Thermally Activated Persulfate Oxidation of Trichloroethylene:  Experimental Investigation of Reaction Orders

View Author Information
Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung City 402, Taiwan, and Department of Civil and Environmental Engineering, University of Massachusetts, One University Avenue, Lowell, Massachusetts 01854
Cite this: Ind. Eng. Chem. Res. 2008, 47, 9, 2912–2918
Publication Date (Web):March 20, 2008
https://doi.org/10.1021/ie070820l
Copyright © 2008 American Chemical Society
Article Views
1953
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (122 KB)

Abstract

The kinetics of dissolved trichloroethylene (TCE) oxidation by thermally activated sodium persulfate (Na2S2O8) was investigated in a phosphate-buffered solution at pH 7 and an ionic strength of 0.1 at a temperature of 40 °C. Thermal activation results in the production of a highly reactive sulfate free radical (SO4•-). The method of half-lives was used to determine the reaction order with respect to TCE. This was accomplished by conducting a series of kinetic experiments and keeping in great excess (and therefore essentially constant) the sodium persulfate concentration while varying the TCE initial concentration. Resulting plots of normalized TCE concentration (C/Co) vs time were analyzed by polynomial regression analysis. Half-lives were calculated based on the resulting polynomial equations. To determine the reaction order with respect to persulfate, experiments were designed to examine a range of initial persulfate concentrations while maintaining the same initial TCE concentration. These results were also analyzed using polynomial regression analysis. The results of these studies indicate that the degradation rate of TCE by sodium persulfate could be described by the kinetic rate equation −d[TCE]/dt = (5.59 × 10-4 mM0.2 min-1)[TCE]0[S2O82-]0.8 within the limits of the experimental conditions utilized here (i.e., 40 °C, ionic strength 0.1, pH 7, TCE 0.14−0.52 mM, and S2O82- 13.5−43.7 mM). This equation indicates that the thermally activated persulfate oxidation of TCE appears to be pseudo zero order with respect to TCE (and therefore independent of the initial TCE concentration) and fractional order with respect to persulfate. This result should serve as a starting point for modeling of the TCE/persulfate system.

*

 To whom correspondence should be addressed. Tel.:  886-4-22856610. Fax:  886-4-22862587. E-mail:  [email protected]

 National Chung Hsing University.

 University of Massachusetts.

Cited By


This article is cited by 110 publications.

  1. Jiali Peng, Peng Zhou, Hongyu Zhou, Wen Liu, Heng Zhang, Chenying Zhou, Leiduo Lai, Zhimin Ao, Shijun Su, Bo Lai. Insights into the Electron-Transfer Mechanism of Permanganate Activation by Graphite for Enhanced Oxidation of Sulfamethoxazole. Environmental Science & Technology 2021, 55 (13) , 9189-9198. https://doi.org/10.1021/acs.est.1c00020
  2. Dongting Yue, Xuan Yan, Chao Guo, Xufang Qian, Yixin Zhao. NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts with Fe as Electron Transfer Mediator for Enhanced Persulfate Activation. The Journal of Physical Chemistry Letters 2020, 11 (3) , 968-973. https://doi.org/10.1021/acs.jpclett.9b03597
  3. Hongshin Lee, Hyoung-il Kim, Seunghyun Weon, Wonyong Choi, Yu Sik Hwang, Jiwon Seo, Changha Lee, and Jae-Hong Kim . Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. Environmental Science & Technology 2016, 50 (18) , 10134-10142. https://doi.org/10.1021/acs.est.6b02079
