus Hölscher, Walter Leitner, Jitendra K. Bera. A Proton-Responsive Annulated Mesoionic Carbene (MIC) Scaffold on Ir Complex for Proton/Hydride Shuttle: An Experimental and Computational Investigation on Reductive Amination of Aldehyde. Organometallics 2020, 39 (21) , 3849-3863. https://doi.org/10.1021/acs.organomet.0c00568
  7. Wenzhi Yao, Alexa R. DeRegnaucourt, Emily D. Shrewsbury, Kylie H. Loadholt, Weerachai Silprakob, Fengrui Qu, Timothy P. Brewster, Elizabeth T. Papish. Reinvestigating Catalytic Alcohol Dehydrogenation with an Iridium Dihydroxybipyridine Catalyst. Organometallics 2020, 39 (20) , 3656-3662. https://doi.org/10.1021/acs.organomet.0c00398
  8. Virginia San Nacianceno, María A. Garralda, Jon M. Matxain, Zoraida Freixa. Proton-responsive Ruthenium(II) Catalysts for the Solvolysis of Ammonia-Borane. Organometallics 2020, 39 (8) , 1238-1248. https://doi.org/10.1021/acs.organomet.0c00032
  9. Sean T. Goralski, Taylor A. Manes, Simone E. A. Lumsden, Vincent M. Lynch, Michael J. Rose. Divergent Solution and Solid-State Structures of Mono- and Dinuclear Nickel(II) Pyridone Complexes. Organometallics 2020, 39 (7) , 1070-1079. https://doi.org/10.1021/acs.organomet.9b00799
  10. Bas van Dijk, Gabriel Menendez Rodriguez, Longfei Wu, Jan P. Hofmann, Alceo Macchioni, Dennis G. H. Hetterscheid. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation. ACS Catalysis 2020, 10 (7) , 4398-4410. https://doi.org/10.1021/acscatal.0c00531
  11. Yuhang Wu, Meiting Song, Zhanli Chai, Xiaojing Wang. Assembling Bi2MoO6/Ru/g-C3N4 for Highly Effective Oxygen Generation from Water Splitting under Visible-Light Irradiation. Inorganic Chemistry 2019, 58 (11) , 7374-7384. https://doi.org/10.1021/acs.inorgchem.9b00524
  12. Kasturi Sarmah, Subhamoy Mukhopadhyay, Tarun K. Maji, Sanjay Pratihar. Switchable Bifunctional Bistate Reusable ZnO–Cu for Selective Oxidation and Reduction Reaction. ACS Catalysis 2019, 9 (1) , 732-745. https://doi.org/10.1021/acscatal.8b03785
  13. Jonathan N. Lo, Steven R. Nutt, Travis J. Williams. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation. ACS Sustainable Chemistry & Engineering 2018, 6 (6) , 7227-7231. https://doi.org/10.1021/acssuschemeng.8b01790
  14. Dalton B. Burks, Monica Vasiliu, David A. Dixon, and Elizabeth T. Papish . Thermodynamic Acidity Studies of 6,6′-Dihydroxy-2,2′-bipyridine: A Combined Experimental and Computational Approach. The Journal of Physical Chemistry A 2018, 122 (8) , 2221-2231. https://doi.org/10.1021/acs.jpca.7b11441
  15. Anna Walczak and Artur R. Stefankiewicz . pH-Induced Linkage Isomerism of Pd(II) Complexes: A Pathway to Air- and Water-Stable Suzuki–Miyaura-Reaction Catalysts. Inorganic Chemistry 2018, 57 (1) , 471-477. https://doi.org/10.1021/acs.inorgchem.7b02711
  16. Shashi Bhushan Sinha, Dimitar Y. Shopov, Liam S. Sharninghausen, Christopher J. Stein, Brandon Q. Mercado, David Balcells, Thomas Bondo Pedersen, Markus Reiher, Gary W. Brudvig, and Robert H. Crabtree . Redox Activity of Oxo-Bridged Iridium Dimers in an N,O-Donor Environment: Characterization of Remarkably Stable Ir(IV,V) Complexes. Journal of the American Chemical Society 2017, 139 (28) , 9672-9683. https://doi.org/10.1021/jacs.7b04874
  17. Fengrui Qu, Seungjo Park, Kristina Martinez, Jessica L. Gray, Fathima Shazna Thowfeik, John A. Lundeen, Ashley E. Kuhn, David J. Charboneau, Deidra L. Gerlach, Molly M. Lockart, James A. Law, Katherine L. Jernigan, Nicole Chambers, Matthias Zeller, Nicholas A. Piro, W. Scott Kassel, Russell H. Schmehl, Jared J. Paul, Edward J. Merino, Yonghyun Kim, and Elizabeth T. Papish . Ruthenium Complexes are pH-Activated Metallo Prodrugs (pHAMPs) with Light-Triggered Selective Toxicity Toward Cancer Cells. Inorganic Chemistry 2017, 56 (13) , 7519-7532. https://doi.org/10.1021/acs.inorgchem.7b01065
