Microwave Assisted Synthesis of Nanostructured Titanium Dioxide with High Photocatalytic Activity

View Author Information
Materials Research Centre and Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India
* To whom correspondence should be addressed. E-mail: [email protected]. Tel.: +91 80 2293 2321. Fax: +91 80 2360 0683.
†Materials Research Centre.
‡Department of Chemical Engineering.
Cite this: Ind. Eng. Chem. Res. 2010, 49, 20, 9636–9643
Publication Date (Web):September 28, 2010
https://doi.org/10.1021/ie101226b
Copyright © 2010 American Chemical Society
Article Views
1911
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)

Abstract

TiO2 (anatase) was synthesized using a microwave-irradiation-assisted chemical method. The reaction conditions were varied to obtain unique nanostructures of TiO2 comprising nanometric spheres giving the materials a very porous morphology. The oxide was characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The specific surface area and porosity were quantified by the BET method, and the degradation of dyes was carried out using these materials. The photocatalytic activity of the nanometric TiO2 was significantly higher than that of commercially available TiO2 (Degussa P25) for the degradation of the dyes.

Cited By


This article is cited by 39 publications.

  1. Ying-Jie Zhu and Feng Chen . Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase. Chemical Reviews 2014, 114 (12) , 6462-6555. https://doi.org/10.1021/cr400366s
  2. Martin Munz, Mark T. Langridge, Kishore K. Devarepally, David C. Cox, Pravin Patel, Nicholas A. Martin, Gergely Vargha, Vlad Stolojan, Sam White, and Richard J. Curry . Facile Synthesis of Titania Nanowires via a Hot Filament Method and Conductometric Measurement of Their Response to Hydrogen Sulfide Gas. ACS Applied Materials & Interfaces 2013, 5 (4) , 1197-1205. https://doi.org/10.1021/am302655j
  3. Sylwia Głowniak, Barbara Szczęśniak, Jerzy Choma, Mietek Jaroniec. Advances in Microwave Synthesis of Nanoporous Materials. Advanced Materials 2021, 33 (48) , 2103477. https://doi.org/10.1002/adma.202103477
  4. Kiran P. Shejale, R. Krishnapriya, Harshala Patil, Devika Laishram, Pratyush Rawal, Rakesh K. Sharma. Recent advances in ultra-low temperature (sub-zero to 100 °C) synthesis, mechanism and applications of titania (TiO 2 ) nanoparticles. Materials Advances 2021, 2 (23) , 7502-7529. https://doi.org/10.1039/D1MA00942G
  5. Pankaj Chamoli, Ravi K. Shukla, Achintya N. Bezbaruah, Kamal K. Kar, K. K. Raina. Rapid microwave growth of mesoporous TiO 2 nano-tripods for efficient photocatalysis and adsorption. Journal of Applied Physics 2021, 130 (16) , 164901. https://doi.org/10.1063/5.0062383
  6. Thakshila Liyanage, Ahmad Zaman Qamar, Gymama Slaughter. Application of Nanomaterials for Chemical and Biological Sensors: A Review. IEEE Sensors Journal 2021, 21 (11) , 12407-12425. https://doi.org/10.1109/JSEN.2020.3032952
  7. Vallabh S. Prabhudesai, Anjali A. Meshram, R. Vinu, Sharad M. Sontakke. Superior photocatalytic removal of metamitron and its mixture with Rhodamine B dye using combustion synthesized TiO2 nanomaterial. Chemical Engineering Journal Advances 2021, 5 , 100084. https://doi.org/10.1016/j.ceja.2020.100084
  8. Shubhangi R. Damkale, Sudhir S. Arbuj, Govind G. Umarji, Sunit B. Rane, Bharat B. Kale. Highly crystalline anatase TiO 2 nanocuboids as an efficient photocatalyst for hydrogen generation. RSC Advances 2021, 11 (13) , 7587-7599. https://doi.org/10.1039/D0RA10750F
  9. Sara Pakseresht, Tugrul Cetinkaya, Ahmed Waleed Majeed Al-Ogaili, Mihrac Halebi, Hatem Akbulut. Biologically synthesized TiO2 nanoparticles and their application as lithium-air battery cathodes. Ceramics International 2021, 47 (3) , 3994-4005. https://doi.org/10.1016/j.ceramint.2020.09.264