  4. Bing Yang, Joseph J. Pignatello, Dong Qu, and Baoshan Xing . Reoxidation of Photoreduced Polyoxotungstate ([PW12O40]4–) by Different Oxidants in the Presence of a Model Pollutant. Kinetics and Reaction Mechanism. The Journal of Physical Chemistry A 2015, 119 (6) , 1055-1065. https://doi.org/10.1021/jp510036x
  5. Guodong Fang, Juan Gao, Dionysios D. Dionysiou, Cun Liu, and Dongmei Zhou . Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs. Environmental Science & Technology 2013, 47 (9) , 4605-4611. https://doi.org/10.1021/es400262n
  6. Xiaogang Gu, Shuguang Lu, Zhaofu Qiu, Qian Sui, Zhouwei Miao, Kuangfei Lin, Yongdi Liu, and Qishi Luo . Comparison of Photodegradation Performance of 1,1,1-Trichloroethane in Aqueous Solution with the Addition of H2O2 or S2O82– Oxidants. Industrial & Engineering Chemistry Research 2012, 51 (21) , 7196-7204. https://doi.org/10.1021/ie202769d
  7. Xiaogang Gu, Shuguang Lu, Lin Li, Zhaofu Qiu, Qian Sui, Kuangfei Lin, and Qishi Luo . Oxidation of 1,1,1-Trichloroethane Stimulated by Thermally Activated Persulfate. Industrial & Engineering Chemistry Research 2011, 50 (19) , 11029-11036. https://doi.org/10.1021/ie201059x
  8. Nymul E. Khan and Yusuf G. Adewuyi. Absorption and Oxidation of Nitric Oxide (NO) by Aqueous Solutions of Sodium Persulfate in a Bubble Column Reactor. Industrial & Engineering Chemistry Research 2010, 49 (18) , 8749-8760. https://doi.org/10.1021/ie100607u
  9. Olha S. Furman, Amy L. Teel and Richard J. Watts. Mechanism of Base Activation of Persulfate. Environmental Science & Technology 2010, 44 (16) , 6423-6428. https://doi.org/10.1021/es1013714
  10. Seda Uzunboy, Özge Karakaş, Sema Demirci-Çekiç, Reşat Apak. Sulfate radical formation by Cr(III) activation of peroxydisulfate – Diphenylcarbazide spectrophotometric determination of sulfate radical and its scavenging activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 260 , 119941. https://doi.org/10.1016/j.saa.2021.119941
  11. Weihai Sun, Pengqiang Yuan, Shibo Wang, Yitian Du, Jinjun Zou, Fengxian Cao, Zhang Lan, Jihuai Wu. Kalium persulfate as a low-cost and effective dopant for spiro-OMeTAD in high performance and stable planar perovskite solar cells. Electrochimica Acta 2021, 380 , 138233. https://doi.org/10.1016/j.electacta.2021.138233
  12. Haijun Li, Chong Tang, Min Wang, Changgen Mei, Na Liu. Decolorization of azo dyes in a heterogeneous persulfate system using FeS as the activator. Water Science and Technology 2021, 83 (7) , 1703-1713. https://doi.org/10.2166/wst.2021.085
  13. Gang Wang, Peng Wang, Huiling Liu, Jing Wang, Xiaohu Dai, Yanjun Xin. Degradation of spiramycin by thermally activated peroxydisulfate: Kinetics study, oxidation products and acute toxicity. Chemical Engineering Journal 2021, 408 , 127255. https://doi.org/10.1016/j.cej.2020.127255
  14. Tiantian Chen, Zhenyang Yu, Ting Xu, Rong Xiao, Wenhai Chu, Daqiang Yin. Formation and degradation mechanisms of CX3R-type oxidation by-products during cobalt catalyzed peroxymonosulfate oxidation: The roles of Co3+ and SO4·-. Journal of Hazardous Materials 2021, 405 , 124243. https://doi.org/10.1016/j.jhazmat.2020.124243
  15. Fei Yang, Bo Sheng, Zhaohui Wang, Ying Xue, Jianshe Liu, Tianyi Ma, Richard Bush, Hrvoje Kušić, Yanbo Zhou. Performance of UV/acetylacetone process for saline dye wastewater treatment: Kinetics and mechanism. Journal of Hazardous Materials 2021, 406 , 124774. https://doi.org/10.1016/j.jhazmat.2020.124774
  16. Sanzeeda Baig Shuchi, Md. Burhan Kabir Suhan, Sufian Bin Humayun, Muhammad Enamul Haque, Md. Shahinoor Islam. Heat-activated potassium persulfate treatment of Sudan Black B dye: Degradation kinetic and thermodynamic studies. Journal of Water Process Engineering 2021, 39 , 101690. https://doi.org/10.1016/j.jwpe.2020.101690