  18. Sopheavy Siek, Dalton B. Burks, Deidra L. Gerlach, Guangchao Liang, Jamie M. Tesh, Courtney R. Thompson, Fengrui Qu, Jennifer E. Shankwitz, Robert M. Vasquez, Nicole Chambers, Gregory J. Szulczewski, Douglas B. Grotjahn, Charles Edwin Webster, and Elizabeth T. Papish . Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal. Organometallics 2017, 36 (6) , 1091-1106. https://doi.org/10.1021/acs.organomet.6b00806
  19. Pengcheng Liu, Ran Liang, Lei Lu, Zhentao Yu, and Feng Li . Use of a Cyclometalated Iridium(III) Complex Containing a N∧C∧N-Coordinating Terdentate Ligand as a Catalyst for the α-Alkylation of Ketones and N-Alkylation of Amines with Alcohols. The Journal of Organic Chemistry 2017, 82 (4) , 1943-1950. https://doi.org/10.1021/acs.joc.6b02758
  20. Gabriel Menendez Rodriguez, Alberto Bucci, Rachel Hutchinson, Gianfranco Bellachioma, Cristiano Zuccaccia, Stefano Giovagnoli, Hicham Idriss, and Alceo Macchioni . Extremely Active, Tunable, and pH-Responsive Iridium Water Oxidation Catalysts. ACS Energy Letters 2017, 2 (1) , 105-110. https://doi.org/10.1021/acsenergylett.6b00606
  21. Liam S. Sharninghausen, Shashi Bhushan Sinha, Dimitar Y. Shopov, Bonnie Choi, Brandon Q. Mercado, Xavier Roy, David Balcells, Gary W. Brudvig, and Robert H. Crabtree . High Oxidation State Iridium Mono-μ-oxo Dimers Related to Water Oxidation Catalysis. Journal of the American Chemical Society 2016, 138 (49) , 15917-15926. https://doi.org/10.1021/jacs.6b07716
  22. J. M. de Ruiter, R. L. Purchase, A. Monti, C. J. M. van der Ham, M. P. Gullo, K. S. Joya, M. D’Angelantonio, A. Barbieri, D. G. H. Hetterscheid, H. J. M. de Groot, and F. Buda . Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation. ACS Catalysis 2016, 6 (11) , 7340-7349. https://doi.org/10.1021/acscatal.6b02345
  23. Jacobus M. Koelewijn, Martin Lutz, Wojciech I. Dzik, Remko J. Detz, and Joost N. H. Reek . Reaction Progress Kinetic Analysis as a Tool To Reveal Ligand Effects in Ce(IV)-Driven IrCp*-Catalyzed Water Oxidation. ACS Catalysis 2016, 6 (6) , 3418-3427. https://doi.org/10.1021/acscatal.6b00297
  24. Zhanwei Xu, Peifang Yan, Huixiang Li, Kairui Liu, Xiumei Liu, Songyan Jia, and Z. Conrad Zhang . Active Cp*Iridium(III) Complex with ortho-Hydroxyl Group Functionalized Bipyridine Ligand Containing an Electron-Donating Group for the Production of Diketone from 5-HMF. ACS Catalysis 2016, 6 (6) , 3784-3788. https://doi.org/10.1021/acscatal.6b00826
  25. Shrivats Semwal and Joyanta Choudhury . Molecular Coordination-Switch in a New Role: Controlling Highly Selective Catalytic Hydrogenation with Switchability Function. ACS Catalysis 2016, 6 (4) , 2424-2428. https://doi.org/10.1021/acscatal.6b00150
  26. Anh H. Ngo, Miguel Ibañez, and Loi H. Do . Catalytic Hydrogenation of Cytotoxic Aldehydes Using Nicotinamide Adenine Dinucleotide (NADH) in Cell Growth Media. ACS Catalysis 2016, 6 (4) , 2637-2641. https://doi.org/10.1021/acscatal.6b00395
  27. Daria L. Huang, Rodrigo Beltrán-Suito, Julianne M. Thomsen, Sara M. Hashmi, Kelly L. Materna, Stafford W. Sheehan, Brandon Q. Mercado, Gary W. Brudvig, and Robert H. Crabtree . New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis. Inorganic Chemistry 2016, 55 (5) , 2427-2435. https://doi.org/10.1021/acs.inorgchem.5b02809
