Reversible titanium(3+) formation by hydrogen adsorption on M/anatase (TiO2) catalysts

Cite this: J. Phys. Chem. 1982, 86, 8, 1392–1395
Publication Date (Print):April 1, 1982
https://doi.org/10.1021/j100397a035
Article Views
569
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (507 KB)

Note: In lieu of an abstract, this is the article's first page.

Cited By


This article is cited by 129 publications.

  1. Moritz Wolf, Emma K. Gibson, Ezra J. Olivier, Jan H. Neethling, C. Richard A. Catlow, Nico Fischer, Michael Claeys. Water-Induced Formation of Cobalt-Support Compounds under Simulated High Conversion Fischer–Tropsch Environment. ACS Catalysis 2019, 9 (6) , 4902-4918. https://doi.org/10.1021/acscatal.9b00160
  2. Huan Shang, Meiqi Li, Hao Li, Shun Huang, Chengliang Mao, Zhihui Ai, Lizhi Zhang. Oxygen Vacancies Promoted the Selective Photocatalytic Removal of NO with Blue TiO2 via Simultaneous Molecular Oxygen Activation and Photogenerated Hole Annihilation. Environmental Science & Technology 2019, 53 (11) , 6444-6453. https://doi.org/10.1021/acs.est.8b07322
  3. Zhao Liang, Huilin Hou, Zhi Fang, Fengmei Gao, Lin Wang, Ding Chen, Weiyou Yang. Hydrogenated TiO2 Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (21) , 19167-19175. https://doi.org/10.1021/acsami.9b04059
  4. Xinghang Liu, Haiyan Cheng, Zhenzhen Guo, Qian Zhan, Jingwen Qian, Xianbao Wang. Bifunctional, Moth-Eye-Like Nanostructured Black Titania Nanocomposites for Solar-Driven Clean Water Generation. ACS Applied Materials & Interfaces 2018, 10 (46) , 39661-39669. https://doi.org/10.1021/acsami.8b13374
  5. Fen Liu, Ningdong Feng, Longxiao Yang, Qiang Wang, Jun Xu, Feng Deng. Enhanced Photocatalytic Performance of Carbon-Coated TiO2–x with Surface-Active Carbon Species. The Journal of Physical Chemistry C 2018, 122 (20) , 10948-10955. https://doi.org/10.1021/acs.jpcc.8b02716
  6. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  7. Mohong Lu, Hu Du, Bin Wei, Jie Zhu, Mingshi Li, Yuhua Shan, and Chunshan Song . Catalytic Hydrodeoxygenation of Guaiacol over Palladium Catalyst on Different Titania Supports. Energy & Fuels 2017, 31 (10) , 10858-10865. https://doi.org/10.1021/acs.energyfuels.7b01498
  8. Antonio Ruiz Puigdollers, Philomena Schlexer, Sergio Tosoni, and Gianfranco Pacchioni . Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catalysis 2017, 7 (10) , 6493-6513. https://doi.org/10.1021/acscatal.7b01913
  9. Hui Song, Chenxi Li, Zirui Lou, Zhizhen Ye, and Liping Zhu . Effective Formation of Oxygen Vacancies in Black TiO2 Nanostructures with Efficient Solar-Driven Water Splitting. ACS Sustainable Chemistry & Engineering 2017, 5 (10) , 8982-8987. https://doi.org/10.1021/acssuschemeng.7b01774
  10. Zichao Lian, Wenchao Wang, Guisheng Li, Fenghui Tian, Kirk S. Schanze, and Hexing Li . Pt-Enhanced Mesoporous Ti3+/TiO2 with Rapid Bulk to Surface Electron Transfer for Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2017, 9 (20) , 16959-16966. https://doi.org/10.1021/acsami.6b11494