  17. Tian Xie, Zhi Dang, Jian Zhang, Qian Zhang, Rong-Hai Zhang, Chang-Jun Liao, Gui-Ning Lu. Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test. RSC Advances 2021, 11 (7) , 4237-4246. https://doi.org/10.1039/D0RA10010B
  18. Uthirakrishnan Ushani, Xueqin Lu, Jianhui Wang, Zhongyi Zhang, Jinjin Dai, Yujie Tan, Shasha Wang, Wanjiang Li, Chengxin Niu, Teng Cai, Na Wang, Guangyin Zhen. Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review. Chemical Engineering Journal 2020, 402 , 126232. https://doi.org/10.1016/j.cej.2020.126232
  19. Olga S. Arvaniti, F. Bairamis, I. Konstantinou, Dionissios Mantzavinos, Zacharias Frontistis. Degradation of antihypertensive drug valsartan in water matrices by heat and heat/ultrasound activated persulfate: Kinetics, synergy effect and transformation products. Chemical Engineering Journal Advances 2020, 4 , 100062. https://doi.org/10.1016/j.ceja.2020.100062
  20. Kirill Fedorov, Maksymilian Plata-Gryl, Javed Ali Khan, Grzegorz Boczkaj. Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water. Journal of Hazardous Materials 2020, 397 , 122804. https://doi.org/10.1016/j.jhazmat.2020.122804
  21. Sofia Dimitriadou, Zacharias Frontistis, Athanasia Petala, Georgios Bampos, Dionissios Mantzavinos. Carbocatalytic activation of persulfate for the removal of drug diclofenac from aqueous matrices. Catalysis Today 2020, 355 , 937-944. https://doi.org/10.1016/j.cattod.2019.02.025
  22. Nicholas A. Head, Jason I. Gerhard, Ainsley M. Inglis, Ariel Nunez Garcia, Ahmed I.A. Chowdhury, David A. Reynolds, Cjestmir V. de Boer, Audrey Sidebottom, Leanne M. Austrins, Jake Eimers, Denis M. O’Carroll. Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay. Water Research 2020, 183 , 116061. https://doi.org/10.1016/j.watres.2020.116061
  23. Xihao Jiang, Shuguang Lyu, Meesam Ali, Jingyao Huang, Wenchao Jiang, Zhaofu Qiu, Qian Sui. Enhancement of benzene degradation by persulfate oxidation: synergistic effect by nanoscale zero-valent iron (nZVI) and thermal activation. Water Science and Technology 2020, 82 (5) , 998-1008. https://doi.org/10.2166/wst.2020.408
  24. Lan Wu, Song Zhao, Kecheng Zhu, Yafang Shi, Xiaofeng Nie, Hanzhong Jia. Role of coke-bounded environmentally persistent free radicals in phenanthrene degradation by hydrogen peroxide. Environmental Technology 2020, 41 (16) , 2122-2129. https://doi.org/10.1080/09593330.2018.1556347
  25. Fu Liu, Wenwen Li, Dechang Wu, Tong Tian, Jian-Feng Wu, Zong-Mu Dong, Guang-Chao Zhao. New insight into the mechanism of peroxymonosulfate activation by nanoscaled lead-based spinel for organic matters degradation: A singlet oxygen-dominated oxidation process. Journal of Colloid and Interface Science 2020, 572 , 318-327. https://doi.org/10.1016/j.jcis.2020.03.116
  26. Sarah Sühnholz, Frank-Dieter Kopinke, Katrin Mackenzie. Reagent or catalyst? – FeS as activator for persulfate in water. Chemical Engineering Journal 2020, 387 , 123804. https://doi.org/10.1016/j.cej.2019.123804
  27. Carmen M. Dominguez, Arturo Romero, David Lorenzo, Aurora Santos. Thermally activated persulfate for the chemical oxidation of chlorinated organic compounds in groundwater. Journal of Environmental Management 2020, 261 , 110240. https://doi.org/10.1016/j.jenvman.2020.110240
  28. Zhaohui Wang, Xiaoxiao Wang, Ruixia Yuan, Dongxue Xiao. Resolving the kinetic and intrinsic constraints of heat-activated peroxydisulfate oxidation of iopromide in aqueous solution. Journal of Hazardous Materials 2020, 384 , 121281. https://doi.org/10.1016/j.jhazmat.2019.121281