  28. Cameron M. Moore, Byongjoo Bark, and Nathaniel K. Szymczak . Simple Ligand Modifications with Pendent OH Groups Dramatically Impact the Activity and Selectivity of Ruthenium Catalysts for Transfer Hydrogenation: The Importance of Alkali Metals. ACS Catalysis 2016, 6 (3) , 1981-1990. https://doi.org/10.1021/acscatal.6b00229
  29. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
  30. Leen E. E. Broeckx, Alberto Bucci, Cristiano Zuccaccia, Martin Lutz, Alceo Macchioni, and Christian Müller . Cyclometalated Phosphinine–Iridium(III) Complexes: Synthesis, Reactivity, and Application as Phosphorus-Containing Water-Oxidation Catalysts. Organometallics 2015, 34 (12) , 2943-2952. https://doi.org/10.1021/acs.organomet.5b00281
  31. Gerald F. Manbeck, James T. Muckerman, David J. Szalda, Yuichiro Himeda, and Etsuko Fujita . Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO2 Reduction Catalysts. The Journal of Physical Chemistry B 2015, 119 (24) , 7457-7466. https://doi.org/10.1021/jp511131x
  32. Ilaria Corbucci, Ana Petronilho, Helge Müller-Bunz, Luca Rocchigiani, Martin Albrecht, and Alceo Macchioni . Substantial Improvement of Pyridine-Carbene Iridium Water Oxidation Catalysts by a Simple Methyl-to-Octyl Substitution. ACS Catalysis 2015, 5 (5) , 2714-2718. https://doi.org/10.1021/acscatal.5b00319
  33. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  34. Deidra L. Gerlach, Salome Bhagan, Alex A. Cruce, Dalton B. Burks, Ismael Nieto, Hai T. Truong, Steven P. Kelley, Corey J. Herbst-Gervasoni, Katherine L. Jernigan, Michael K. Bowman, Shanlin Pan, Matthias Zeller, and Elizabeth T. Papish . Studies of the Pathways Open to Copper Water Oxidation Catalysts Containing Proximal Hydroxy Groups During Basic Electrocatalysis. Inorganic Chemistry 2014, 53 (24) , 12689-12698. https://doi.org/10.1021/ic501018a
  35. Ana Petronilho, Antoni Llobet, and Martin Albrecht . Ligand Exchange and Redox Processes in Iridium Triazolylidene Complexes Relevant to Catalytic Water Oxidation. Inorganic Chemistry 2014, 53 (24) , 12896-12901. https://doi.org/10.1021/ic501894u
  36. Anh H. Ngo, Michael J. Adams, and Loi H. Do . Selective Acceptorless Dehydrogenation and Hydrogenation by Iridium Catalysts Enabling Facile Interconversion of Glucocorticoids. Organometallics 2014, 33 (23) , 6742-6745. https://doi.org/10.1021/om5010258
  37. Yuki Suna, Mehmed Z. Ertem, Wan-Hui Wang, Hide Kambayashi, Yuichi Manaka, James T. Muckerman, Etsuko Fujita, and Yuichiro Himeda . Positional Effects of Hydroxy Groups on Catalytic Activity of Proton-Responsive Half-Sandwich Cp*Iridium(III) Complexes. Organometallics 2014, 33 (22) , 6519-6530. https://doi.org/10.1021/om500832d
  38. Feng Li, Juan Ma, and Nana Wang . α-Alkylation of Ketones with Primary Alcohols Catalyzed by a Cp*Ir Complex Bearing a Functional Bipyridonate Ligand. The Journal of Organic Chemistry 2014, 79 (21) , 10447-10455. https://doi.org/10.1021/jo502051d
  39. Julianne M. Thomsen, Stafford W. Sheehan, Sara M. Hashmi, Jesús Campos, Ulrich Hintermair, Robert H. Crabtree, and Gary W. Brudvig . Electrochemical Activation of Cp* Iridium Complexes for Electrode-Driven Water-Oxidation Catalysis. Journal of the American Chemical Society 2014, 136 (39) , 13826-13834. https://doi.org/10.1021/ja5068299
  40. Cameron M. Moore, David A. Quist, Jeff W. Kampf, and Nathaniel K. Szymczak . A 3-Fold-Symmetric Ligand Based on 2-Hydroxypyridine: Regulation of Ligand Binding by Hydrogen Bonding. Inorganic Chemistry 2014, 53 (7) , 3278-3280. https://doi.org/10.1021/ic5003594