  11. Lihua Li, Lili Yu, Zhaoyong Lin, and Guowei Yang . Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts. ACS Applied Materials & Interfaces 2016, 8 (13) , 8536-8545. https://doi.org/10.1021/acsami.6b00966
  12. Evan W. Zhao, Haibin Zheng, Kaylee Ludden, Yan Xin, Helena E. Hagelin-Weaver, and Clifford R. Bowers . Strong Metal–Support Interactions Enhance the Pairwise Selectivity of Parahydrogen Addition over Ir/TiO2. ACS Catalysis 2016, 6 (2) , 974-978. https://doi.org/10.1021/acscatal.5b02632
  13. Nitish Roy, Kam Tong Leung, and Debabrata Pradhan . Nitrogen Doped Reduced Graphene Oxide Based Pt–TiO2 Nanocomposites for Enhanced Hydrogen Evolution. The Journal of Physical Chemistry C 2015, 119 (33) , 19117-19125. https://doi.org/10.1021/acs.jpcc.5b03870
  14. Lina Kong, Zhiqiang Jiang, Changhua Wang, Fangxu Wan, Yingying Li, Liangzhuan Wu, Jin-Fang Zhi, Xintong Zhang, Shijian Chen, and Yichun Liu . Simple Ethanol Impregnation Treatment Can Enhance Photocatalytic Activity of TiO2 Nanoparticles under Visible-Light Irradiation. ACS Applied Materials & Interfaces 2015, 7 (14) , 7752-7758. https://doi.org/10.1021/acsami.5b00888
  15. Benoit Tapin, Florence Epron, Catherine Especel, Bao Khanh Ly, Catherine Pinel, and Michèle Besson . Study of Monometallic Pd/TiO2 Catalysts for the Hydrogenation of Succinic Acid in Aqueous Phase. ACS Catalysis 2013, 3 (10) , 2327-2335. https://doi.org/10.1021/cs400534x
  16. Salai Cheettu Ammal and Andreas Heyden . Nature of Ptn/TiO2(110) Interface under Water-Gas Shift Reaction Conditions: A Constrained ab Initio Thermodynamics Study. The Journal of Physical Chemistry C 2011, 115 (39) , 19246-19259. https://doi.org/10.1021/jp2058723
  17. Paraskevi Panagiotopoulou, Dimitris I. Kondarides, and Xenophon E. Verykios. Mechanistic Study of the Selective Methanation of CO over Ru/TiO2 Catalyst: Identification of Active Surface Species and Reaction Pathways. The Journal of Physical Chemistry C 2011, 115 (4) , 1220-1230. https://doi.org/10.1021/jp106538z
  18. James E. Rekoske and, Mark A. Barteau. Isothermal Reduction Kinetics of Titanium Dioxide-Based Materials. The Journal of Physical Chemistry B 1997, 101 (7) , 1113-1124. https://doi.org/10.1021/jp9620025
  19. Moritz Wolf, Nico Fischer, Michael Claeys. Formation of metal-support compounds in cobalt-based Fischer-Tropsch synthesis: A review. Chem Catalysis 2021, 1 (5) , 1014-1041. https://doi.org/10.1016/j.checat.2021.08.002
  20. Wallace T. Figueiredo, Ravi Prakash, Clóvis G. Vieira, Dirléia S. Lima, Vágner E. Carvalho, Edmar A. Soares, Silvio Buchner, Hannes Raschke, Oscar W. Perez-Lopez, Daniel L. Baptista, Roland Hergenröder, Maximiliano Segala, Fabiano Bernardi. New insights on the electronic factor of the SMSI effect in Pd/TiO2 nanoparticles. Applied Surface Science 2021, 37 , 151647. https://doi.org/10.1016/j.apsusc.2021.151647
  21. Aiping Jia, Hantao Peng, Yunshang Zhang, Tongyang Song, Yanwen Ye, Mengfei Luo, Jiqing Lu, Weixin Huang. The Roles of Precursor-Induced Metal–Support Interaction on the Selective Hydrogenation of Crotonaldehyde over Ir/TiO2 Catalysts. Catalysts 2021, 11 (10) , 1216. https://doi.org/10.3390/catal11101216