  29. Yong-Yoon Ahn, EunTae Yun. Heterogeneous metals and metal-free carbon materials for oxidative degradation through persulfate activation: A review of heterogeneous catalytic activation of persulfate related to oxidation mechanism. Korean Journal of Chemical Engineering 2019, 36 (11) , 1767-1779. https://doi.org/10.1007/s11814-019-0398-4
  30. Xiaohui Lu, Jingnan Zhao, Qun Wang, Da Wang, Haodan Xu, Jun Ma, Wei Qiu, Tao Hu. Sonolytic degradation of bisphenol S: Effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity. Water Research 2019, 165 , 114969. https://doi.org/10.1016/j.watres.2019.114969
  31. Shahin Ahmadi, Chinenye Adaobi Igwegbe, Somayeh Rahdar. The application of thermally activated persulfate for degradation of Acid Blue 92 in aqueous solution. International Journal of Industrial Chemistry 2019, 10 (3) , 249-260. https://doi.org/10.1007/s40090-019-0188-1
  32. P.V. Gayathri, Suguna Yesodharan, E.P. Yesodharan. Microwave/Persulphate assisted ZnO mediated photocatalysis (MW/PS/UV/ZnO) as an efficient advanced oxidation process for the removal of RhB dye pollutant from water. Journal of Environmental Chemical Engineering 2019, 7 (4) , 103122. https://doi.org/10.1016/j.jece.2019.103122
  33. Elena Magioglou, Zacharias Frontistis, John Vakros, Ioannis Manariotis, Dionissios Mantzavinos. Activation of Persulfate by Biochars from Valorized Olive Stones for the Degradation of Sulfamethoxazole. Catalysts 2019, 9 (5) , 419. https://doi.org/10.3390/catal9050419
  34. Weichun Yang, Zhi Jiang, Xiaoxian Hu, Xinyu Li, Haiying Wang, Ruiyang Xiao. Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process. Chemosphere 2019, 220 , 514-522. https://doi.org/10.1016/j.chemosphere.2018.12.136
  35. N. Babajani, S. Jamshidi. Investigation of photocatalytic malachite green degradation by iridium doped zinc oxide nanoparticles: Application of response surface methodology. Journal of Alloys and Compounds 2019, 782 , 533-544. https://doi.org/10.1016/j.jallcom.2018.12.164
  36. Yankun Liu, Shiyong Wang, Yanlin Wu, Hongche Chen, Yahong Shi, Min Liu, Wenbo Dong. Degradation of ibuprofen by thermally activated persulfate in soil systems. Chemical Engineering Journal 2019, 356 , 799-810. https://doi.org/10.1016/j.cej.2018.09.002
  37. Qunfeng Yang, Nanzhengfang Jia, Chensi Shen, Jianqing Ma, Yuezhong Wen. Activation of peroxymonosulfate by Fe-N complexes embedded within SBA-15 for removal of organic contaminants via production of singlet oxygen. Environmental Science and Pollution Research 2018, 25 (34) , 34190-34199. https://doi.org/10.1007/s11356-018-3323-1
  38. Sonia Guerra-Rodríguez, Encarnación Rodríguez, Devendra Singh, Jorge Rodríguez-Chueca. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10 (12) , 1828. https://doi.org/10.3390/w10121828
  39. Hanzhong Jia, Song Zhao, Kecheng Zhu, Dan Huang, Lan Wu, Xuetao Guo. Activate persulfate for catalytic degradation of adsorbed anthracene on coking residues: Role of persistent free radicals. Chemical Engineering Journal 2018, 351 , 631-640. https://doi.org/10.1016/j.cej.2018.06.147
  40. J. Rodríguez-Chueca, E. Laski, C. García-Cañibano, M.J. Martín de Vidales, Á. Encinas, B. Kuch, J. Marugán. Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes. Science of The Total Environment 2018, 630 , 1216-1225. https://doi.org/10.1016/j.scitotenv.2018.02.279
  41. Yaoping Guo, Zequan Zeng, Yulin Li, Zhanggen Huang, Yan Cui. In-situ sulfur-doped carbon as a metal-free catalyst for persulfate activated oxidation of aqueous organics. Catalysis Today 2018, 307 , 12-19. https://doi.org/10.1016/j.cattod.2017.05.080
  42. Holger V. Lutze, Julia Brekenfeld, Sergej Naumov, Clemens von Sonntag, Torsten C. Schmidt. Degradation of perfluorinated compounds by sulfate radicals – New mechanistic aspects and economical considerations. Water Research 2018, 129 , 509-519. https://doi.org/10.1016/j.watres.2017.10.067