  41. Guixiang Zeng, Shigeyoshi Sakaki, Ken-ichi Fujita, Hayato Sano, and Ryohei Yamaguchi . Efficient Catalyst for Acceptorless Alcohol Dehydrogenation: Interplay of Theoretical and Experimental Studies. ACS Catalysis 2014, 4 (3) , 1010-1020. https://doi.org/10.1021/cs401101m
  42. Teng Zhang, Cheng Wang, Shubin Liu, Jin-Liang Wang, and Wenbin Lin . A Biomimetic Copper Water Oxidation Catalyst with Low Overpotential. Journal of the American Chemical Society 2014, 136 (1) , 273-281. https://doi.org/10.1021/ja409267p
  43. Olaitan E. Oladipupo, Spenser R. Brown, Robert W. Lamb, Jessica L. Gray, Colin G. Cameron, Alexa R. DeRegnaucourt, Nicholas A. Ward, James Fletcher Hall, Yifei Xu, Courtney M. Petersen, Fengrui Qu, Ambar B. Shrestha, Matthew K. Thompson, Marco Bonizzoni, Charles Edwin Webster, Sherri A. McFarland, Yonghyun Kim, Elizabeth T. Papish. Light‐responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells †. Photochemistry and Photobiology 2021, 397 https://doi.org/10.1111/php.13508
  44. Mandeep Kaur, Noor U Din Reshi, Kamaless Patra, Arindom Bhattacherya, Sooraj Kunnikuruvan, Jitendra K. Bera. A Proton‐Responsive Pyridyl(benzamide)‐Functionalized NHC Ligand on Ir Complex for Alkylation of Ketones and Secondary Alcohols. Chemistry – A European Journal 2021, 27 (41) , 10737-10748. https://doi.org/10.1002/chem.202101360
  45. Giordano Gatto, Alice De Palo, Ana C. Carrasco, Ana M. Pizarro, Stefano Zacchini, Guido Pampaloni, Fabio Marchetti, Alceo Macchioni. Modulating the water oxidation catalytic activity of iridium complexes by functionalizing the Cp*-ancillary ligand: hints on the nature of the active species. Catalysis Science & Technology 2021, 11 (8) , 2885-2895. https://doi.org/10.1039/D0CY02306J
  46. Koteswara Rao Gorantla, Bhabani S. Mallik. Understanding the role of fluorination in the mechanistic nature of the water splitting process catalyzed by cobalt tris-(2-pyridylmethyl)amine complexes. Sustainable Energy & Fuels 2021, 5 (8) , 2313-2324. https://doi.org/10.1039/D0SE01487G
  47. Basujit Chatterjee, Wei‐Chieh Chang, Christophe Werlé. Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non‐local Environments. ChemCatChem 2021, 13 (7) , 1659-1682. https://doi.org/10.1002/cctc.202001431
  48. Alexander S. Phearman, Jewelianna M. Moore, Dayanni D. Bhagwandin, Jonathan M. Goldberg, D. Michael Heinekey, Karen I. Goldberg. (Hexamethylbenzene)Ru catalysts for the Aldehyde-Water Shift reaction. Green Chemistry 2021, 23 (4) , 1609-1615. https://doi.org/10.1039/D0GC03809A
  49. Bhaskar Sen, Monosh Rabha, Sanjoy Kumar Sheet, Debaprasad Koner, Nirmalendu Saha, Snehadrinarayan Khatua. Bis-heteroleptic Ru( ii ) polypyridine complex-based luminescent probes for nerve agent simulant and organophosphate pesticide. Inorganic Chemistry Frontiers 2021, 8 (3) , 669-683. https://doi.org/10.1039/D0QI00997K
  50. Koteswara Rao Gorantla, Bhabani S. Mallik. Computational mechanistic study on molecular catalysis of water oxidation by cyclam ligand-based iron complex. Theoretical Chemistry Accounts 2020, 139 (10) https://doi.org/10.1007/s00214-020-02664-2
  51. Sepideh Madadkhani, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. An iridium-based nanocomposite prepared from an iridium complex with a hydrocarbon-based ligand. New Journal of Chemistry 2020, 44 (36) , 15636-15645. https://doi.org/10.1039/D0NJ02257H