  22. Aiping Jia, Yunshang Zhang, Tongyang Song, Zhenhua Zhang, Cen Tang, Yiming Hu, Wanbin Zheng, Mengfei Luo, Jiqing Lu, Weixin Huang. Crystal-plane effects of anatase TiO2 on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Journal of Catalysis 2021, 395 , 10-22. https://doi.org/10.1016/j.jcat.2020.12.012
  23. Wanggang Zhang, Yiming Liu, Zhiyuan Song, Changwan Zhuang, Aili Wei. The storage mechanism difference between amorphous and anatase as supercapacitors. Green Energy & Environment 2020, 24 https://doi.org/10.1016/j.gee.2020.10.004
  24. Shuying Nong, Chenlong Dong, Yexin Wang, Fuqiang Huang. Constructing porous TiO 2 crystals by an etching process for long-life lithium ion batteries. Nanoscale 2020, 12 (35) , 18429-18436. https://doi.org/10.1039/D0NR04861E
  25. Won Ho Choi, Chi Ho Lee, Hee-eun Kim, Sang Uck Lee, Jin Ho Bang. Designing a high-performance nitrogen-doped titanium dioxide anode material for lithium-ion batteries by unravelling the nitrogen doping effect. Nano Energy 2020, 74 , 104829. https://doi.org/10.1016/j.nanoen.2020.104829
  26. Ping Wen, Ying Zhang, Guang Xu, Di Ma, Ping Qiu, Xiaoxia Zhao. Ti3+ self-doped TiO2 as a photocatalyst for cyclohexane oxidation under visible light irradiation. Journal of Materiomics 2019, 5 (4) , 696-701. https://doi.org/10.1016/j.jmat.2019.04.009
  27. Lei Ji, Xuemei Zhou, Patrik Schmuki. Sulfur and Ti 3+ co‐Doping of TiO 2 Nanotubes Enhance Photocatalytic H 2 Evolution Without the Use of Any co‐catalyst. Chemistry – An Asian Journal 2019, 14 (15) , 2724-2730. https://doi.org/10.1002/asia.201900532
  28. Sankeerthana Bellamkonda, Nithya Thangavel, Hafeez Yusuf Hafeez, B. Neppolian, G. Ranga Rao. Highly active and stable multi-walled carbon nanotubes-graphene-TiO2 nanohybrid: An efficient non-noble metal photocatalyst for water splitting. Catalysis Today 2019, 321-322 , 120-127. https://doi.org/10.1016/j.cattod.2017.10.023
  29. Weiwei Zhang, Yi Zhou, Chunyang Dong, Bin Shen, Mingyang Xing, Jinlong Zhang. Carbon-dot-modified TiO2−x mesoporous single crystals with enhanced photocatalytic activity for degradation of phenol. Research on Chemical Intermediates 2018, 44 (8) , 4797-4807. https://doi.org/10.1007/s11164-018-3269-4
  30. Fangfang Wang, Wenna Ge, Tong Shen, Bangjiao Ye, Zhengping Fu, Yalin Lu. The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film. Applied Surface Science 2017, 410 , 513-518. https://doi.org/10.1016/j.apsusc.2017.03.142
  31. Lina Kong, Changhua Wang, Fangxu Wan, Han Zheng, Xintong Zhang. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light. Applied Surface Science 2017, 396 , 26-35. https://doi.org/10.1016/j.apsusc.2016.11.051
  32. Sheng Wang, Sanding Wu, Jiazhang Zhang, Tao Wang. One-step fabrication of recyclable and robust fluorine/polymer-free superhydrophobic fabrics. RSC Advances 2017, 7 (39) , 24374-24381. https://doi.org/10.1039/C7RA02276J