  43. Jie Ma, Haiyan Li, Liping Chi, Hongkun Chen, Changzhao Chen. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere 2017, 189 , 86-93. https://doi.org/10.1016/j.chemosphere.2017.09.051
  44. Qun Wang, Xiaohui Lu, Ye Cao, Jun Ma, Jin Jiang, Xiaofeng Bai, Tao Hu. Degradation of Bisphenol S by heat activated persulfate: Kinetics study, transformation pathways and influences of co-existing chemicals. Chemical Engineering Journal 2017, 328 , 236-245. https://doi.org/10.1016/j.cej.2017.07.041
  45. Yong Gu, Ying Chen, Xianbo Sun, Yongdi Liu. Comparison on mineralization of 2,4,6-tribromophenol by UV-based advanced oxidation processes: UV/Na2S2O8 and UV/H2O2. Research on Chemical Intermediates 2017, 43 (5) , 3095-3110. https://doi.org/10.1007/s11164-016-2812-4
  46. Huiyu Dong, Zhimin Qiang, Jun Hu, Carme Sans. Accelerated degradation of iopamidol in iron activated persulfate systems: Roles of complexing agents. Chemical Engineering Journal 2017, 316 , 288-295. https://doi.org/10.1016/j.cej.2017.01.099
  47. Yaoping Guo, Zequan Zeng, Yulin Li, Zhanggen Huang, Jieyang Yang. Catalytic oxidation of 4-chlorophenol on in-situ sulfur-doped activated carbon with sulfate radicals. Separation and Purification Technology 2017, 179 , 257-264. https://doi.org/10.1016/j.seppur.2017.02.006
  48. Xin Cheng, Hongguang Guo, Yongli Zhang, Xiao Wu, Yang Liu. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Research 2017, 113 , 80-88. https://doi.org/10.1016/j.watres.2017.02.016
  49. Markus A. Keller, Domen Kampjut, Stuart A. Harrison, Markus Ralser. Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nature Ecology & Evolution 2017, 1 (4) https://doi.org/10.1038/s41559-017-0083
  50. Kefeng Shang, Xiaojing Wang, Jie Li, Hao Wang, Na Lu, Nan Jiang, Yan Wu. Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate. Chemical Engineering Journal 2017, 311 , 378-384. https://doi.org/10.1016/j.cej.2016.11.103
  51. Hua Zhong, Yaling Tian, Qi Yang, Mark L. Brusseau, Lei Yang, Guangming Zeng. Degradation of landfill leachate compounds by persulfate for groundwater remediation. Chemical Engineering Journal 2017, 307 , 399-407. https://doi.org/10.1016/j.cej.2016.08.069
  52. Hung-Yee Shu, Shi-Wei Huang, Meng-Ke Tsai. Comparative study of acid blue 113 wastewater degradation and mineralization by UV/persulfate and UV/Oxone processes. Desalination and Water Treatment 2016, 57 (60) , 29517-29530. https://doi.org/10.1080/19443994.2016.1172031
  53. Antonio J. Expósito, José M. Monteagudo, Irene Díaz, Antonio Durán. Photo-fenton degradation of a beverage industrial effluent: Intensification with persulfate and the study of radicals. Chemical Engineering Journal 2016, 306 , 1203-1211. https://doi.org/10.1016/j.cej.2016.08.048
  54. Amy L. Teel, Farah C. Elloy, Richard J. Watts. Persulfate activation during exertion of total oxidant demand. Chemosphere 2016, 158 , 184-192. https://doi.org/10.1016/j.chemosphere.2016.05.055
  55. Turki S. Alkhuraiji, Nathalie Karpel Vel Leitner. Effect of oxidant addition on the elimination of 2-naphthalenesulfonate in aqueous solutions by electron beam irradiation. Radiation Physics and Chemistry 2016, 126 , 95-102. https://doi.org/10.1016/j.radphyschem.2016.05.016
  56. Weiping Xie, Wei Dong, Deyang Kong, Yuefei Ji, Junhe Lu, Xiaoming Yin. Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides. Chemosphere 2016, 154 , 613-619. https://doi.org/10.1016/j.chemosphere.2016.04.025
  57. Hongguang Guo, Naiyun Gao, Ying Yang, Yongli Zhang. Kinetics and transformation pathways on oxidation of fluoroquinolones with thermally activated persulfate. Chemical Engineering Journal 2016, 292 , 82-91. https://doi.org/10.1016/j.cej.2016.01.009