  10. R. D. Ralandinliu Kahmei, Sarath Arackal, S. A. Shivashankar, Navakanta Bhat, Ranajit Sai. The impact of solvent tanδ on the magnetic characteristics of nanostructured NiZn-ferrite film deposited by microwave-assisted solvothermal technique. AIP Advances 2021, 11 (2) , 025003. https://doi.org/10.1063/9.0000190
  11. Vitaly Gurylev. Case Study I Defect Engineering of TiO2. 2021,,, 145-187. https://doi.org/10.1007/978-3-030-81911-8_5
  12. Pravena Ramachandran, Chong Yew Lee, Ruey-An Doong, Chern Ein Oon, Nguyen Thi Kim Thanh, Hooi Ling Lee. A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation. RSC Advances 2020, 10 (37) , 21795-21805. https://doi.org/10.1039/D0RA02907F
  13. Adam Kubiak, Wiktoria Wojciechowska, Beata Kurc, Marita Pigłowska, Karol Synoradzki, Elżbieta Gabała, Dariusz Moszyński, Mirosław Szybowicz, Katarzyna Siwińska-Ciesielczyk, Teofil Jesionowski. Highly Crystalline TiO2-MoO3 Composite Materials Synthesized via a Template-Assisted Microwave Method for Electrochemical Application. Crystals 2020, 10 (6) , 493. https://doi.org/10.3390/cryst10060493
  14. Tangali Ramanaik Ravikumar Naik. Therapeutic Significance of 1,4-Dihydropyridine Compounds as Potential Anticancer Agents. 2020,,https://doi.org/10.5772/intechopen.89860
  15. Qun Luo. Nanoparticles inks. 2020,,, 63-82. https://doi.org/10.1016/B978-0-12-814930-0.00005-0
  16. M. L. Matias, D. Nunes, A. Pimentel, S. H. Ferreira, R. Borda d’Agua, M. P. Duarte, E. Fortunato, R. Martins. Paper-Based Nanoplatforms for Multifunctional Applications. Journal of Nanomaterials 2019, 2019 , 1-16. https://doi.org/10.1155/2019/6501923
  17. Gabriel Valim Cardoso, Lucas Roberto Di Salvo Mello, Paula Zanatta, Sergio Cava, Cristiane Wienke Raubach, Mario Lucio Moreira. Physico-chemical description of titanium dioxide–cellulose nanocomposite formation by microwave radiation with high thermal stability. Cellulose 2018, 25 (4) , 2331-2341. https://doi.org/10.1007/s10570-018-1734-2
  18. Feng Zhou, Chunjie Yan, Hongquan Wang, Sen Zhou, Sridhar Komarneni. Sepiolite-TiO 2 nanocomposites for photocatalysis: Synthesis by microwave hydrothermal treatment versus calcination. Applied Clay Science 2017, 146 , 246-253. https://doi.org/10.1016/j.clay.2017.06.010
  19. Bing Han, Zhi Chen, Marjatta Louhi-Kultanen. Effect of a pulsed electric field on the synthesis of TiO2 and its photocatalytic performance under visible light irradiation. Powder Technology 2017, 307 , 137-144. https://doi.org/10.1016/j.powtec.2016.11.053
  20. Mieke Meire, Sammy W. Verbruggen, Silvia Lenaerts, Petra Lommens, Pascal Van Der Voort, Isabel Van Driessche. Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity. Journal of Materials Science 2016, 51 (21) , 9822-9829. https://doi.org/10.1007/s10853-016-0215-y
  21. Rajaboopathi Mani, Bing Han, Marjatta Louhi-Kultanen. Pulsed electric field assisted sol–gel preparation of TiO2 nanoparticles. Journal of Crystal Growth 2016, 451 , 200-206. https://doi.org/10.1016/j.jcrysgro.2016.07.017
  22. T.R. Ravikumar Naik, S.A. Shivashankar. Heterogeneous bimetallic ZnFe2O4 nanopowder catalyzed synthesis of Hantzsch 1,4-dihydropyridines in water. Tetrahedron Letters 2016, 57 (36) , 4046-4049. https://doi.org/10.1016/j.tetlet.2016.07.071
  23. Pyung Jin Chung, Yong Seok Kwon. Synthesis of highly crystalline nanoporous titanium dioxide at room temperature. Journal of Energy Engineering 2016, 25 (2) , 65-78. https://doi.org/10.5855/ENERGY.2016.25.2.065
  24. Shivendu Ranjan, Nandita Dasgupta, Bhavapriya Rajendran, Ganesh S. Avadhani, Chidambaram Ramalingam, Ashutosh Kumar. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environmental Science and Pollution Research 2016, 23 (12) , 12287-12302. https://doi.org/10.1007/s11356-016-6440-8