  33. Ningdong Feng, Fen Liu, Min Huang, Anmin Zheng, Qiang Wang, Tiehong Chen, Gengyu Cao, Jun Xu, Jie Fan, Feng Deng. Unravelling the Efficient Photocatalytic Activity of Boron-induced Ti3+ Species in the Surface Layer of TiO2. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep34765
  34. Zhao Zhao, Xiaoyan Zhang, Guoqiang Zhang, Zhenyu Liu, Dan Qu, Xiang Miao, Pingyun Feng, Zaicheng Sun. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Research 2015, 8 (12) , 4061-4071. https://doi.org/10.1007/s12274-015-0917-5
  35. Yi Zhou, Yunchang Liu, Pengwei Liu, Weiyi Zhang, Mingyang Xing, Jinlong Zhang. A facile approach to further improve the substitution of nitrogen into reduced TiO2− with an enhanced photocatalytic activity. Applied Catalysis B: Environmental 2015, 170-171 , 66-73. https://doi.org/10.1016/j.apcatb.2015.01.036
  36. Mingyang Xing, Xiao Li, Jinlong Zhang. Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite. Scientific Reports 2015, 4 (1) https://doi.org/10.1038/srep05493
  37. Guisheng Li, Zichao Lian, Xin Li, Yuanyuan Xu, Wenchao Wang, Dieqing Zhang, Fenghui Tian, Hexing Li. Ionothermal synthesis of black Ti 3+ -doped single-crystal TiO 2 as an active photocatalyst for pollutant degradation and H 2 generation. Journal of Materials Chemistry A 2015, 3 (7) , 3748-3756. https://doi.org/10.1039/C4TA02873B
  38. Shilei Xie, Mingyang Li, Wenjie Wei, Teng Zhai, Pingping Fang, Rongliang Qiu, Xihong Lu, Yexiang Tong. Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting. Nano Energy 2014, 10 , 313-321. https://doi.org/10.1016/j.nanoen.2014.09.029
  39. M.S. Avila, C.I. Vignatti, C.R. Apesteguía, T.F. Garetto. Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts. Chemical Engineering Journal 2014, 241 , 52-59. https://doi.org/10.1016/j.cej.2013.12.006
  40. Go Sakai, Tatsuya Arai, Toshiaki Matsumoto, Tetsuya Ogawa, Mayumi Yamada, Koshi Sekizawa, Takumi Taniguchi. Electrochemical and ESR Study on Pt-TiOx/C Electrocatalysts with Enhanced Activity for ORR. ChemElectroChem 2014, 1 (2) , 366-370. https://doi.org/10.1002/celc.201300036
  41. Fa-tang Li, Xiao-jing Wang, Ye Zhao, Ji-xing Liu, Ying-juan Hao, Rui-hong Liu, Di-shun Zhao. Ionic-liquid-assisted synthesis of high-visible-light-activated N–B–F-tri-doped mesoporous TiO2 via a microwave route. Applied Catalysis B: Environmental 2014, 144 , 442-453. https://doi.org/10.1016/j.apcatb.2013.07.050
  42. Zhao Zhao, Huaqiao Tan, Haifeng Zhao, Yang Lv, Li-Jing Zhou, Yujiang Song, Zaicheng Sun. Reduced TiO 2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 2014, 50 (21) , 2755-2757. https://doi.org/10.1039/C3CC49182J
  43. Peng Zheng, Ruipeng Hao, Jianghong Zhao, Suping Jia, Baoyue Cao, Zhenping Zhu. Kinetic reconstruction of TiO 2 surfaces as visible-light-active crystalline phases with high photocatalytic performance. J. Mater. Chem. A 2014, 2 (14) , 4907-4911. https://doi.org/10.1039/C3TA15265K
  44. D. Panayotov, M. Mihaylov, D. Nihtianova, T. Spassov, K. Hadjiivanov. Spectral evidence for hydrogen-induced reversible segregation of CO adsorbed on titania-supported rhodium. Phys. Chem. Chem. Phys. 2014, 16 (26) , 13136-13144. https://doi.org/10.1039/C4CP01136H