  52. Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller‐Bunz, Tiny W. G. M. Verhoeven, Mo Li, J. W. (Hans) Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht. Relevance of Chemical vs. Electrochemical Oxidation of Tunable Carbene Iridium Complexes for Catalytic Water Oxidation. European Journal of Inorganic Chemistry 2020, 2020 (10) , 801-812. https://doi.org/10.1002/ejic.202000090
  53. Ilaria Corbucci, Francesco Zaccaria, Rachel Heath, Giordano Gatto, Cristiano Zuccaccia, Martin Albrecht, Alceo Macchioni. Iridium Water Oxidation Catalysts Based on Pyridine‐Carbene Alkyl‐Substituted Ligands. ChemCatChem 2019, 11 (21) , 5353-5361. https://doi.org/10.1002/cctc.201901092
  54. Xiao‐Qing Zhao, Yi‐Yan Wang, Dong‐Xu Bao, Fen‐Hang Zhang, Wei Wu, Fu‐Sen Xu, Qiu‐Hong Zhang, Yun‐Chun Li. A Series of High‐nuclear 3 d ‐4 f (Fe III 8 Ln III 2 ) Complexes: Syntheses, Structures, and Magnetic Properties. Applied Organometallic Chemistry 2019, 33 (11) https://doi.org/10.1002/aoc.5222
  55. Hossain M. Shahadat, Hussein A. Younus, Nazir Ahmad, Md. Abdur Rahaman, Zafar A. K. Khattak, Serge Zhuiykov, Francis Verpoort. Homogenous electrochemical water oxidation by a nickel( ii ) complex based on a macrocyclic N-heterocyclic carbene/pyridine hybrid ligand. Catalysis Science & Technology 2019, 9 (20) , 5651-5659. https://doi.org/10.1039/C9CY01485C
  56. Jaeyoung Jeong, Takuya Shimbayashi, Ken-ichi Fujita. Effect of a Substituent in Cyclopentadienyl Ligand on Iridium-Catalyzed Acceptorless Dehydrogenation of Alcohols and 2-Methyl-1,2,3,4-tetrahydroquinoline. Catalysts 2019, 9 (10) , 846. https://doi.org/10.3390/catal9100846
  57. Qiaoqiao Zhang, Jingqi Guan. Mono‐/Multinuclear Water Oxidation Catalysts. ChemSusChem 2019, 12 (14) , 3209-3235. https://doi.org/10.1002/cssc.201900704
  58. Pablo Garrido-Barros, Roc Matheu, Carolina Gimbert-Suriñach, Antoni Llobet. Electronic, mechanistic, and structural factors that influence the performance of molecular water oxidation catalysts anchored on electrode surfaces. Current Opinion in Electrochemistry 2019, 15 , 140-147. https://doi.org/10.1016/j.coelec.2019.04.027
  59. Milan Maji, Kaushik Chakrabarti, Dibyajyoti Panja, Sabuj Kundu. Sustainable synthesis of N-heterocycles in water using alcohols following the double dehydrogenation strategy. Journal of Catalysis 2019, 373 , 93-102. https://doi.org/10.1016/j.jcat.2019.03.028
  60. Raquel Puerta-Oteo, M. Victoria Jiménez, Jesús J. Pérez-Torrente. Molecular water oxidation catalysis by zwitterionic carboxylate bridge-functionalized bis-NHC iridium complexes. Catalysis Science & Technology 2019, 9 (6) , 1437-1450. https://doi.org/10.1039/C8CY02306A
  61. Shigeki Kuwata. Design of Multiproton-Responsive Metal Complexes as Molecular Technology for Transformation of Small Molecules. 2019,,, 81-103. https://doi.org/10.1002/9783527823987.vol1_c4
  62. Shasha Zhu, Yanyan Zhao, Yumin He, Dunwei Wang. Selectivity of H 2 O 2 and O 2 by water oxidation on metal oxide surfaces. The Journal of Chemical Physics 2019, 150 (4) , 041712. https://doi.org/10.1063/1.5046886
  63. Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions 2019, 48 (3) , 779-798. https://doi.org/10.1039/C8DT04341H
  64. Alceo Macchioni. The Middle‐Earth between Homogeneous and Heterogeneous Catalysis in Water Oxidation with Iridium. European Journal of Inorganic Chemistry 2019, 2019 (1) , 7-17. https://doi.org/10.1002/ejic.201800798
  65. Elizabeth T. Papish. Water Oxidation with Coordination Complex Catalysts Using Group 7 and 8 Metals. 2019,,https://doi.org/10.1016/B978-0-12-409547-2.14688-8