  58. Xin Cheng, Hongguang Guo, Yongli Zhang, Yang Liu, Hongwei Liu, Ying Yang. Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes. Journal of Colloid and Interface Science 2016, 469 , 277-286. https://doi.org/10.1016/j.jcis.2016.01.067
  59. Cui-Bing Bai, Nai-Xing Wang, Xing-Wang Lan, Yan-Jing Wang, Yalan Xing, Jia-Long Wen, Xue-Wang Gao, Wei Zhang. An Unexpected Controlled New Oxidant: SO4.–. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep20163
  60. Akbar Eslami, Hamideh Bahrami, Anvar Asadi, Abdolazim Alinejad. Enhanced sonochemical degradation of tetracycline by sulfate radicals. Water Science and Technology 2016, 73 (6) , 1293-1300. https://doi.org/10.2166/wst.2015.607
  61. Sahar Naim, Antoine Ghauch. Ranitidine abatement in chemically activated persulfate systems: Assessment of industrial iron waste for sustainable applications. Chemical Engineering Journal 2016, 288 , 276-288. https://doi.org/10.1016/j.cej.2015.11.101
  62. Yi Qian, Qianqian Wang, Feifei Yue. Remediation of TCE-contaminated water by enhanced chemical oxidation using Na 2 S 2 O 8 /H 2 O 2 /red mud. Desalination and Water Treatment 2016, 57 (9) , 4154-4161. https://doi.org/10.1080/19443994.2014.988648
  63. Hamza Ferkous, Slimane Merouani, Oualid Hamdaoui. Sonolytic degradation of naphthol blue black at 1700 kHz: Effects of salts, complex matrices and persulfate. Journal of Water Process Engineering 2016, 9 , 67-77. https://doi.org/10.1016/j.jwpe.2015.11.003
  64. Chenju Liang, Ya-Ting Lin, Jia-Wei Shiu. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways. Journal of Hazardous Materials 2016, 302 , 137-143. https://doi.org/10.1016/j.jhazmat.2015.09.029
  65. Yan Zhao, Yongsheng Zhao, Rui Zhou, Yan Mao, Wen Tang, Hejun Ren. Insights into the degradation of 2,4-dichlorophenol in aqueous solution by α-MnO 2 nanowire activated persulfate: catalytic performance and kinetic modeling. RSC Advances 2016, 6 (42) , 35441-35448. https://doi.org/10.1039/C6RA00008H
  66. Peng Zhou, Jing Zhang, Jilong Liu, Yongli Zhang, Juan Liang, Ya Liu, Bei Liu, Wei Zhang. Degradation of organic contaminants by activated persulfate using zero valent copper in acidic aqueous conditions. RSC Advances 2016, 6 (101) , 99532-99539. https://doi.org/10.1039/C6RA24431A
  67. Yusuf G. Adewuyi, Md A. Khan. Nitric oxide removal by combined persulfate and ferrous–EDTA reaction systems. Chemical Engineering Journal 2015, 281 , 575-587. https://doi.org/10.1016/j.cej.2015.06.114
  68. Xianjin Tang, Muhammad Zaffar Hashmi, Biao Zeng, Jiawen Yang, Chaofeng Shen. Application of iron-activated persulfate oxidation for the degradation of PCBs in soil. Chemical Engineering Journal 2015, 279 , 673-680. https://doi.org/10.1016/j.cej.2015.05.059
  69. Antoine Ghauch, Al Muthanna Tuqan, Nadine Kibbi. Naproxen abatement by thermally activated persulfate in aqueous systems. Chemical Engineering Journal 2015, 279 , 861-873. https://doi.org/10.1016/j.cej.2015.05.067
  70. Kuo Liu, Junhe Lu, Yuefei Ji. Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol. Water Research 2015, 84 , 1-7. https://doi.org/10.1016/j.watres.2015.07.015
  71. Hua Zhong, Mark L. Brusseau, Yake Wang, Ni Yan, Lauren Quig, Gwynn R. Johnson. In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane. Water Research 2015, 83 , 104-111. https://doi.org/10.1016/j.watres.2015.06.025
  72. Bo-Tao Zhang, Yang Zhang, Yanguo Teng, Maohong Fan. Sulfate Radical and Its Application in Decontamination Technologies. Critical Reviews in Environmental Science and Technology 2015, 45 (16) , 1756-1800. https://doi.org/10.1080/10643389.2014.970681