  45. Wee-Jun Ong, Lling-Lling Tan, Siang-Piao Chai, Siek-Ting Yong, Abdul Rahman Mohamed. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale 2014, 6 (4) , 1946. https://doi.org/10.1039/c3nr04655a
  46. Zhengwei Luo, Hui Jiang, Dan Li, Longzhi Hu, Wenhua Geng, Ping Wei, Pingkai Ouyang. Improved photocatalytic activity and mechanism of Cu2O/N–TiO2 prepared by a two-step method. RSC Advances 2014, 4 (34) , 17797. https://doi.org/10.1039/c3ra47973k
  47. Su-Il Pyun, Young-Gi Yoon. Hydrogen Transport through TiO 2 Film Prepared by Plasma Enhanced Chemical Vapour Deposition(PECVD) Method. 2013,,, 261-270. https://doi.org/10.1002/9781118803363.ch24
  48. J.C. Rooke, T. Barakat, M. Franco Finol, P. Billemont, G. De Weireld, Y. Li, R. Cousin, J.-M. Giraudon, S. Siffert, J.-F. Lamonier, B.L. Su. Influence of hierarchically porous niobium doped TiO2 supports in the total catalytic oxidation of model VOCs over noble metal nanoparticles. Applied Catalysis B: Environmental 2013, 142-143 , 149-160. https://doi.org/10.1016/j.apcatb.2013.05.009
  49. Yanhui Lv, Chengsi Pan, Xinguo Ma, Ruilong Zong, Xiaojuan Bai, Yongfa Zhu. Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. Applied Catalysis B: Environmental 2013, 138-139 , 26-32. https://doi.org/10.1016/j.apcatb.2013.02.011
  50. Jinguo Wang, Peng Zhang, Xi Li, Jian Zhu, Hexing Li. Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Applied Catalysis B: Environmental 2013, 134-135 , 198-204. https://doi.org/10.1016/j.apcatb.2013.01.006
  51. Zhou Wang, Chongyin Yang, Tianquan Lin, Hao Yin, Ping Chen, Dongyun Wan, Fangfang Xu, Fuqiang Huang, Jianhua Lin, Xiaoming Xie, Mianheng Jiang. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy & Environmental Science 2013, 6 (10) , 3007. https://doi.org/10.1039/c3ee41817k
  52. Manuel Franco Finol, Joanna Rooke, Bao-Lian Su, Martine Trentesaux, Jean-Marc Giraudon, Jean-François Lamonier. Additional effects of Pt and Nb on hierarchically porous titania in the catalytic removal of n-butanol. Catalysis Today 2012, 192 (1) , 154-159. https://doi.org/10.1016/j.cattod.2011.11.004
  53. Fan Zuo, Krassimir Bozhilov, Robert J. Dillon, Le Wang, Phillip Smith, Xiang Zhao, Christopher Bardeen, Pingyun Feng. Active Facets on Titanium(III)-Doped TiO2: An Effective Strategy to Improve the Visible-Light Photocatalytic Activity. Angewandte Chemie 2012, 124 (25) , 6327-6330. https://doi.org/10.1002/ange.201202191
  54. Fan Zuo, Krassimir Bozhilov, Robert J. Dillon, Le Wang, Phillip Smith, Xiang Zhao, Christopher Bardeen, Pingyun Feng. Active Facets on Titanium(III)-Doped TiO2: An Effective Strategy to Improve the Visible-Light Photocatalytic Activity. Angewandte Chemie International Edition 2012, 51 (25) , 6223-6226. https://doi.org/10.1002/anie.201202191
  55. Anna Ignaszak, Chaojie Song, Weimin Zhu, Jiujun Zhang, Alex Bauer, Ryan Baker, Vladimir Neburchilov, Siyu Ye, Stephen Campbell. Titanium carbide and its core-shelled derivative [email protected] as catalyst supports for proton exchange membrane fuel cells. Electrochimica Acta 2012, 69 , 397-405. https://doi.org/10.1016/j.electacta.2012.03.039