  66. Yosra M. Badiei, Yan Xie, Genesis Renderos, Javier J. Concepcion, David Szalda, Jacqueline Guevara, Rina Rosales, Evelyn Ortiz, Matthew Hankins. Rapid identification of homogeneous O2 evolution catalysts and comparative studies of Ru(II)-carboxamides vs. Ru(II)-carboxylates in water-oxidation. Journal of Catalysis 2019, 369 , 10-20. https://doi.org/10.1016/j.jcat.2018.10.009
  67. Dávid Lukács, Łukasz Szyrwiel, József Pap. Copper Containing Molecular Systems in Electrocatalytic Water Oxidation—Trends and Perspectives. Catalysts 2019, 9 (1) , 83. https://doi.org/10.3390/catal9010083
  68. Xudong Wen, Lu Bai, Min Li, Jingqi Guan. Ultrafine iridium oxide supported on carbon nanotubes for efficient catalysis of oxygen evolution and oxygen reduction reactions. Materials Today Energy 2018, 10 , 153-160. https://doi.org/10.1016/j.mtener.2018.09.002
  69. Fengrui Qu, Kristina Martinez, Ashley M. Arcidiacono, Seungjo Park, Matthias Zeller, Russell H. Schmehl, Jared J. Paul, Yonghyun Kim, Elizabeth T. Papish. Sterically demanding methoxy and methyl groups in ruthenium complexes lead to enhanced quantum yields for blue light triggered photodissociation. Dalton Transactions 2018, 47 (44) , 15685-15693. https://doi.org/10.1039/C8DT03295E
  70. Sanjay Adhikari, Omar Hussain, Roger M. Phillips, Werner Kaminsky, Mohan Rao Kollipara. Neutral and cationic half-sandwich arene d 6 metal complexes containing pyridyl and pyrimidyl thiourea ligands with interesting bonding modes: Synthesis, structural and anti-cancer studies. Applied Organometallic Chemistry 2018, 32 (9) , e4476. https://doi.org/10.1002/aoc.4476
  71. Miquel Navarro, Christene A. Smith, Mo Li, Stefan Bernhard, Martin Albrecht. Optimization of Synthetically Versatile Pyridylidene Amide Ligands for Efficient Iridium‐Catalyzed Water Oxidation. Chemistry – A European Journal 2018, 24 (24) , 6386-6398. https://doi.org/10.1002/chem.201705619
  72. Min-Chul Kim, Sang-Yup Lee. Catalytic Water Oxidation by Iridium-Modified Carbonic Anhydrase. Chemistry - An Asian Journal 2018, 13 (3) , 334-341. https://doi.org/10.1002/asia.201701543
  73. Erin J. Viere, Ashley E. Kuhn, Margaret H. Roeder, Nicholas A. Piro, W. Scott Kassel, Timothy J. Dudley, Jared J. Paul. Spectroelectrochemical studies of a ruthenium complex containing the pH sensitive 4,4′-dihydroxy-2,2′-bipyridine ligand. Dalton Transactions 2018, 47 (12) , 4149-4161. https://doi.org/10.1039/C7DT04554A
  74. Hairong Zhang, Lihua Guo, Zhenzhen Tian, Meng Tian, Shumiao Zhang, Zhishan Xu, Peiwei Gong, Xiaofeng Zheng, Jia Zhao, Zhe Liu. Significant effects of counteranions on the anticancer activity of iridium( iii ) complexes. Chemical Communications 2018, 54 (35) , 4421-4424. https://doi.org/10.1039/C8CC01326H
  75. Sebastian B. Beil, Sabine Möhle, Patrick Enders, Siegfried R. Waldvogel. Electrochemical instability of highly fluorinated tetraphenyl borates and syntheses of their respective biphenyls. Chemical Communications 2018, 54 (48) , 6128-6131. https://doi.org/10.1039/C8CC02996B
  76. Masayuki Iguchi, Heng Zhong, Yuichiro Himeda, Hajime Kawanami. Effect of the ortho ‐Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High‐Pressure Gas Generation from the Catalytic Decomposition of Formic Acid. Chemistry – A European Journal 2017, 23 (70) , 17788-17793. https://doi.org/10.1002/chem.201703766
  77. Bani Mahanti, Greco González Miera, Elisa Martínez-Castro, Michele Bedin, Belén Martín-Matute, Sascha Ott, Anders Thapper. Homogeneous Water Oxidation by Half-Sandwich Iridium(III) N-Heterocyclic Carbene Complexes with Pendant Hydroxy and Amino Groups. ChemSusChem 2017, 10 (22) , 4616-4623. https://doi.org/10.1002/cssc.201701370