  73. Junhe Lu, Jinwei Wu, Yuefei Ji, Deyang Kong. Transformation of bromide in thermo activated persulfate oxidation processes. Water Research 2015, 78 , 1-8. https://doi.org/10.1016/j.watres.2015.03.028
  74. Hongshin Lee, Hye-Jin Lee, Joonseon Jeong, Jaesang Lee, Noh-Back Park, Changha Lee. Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chemical Engineering Journal 2015, 266 , 28-33. https://doi.org/10.1016/j.cej.2014.12.065
  75. Minhui Xu, Xiaogang Gu, Shuguang Lu, Zhaofu Qiu, Qian Sui, Zhouwei Miao, Xueke Zang, Xiaoliang Wu. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system. Journal of Hazardous Materials 2015, 286 , 7-14. https://doi.org/10.1016/j.jhazmat.2014.12.031
  76. Gaoling Wei, Xiaoliang Liang, Zisen He, Yishan Liao, Zhenyue Xie, Peng Liu, Shichao Ji, Hongping He, Dingqiang Li, Jing Zhang. Heterogeneous activation of Oxone by substituted magnetites Fe3−xMxO4 (Cr, Mn, Co, Ni) for degradation of Acid Orange II at neutral pH. Journal of Molecular Catalysis A: Chemical 2015, 398 , 86-94. https://doi.org/10.1016/j.molcata.2014.11.024
  77. Chaoqun Tan, Naiyun Gao, Yang Deng, Lei Li, Jing Deng, Shiqing Zhou. Kinetic oxidation of antipyrine in heat-activated persulfate. Desalination and Water Treatment 2015, 53 (1) , 263-271. https://doi.org/10.1080/19443994.2013.848414
  78. Ghada Ayoub, Antoine Ghauch. Assessment of bimetallic and trimetallic iron-based systems for persulfate activation: Application to sulfamethoxazole degradation. Chemical Engineering Journal 2014, 256 , 280-292. https://doi.org/10.1016/j.cej.2014.07.002
  79. Jun Jie Yue, Xiao Qiao Zhu, Yu Ting Wang, Yu Qin Zhang, Li Zhao, Zhao Hong Shi. Oxidative Degradation and Kinetics of Trichloroethylene by Thermally Activated Persulfate. Applied Mechanics and Materials 2014, 675-677 , 547-550. https://doi.org/10.4028/www.scientific.net/AMM.675-677.547
  80. Taichi Nakamura, Ryo Uchida, Mitsuhiro Kubota, Hitoki Matsuda, Tadashi Fukuta. Comparative studies of wet oxidation of ammonium compounds using persulfate at temperatures of 313–343K under ambient air pressure. Chemical Engineering Journal 2014, 250 , 205-213. https://doi.org/10.1016/j.cej.2014.04.007
  81. Minghua Nie, Yi Yang, Zhijian Zhang, Caixia Yan, Xiaoning Wang, Hongjing Li, Wenbo Dong. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chemical Engineering Journal 2014, 246 , 373-382. https://doi.org/10.1016/j.cej.2014.02.047
  82. Jiali Yu, Linghui Meng, Dapeng Fan, Chunhua Zhang, Fei Yu, Yudong Huang. The oxidation of carbon fibers through K2S2O8/AgNO3 system that preserves fiber tensile strength. Composites Part B: Engineering 2014, 60 , 261-267. https://doi.org/10.1016/j.compositesb.2013.12.037
  83. Anqi Wang, Weilin Guo, Feifei Hao, Xinxin Yue, Yanqiu Leng. Degradation of Acid Orange 7 in aqueous solution by zero-valent aluminum under ultrasonic irradiation. Ultrasonics Sonochemistry 2014, 21 (2) , 572-575. https://doi.org/10.1016/j.ultsonch.2013.10.015
  84. Wei Hong Wang, George E. Hoag, John B. Collins, Ravi Naidu. Evaluation of Surfactant-Enhanced In Situ Chemical Oxidation (S-ISCO) in Contaminated Soil. Water, Air, & Soil Pollution 2013, 224 (12) https://doi.org/10.1007/s11270-013-1713-z
  85. Weilin Guo, Shengnan Su, Chunliang Yi, Zhenmin Ma. Degradation of antibiotics amoxicillin by Co 3 O 4 -catalyzed peroxymonosulfate system. Environmental Progress & Sustainable Energy 2013, 32 (2) , 193-197. https://doi.org/10.1002/ep.10633
  86. Antoine Ghauch, Ghada Ayoub, Sahar Naim. Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chemical Engineering Journal 2013, 228 , 1168-1181. https://doi.org/10.1016/j.cej.2013.05.045