  25. Satyendar Sunkara, N. Munichandraiah, K. B. R. Varma, S. A. Shivashankar. A sonochemical approach for the synthesis of thermally stable mesoporous microspheres of TiO 2 for use as high performance anodes for Li-ion batteries. New Journal of Chemistry 2016, 40 (8) , 7197-7203. https://doi.org/10.1039/C6NJ00470A
  26. Kanakkanmavudi B. Jaimy, Kattoor Vidya, Hareesh Unnikrishnan Nair Saraswathy, Neha Y. Hebalkar, K.G.K. Warrier. Dopant-free anatase titanium dioxide as visible-light catalyst: Facile sol–gel microwave approach. Journal of Environmental Chemical Engineering 2015, 3 (2) , 1277-1286. https://doi.org/10.1016/j.jece.2014.06.023
  27. Juti Rani Deka, Hong Wen Wang. Rapid Synthesis of Mesoporous TiO 2 for the Photoanodes in Dye Sensitized Solar Cells. Journal of the Chinese Chemical Society 2014, 61 (9) , 1049-1055. https://doi.org/10.1002/jccs.201300449
  28. Jurate Virkutyte, Souhail R. Al-Abed, Hyeok Choi, Christina Bennett-Stamper. Distinct structural behavior and transport of TiO 2 nano- and nanostructured particles in sand. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 443 , 188-194. https://doi.org/10.1016/j.colsurfa.2013.11.004
  29. Po-Shen Shen, Yu-Chuen Tai, Peter Chen, Yu-Chun Wu. Clean and time-effective synthesis of anatase TiO 2 nanocrystalline by microwave-assisted solvothermal method for dye-sensitized solar cells. Journal of Power Sources 2014, 247 , 444-451. https://doi.org/10.1016/j.jpowsour.2013.08.104
  30. M. Ibrahim Dar, Aravind Kumar Chandiran, Michael Grätzel, Mohammad K. Nazeeruddin, Srinivasrao A. Shivashankar. Controlled synthesis of TiO 2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2 (6) , 1662-1667. https://doi.org/10.1039/C3TA14130F
  31. Shafquat Majeed, S. A. Shivashankar. Novel spherical hierarchical structures of GdOOH and Eu:GdOOH: rapid microwave-assisted synthesis through self-assembly, thermal conversion to oxides, and optical studies. Journal of Materials Chemistry C 2014, 2 (16) , 2965. https://doi.org/10.1039/c3tc32492c
  32. Pengrong Ren, Huiqing Fan, Xin Wang. Solid-state synthesis of Bi2O3/BaTiO3 heterostructure: preparation and photocatalytic degradation of methyl orange. Applied Physics A 2013, 111 (4) , 1139-1145. https://doi.org/10.1007/s00339-012-7331-6
  33. Hyun Uk Lee, Soon Chang Lee, Jung Hye Seo, Won G. Hong, Hyeran Kim, Hyung Joong Yun, Hae Jin Kim, Jouhahn Lee. Room temperature synthesis of nanoporous anatase and anatase/brookite TiO2 photocatalysts with high photocatalytic performance. Chemical Engineering Journal 2013, 223 , 209-215. https://doi.org/10.1016/j.cej.2013.02.099
  34. Markus Niederberger. Microwave-Assisted Nonaqueous Routes to Metal Oxide Nanoparticles and Nanostructures. 2013,,, 185-205. https://doi.org/10.1002/9783527648122.ch8
  35. Likun Pan, Xinjuan Liu, Zhuo Sun, Chang Q. Sun. Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. Journal of Materials Chemistry A 2013, 1 (29) , 8299. https://doi.org/10.1039/c3ta10981j
  36. Qian Wang, Wei Wu, Jianfeng Chen, Guangwen Chu, Kai Ma, Haikui Zou. Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 409 , 118-125. https://doi.org/10.1016/j.colsurfa.2012.06.010
  37. Pengrong Ren, Huiqing Fan, Xin Wang. Electrospun nanofibers of ZnO/BaTiO3 heterostructures with enhanced photocatalytic activity. Catalysis Communications 2012, 25 , 32-35. https://doi.org/10.1016/j.catcom.2012.04.003
  38. Shi Xiang Lu, Lian Dai, Wen Guo Xu, Cheng Xiang Ma. Synthesis with Microwave-Assisted Sol-Gel Method and Photocatalytic Activity of Quantum-Sized TiO2 under Solar and Ultraviolet Irradiation. Advanced Materials Research 2011, 399-401 , 666-672. https://doi.org/10.4028/www.scientific.net/AMR.399-401.666
  39. Shengjie Peng, Yongzhi Wu, Peining Zhu, Velmurugan Thavasi, Seeram Ramakrishna, Subodh G. Mhaisalkar. Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. Journal of Materials Chemistry 2011, 21 (39) , 15718. https://doi.org/10.1039/c1jm12432c