  78. Gabriel Menendez Rodriguez, Giordano Gatto, Cristiano Zuccaccia, Alceo Macchioni. Benchmarking Water Oxidation Catalysts Based on Iridium Complexes: Clues and Doubts on the Nature of Active Species. ChemSusChem 2017, 10 (22) , 4503-4509. https://doi.org/10.1002/cssc.201701818
  79. Lin Wang, Ryoichi Kanega, Hajime Kawanami, Yuichiro Himeda. Development of Proton-Responsive Catalysts. The Chemical Record 2017, 17 (11) , 1071-1094. https://doi.org/10.1002/tcr.201700023
  80. Xiao-Qing Zhao, Yi-Yan Wang, Shuo Xiang, Chuan Lv, Ya-Jun Liu, Fu-Sen Xu, Dong-Xu Bao, Jin Wang. One-dimensional helical Cu(II) coordination polymer: Synthesis, structures, and properties. Inorganic Chemistry Communications 2017, 85 , 49-51. https://doi.org/10.1016/j.inoche.2017.05.030
  81. Deidra L. Gerlach, Sopheavy Siek, Dalton B. Burks, Jamie M. Tesh, Courtney R. Thompson, Robert M. Vasquez, Nicholas J. White, Matthias Zeller, Douglas B. Grotjahn, Elizabeth T. Papish. Ruthenium (II) and iridium (III) complexes of N-heterocyclic carbene and pyridinol derived bidentate chelates: Synthesis, characterization, and reactivity. Inorganica Chimica Acta 2017, 466 , 442-450. https://doi.org/10.1016/j.ica.2017.06.063
  82. Lei Wang, Ke Fan, Hong Chen, Quentin Daniel, Bertrand Philippe, Håkan Rensmo, Licheng Sun. Towards efficient and robust anodes for water splitting: Immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization. Catalysis Today 2017, 290 , 73-77. https://doi.org/10.1016/j.cattod.2016.07.011
  83. Ilaria Corbucci, Kevin Ellingwood, Lucia Fagiolari, Cristiano Zuccaccia, Fausto Elisei, Pier Luigi Gentili, Alceo Macchioni. Photocatalytic water oxidation mediated by iridium complexes. Catalysis Today 2017, 290 , 10-18. https://doi.org/10.1016/j.cattod.2016.10.030
  84. Sopheavy Siek, Natalie A. Dixon, Elizabeth T. Papish. Electrochemical reduction of Ttz copper(II) complexes in the presence and absence of protons: Processes relevant to enzymatic nitrite reduction (TtzR,R′= tris(3-R, 5-R′-1, 2, 4-triazolyl)borate). Inorganica Chimica Acta 2017, 459 , 80-86. https://doi.org/10.1016/j.ica.2017.01.021
  85. Ilaria Corbucci, Alceo Macchioni, Martin Albrecht. Iridium Complexes in Water Oxidation Catalysis. 2017,,, 617-654. https://doi.org/10.1002/9781119007166.ch13
  86. Lu Yang, Sohini Bose, Anh H. Ngo, Loi H. Do. Innocent But Deadly: Nontoxic Organoiridium Catalysts Promote Selective Cancer Cell Death. ChemMedChem 2017, 12 (4) , 292-299. https://doi.org/10.1002/cmdc.201600638
  87. Victoria I. Smith, Mohammad Nozari, Matthias Zeller, Anthony W. Addison. Crystal structure of (2,2′-bipyridyl)[2,6-bis(1-butyl-1 H -benzimidazol-2-yl)pyridine]chloridoiridium(III) trifluoromethanesulfonate. Acta Crystallographica Section E Crystallographic Communications 2017, 73 (2) , 127-132. https://doi.org/10.1107/S205698901700010X
  88. Zhongkai Lu, Yan Gao, Hu Chen, Zhao Liu, Licheng Sun. Water oxidation catalyzed by a charge-neutral mononuclear ruthenium( iii ) complex. Dalton Transactions 2017, 46 (4) , 1304-1310. https://doi.org/10.1039/C6DT04160D
  89. Chance M. Boudreaux, Nalaka P. Liyanage, Hunter Shirley, Sopheavy Siek, Deidra L. Gerlach, Fengrui Qu, Jared H. Delcamp, Elizabeth T. Papish. Ruthenium( ii ) complexes of pyridinol and N-heterocyclic carbene derived pincers as robust catalysts for selective carbon dioxide reduction. Chem. Commun. 2017, 53 (81) , 11217-11220. https://doi.org/10.1039/C7CC05706G