  87. Chaoqun Tan, Naiyun Gao, Yang Deng, Wenlei Rong, Shengdong Zhou, Naxin Lu. Degradation of antipyrine by heat activated persulfate. Separation and Purification Technology 2013, 109 , 122-128. https://doi.org/10.1016/j.seppur.2013.03.003
  88. Xiaogang Gu, Shuguang Lu, Zhaofu Qiu, Qian Sui, Charles J. Banks, Tsuyoshi Imai, Kuangfei Lin, Qishi Luo. Photodegradation performance of 1,1,1-trichloroethane in aqueous solution: In the presence and absence of persulfate. Chemical Engineering Journal 2013, 215-216 , 29-35. https://doi.org/10.1016/j.cej.2012.09.132
  89. Yeliz Yukselen-Aksoy, Krishna R. Reddy. Electrokinetic Delivery and Activation of Persulfate for Oxidation of PCBs in Clayey Soils. Journal of Geotechnical and Geoenvironmental Engineering 2013, 139 (1) , 175-184. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000744
  90. Sergio Rodriguez, Aurora Santos, Arturo Romero, Fernando Vicente. Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate. Chemical Engineering Journal 2012, 213 , 225-234. https://doi.org/10.1016/j.cej.2012.09.077
  91. Antoine Ghauch, Al Muthanna Tuqan, Nadine Kibbi, Sally Geryes. Methylene blue discoloration by heated persulfate in aqueous solution. Chemical Engineering Journal 2012, 213 , 259-271. https://doi.org/10.1016/j.cej.2012.09.122
  92. De Dong Sun, Xiao Xu Yan, Wen Ping Xue. Oxidative Degradation of Dimethyl Phthalate (DMP) by Persulfate Catalyzed by Ag+ Combined with Microwave Irradiation. Advanced Materials Research 2012, 610-613 , 1209-1212. https://doi.org/10.4028/www.scientific.net/AMR.610-613.1209
  93. Chaoqun Tan, Naiyun Gao, Yang Deng, Na An, Jing Deng. Heat-activated persulfate oxidation of diuron in water. Chemical Engineering Journal 2012, 203 , 294-300. https://doi.org/10.1016/j.cej.2012.07.005
  94. Massimo Marchesi, Ramon Aravena, Kanwartej S. Sra, Neil.R. Thomson, Neus Otero, Albert Soler, Silvia Mancini. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe2+ activated persulfate. Science of The Total Environment 2012, 433 , 318-322. https://doi.org/10.1016/j.scitotenv.2012.06.051
  95. Guo-Dong Fang, Dionysios D. Dionysiou, Yu Wang, Souhail R. Al-Abed, Dong-Mei Zhou. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics. Journal of Hazardous Materials 2012, 227-228 , 394-401. https://doi.org/10.1016/j.jhazmat.2012.05.074
  96. Antoine Ghauch, Al Muthanna Tuqan, Nadine Kibbi. Ibuprofen removal by heated persulfate in aqueous solution: A kinetics study. Chemical Engineering Journal 2012, 197 , 483-492. https://doi.org/10.1016/j.cej.2012.05.051
  97. Mitsuhiro Kubota, Masahiro Hayashi, Hitoki Matsuda, Hirokazu Serizawa. Enhanced decomposition of (4-chloro-2-methylphenoxy) acetic acid by combined ultrasonic and oxidative treatment. Journal of Material Cycles and Waste Management 2012, 14 (2) , 132-138. https://doi.org/10.1007/s10163-012-0047-z
  98. Shengnan Su, Weilin Guo, Chunliang Yi, Yanqiu Leng, Zhenmin Ma. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation. Ultrasonics Sonochemistry 2012, 19 (3) , 469-474. https://doi.org/10.1016/j.ultsonch.2011.10.005
  99. Subramanian Gokulakrishnan, Priyadarshini Parakh, Halan Prakash. Degradation of Malachite green by Potassium persulphate, its enhancement by 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane nickel(II) perchlorate complex, and removal of antibacterial activity. Journal of Hazardous Materials 2012, 213-214 , 19-27. https://doi.org/10.1016/j.jhazmat.2012.01.031
  100. Holger Lutze, Stefan Panglisch, Axel Bergmann, Torsten C. Schmidt. Treatment Options for the Removal and Degradation of Polyfluorinated Chemicals. 2012,,, 103-125. https://doi.org/10.1007/978-3-642-21872-9_6
Load all citations