  90. Alexandra I. Gaudette, Agnes E. Thorarinsdottir, T. David Harris. pH-Dependent spin state population and 19 F NMR chemical shift via remote ligand protonation in an iron( ii ) complex. Chemical Communications 2017, 53 (96) , 12962-12965. https://doi.org/10.1039/C7CC08158H
  91. Hiroyuki Takahashi, Shintaro Kodama, Youichi Ishii. Direct transformation of 2-acetylpyridine oxime esters into α-oxygenated imines in an Ir( iii ) complex. Dalton Transactions 2017, 46 (36) , 12032-12035. https://doi.org/10.1039/C7DT02528A
  92. Bivas Chandra Roy, Kaushik Chakrabarti, Sujan Shee, Subhadeep Paul, Sabuj Kundu. Bifunctional Ru II -Complex-Catalysed Tandem C−C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents. Chemistry - A European Journal 2016, 22 (50) , 18147-18155. https://doi.org/10.1002/chem.201603557
  93. Jayneil M. Kamdar, David C. Marelius, Curtis E. Moore, Arnold L. Rheingold, Diane K. Smith, Douglas B. Grotjahn. Ruthenium Complexes of 2,2′-Bipyridine-6,6′-diphosphonate Ligands for Water Oxidation. ChemCatChem 2016, 8 (19) , 3045-3049. https://doi.org/10.1002/cctc.201600359
  94. Sanjay Adhikari, Narasinga Rao Palepu, Dipankar Sutradhar, Samantha L. Shepherd, Roger M. Phillips, Werner Kaminsky, Asit K. Chandra, Mohan Rao Kollipara. Neutral and cationic half-sandwich arene ruthenium, Cp*Rh and Cp*Ir oximato and oxime complexes: Synthesis, structural, DFT and biological studies. Journal of Organometallic Chemistry 2016, 820 , 70-81. https://doi.org/10.1016/j.jorganchem.2016.08.004
  95. Sanjay Adhikari, Dipankar Sutradhar, Samantha L. Shepherd, Roger M. Phillips, Asit K. Chandra, K. Mohan Rao. Synthesis, structural, DFT calculations and biological studies of rhodium and iridium complexes containing azine Schiff-base ligands. Polyhedron 2016, 117 , 404-414. https://doi.org/10.1016/j.poly.2016.06.001
  96. Lee Serpas, Robert R. Baum, Alyssa McGhee, Ismael Nieto, Katherine L. Jernigan, Matthias Zeller, Gregory M. Ferrence, David L. Tierney, Elizabeth T. Papish. “Scorpionate-like” complexes that are held together by hydrogen bonds: Crystallographic and spectroscopic studies of (3-NH(t-butyl)-5-methyl-pyrazole) MX2 (M = Zn, Ni, Co, Mn; n= 3, 4; X = Cl, Br). Polyhedron 2016, 114 , 62-71. https://doi.org/10.1016/j.poly.2015.10.003
  97. David J. Charboneau, Nicholas A. Piro, W. Scott Kassel, Timothy J. Dudley, Jared J. Paul. Reprint of: Structural, electronic and acid/base properties of [Ru(bpy)(bpy(OH)2)2]2+ (bpy = 2,2′-bipyridine, bpy(OH)2= 4,4′-dihydroxy-2,2′-bipyridine). Polyhedron 2016, 114 , 472-481. https://doi.org/10.1016/j.poly.2016.05.042
  98. Lei Wang, Lele Duan, Ram B. Ambre, Quentin Daniel, Hong Chen, Junliang Sun, Biswanath Das, Anders Thapper, Jens Uhlig, Peter Dinér, Licheng Sun. A nickel (II) PY5 complex as an electrocatalyst for water oxidation. Journal of Catalysis 2016, 335 , 72-78. https://doi.org/10.1016/j.jcat.2015.12.003
  99. Ewa Adela Miłopolska, Martin Kuss-Petermann, Markus Neuburger, Oliver Wenger, Thomas R. Ward. N -Heterocyclic carbene ligands bearing a naphthoquinone appendage: Synthesis and coordination chemistry. Polyhedron 2016, 103 , 261-266. https://doi.org/10.1016/j.poly.2015.04.019
  100. Kevin Farrell, Philipp Melle, Robert A. Gossage, Helge Müller-Bunz, Martin Albrecht. Transfer hydrogenation with abnormal dicarbene rhodium( iii ) complexes containing ancillary and modular poly-pyridine ligands. Dalton Transactions 2016, 45 (11) , 4570-4579. https://doi.org/10.1039/C5DT04656D
Load all citations