  56. Ch. Linsmeier, E. Taglauer. Strong metal–support interactions on rhodium model catalysts. Applied Catalysis A: General 2011, 391 (1-2) , 175-186. https://doi.org/10.1016/j.apcata.2010.07.051
  57. Mingyang Xing, Jinlong Zhang, Feng Chen, Baozhu Tian. An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chemical Communications 2011, 47 (17) , 4947. https://doi.org/10.1039/c1cc10537j
  58. Alexandra Teleki, Sotiris E. Pratsinis. Blue nano titania made in diffusion flames. Physical Chemistry Chemical Physics 2009, 11 (19) , 3742. https://doi.org/10.1039/b821590a
  59. Elisa Moretti, Loretta Storaro, Aldo Talon, Pasquale Patrono, Fulvia Pinzari, Tania Montanari, Gianguido Ramis, Maurizio Lenarda. Preferential CO oxidation (CO-PROX) over CuO-ZnO/TiO2 catalysts. Applied Catalysis A: General 2008, 344 (1-2) , 165-174. https://doi.org/10.1016/j.apcata.2008.04.015
  60. Dominik Eder, Alan H. Windle. Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes. Journal of Materials Chemistry 2008, 18 (17) , 2036. https://doi.org/10.1039/b800499d
  61. Liming Yang, Lutgard C. De Jonghe, Craig P. Jacobsen, Steven J. Visco. B-Site Doping and Catalytic Activity of Sr(Y)TiO[sub 3]. Journal of The Electrochemical Society 2007, 154 (9) , B949. https://doi.org/10.1149/1.2752970
  62. Jian Xu, Kunpeng Sun, Li Zhang, Yunlai Ren, Xianlun Xu. A Novel Synthesis Route of Butyric Acid from Hydrogenation of Maleic Anhydride over Pd/TiO2 Catalysts. Catalysis Letters 2006, 107 (1-2) , 5-11. https://doi.org/10.1007/s10562-005-9724-z
  63. Jian Xu, Kunpeng Sun, Li Zhang, Yunlai Ren, Xianlun Xu. A highly efficient and selective catalyst for liquid phase hydrogenation of maleic anhydride to butyric acid. Catalysis Communications 2005, 6 (7) , 462-465. https://doi.org/10.1016/j.catcom.2005.04.006
  64. A. Kovalchuk, L. Dolgov, L. Bugayova, O. Yaroshchuk. The Peculiarities of Photopolymerization in the Composite “Pre-polymer–TiO 2 Nanoparticles”. Molecular Crystals and Liquid Crystals 2005, 427 (1) , 191/[503]-200/[512]. https://doi.org/10.1080/15421400590892226
  65. Yuanzhi Li, Bolian Xu, Yining Fan, Ninyuen Feng, Anding Qiu, Jianwen Miao Jie He, Hanpei Yang, Yi Chen. The effect of titania polymorph on the strong metal-support interaction of Pd/TiO2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes. Journal of Molecular Catalysis A: Chemical 2004, 216 (1) , 107-114. https://doi.org/10.1016/j.molcata.2004.02.007
  66. J.A Wang, A Cuan, J Salmones, N Nava, S Castillo, M Morán-Pineda, F Rojas. Studies of sol–gel TiO2 and Pt/TiO2 catalysts for NO reduction by CO in an oxygen-rich condition. Applied Surface Science 2004, 230 (1-4) , 94-105. https://doi.org/10.1016/j.apsusc.2004.02.057
  67. Yuanzhi Li, Yining Fan, Hanpei Yang, Bolian Xu, Lingyun Feng, Mingfeng Yang, Yi Chen. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2. Chemical Physics Letters 2003, 372 (1-2) , 160-165. https://doi.org/10.1016/S0009-2614(03)00383-X
  68. Mitsutaka Okumura, Juan M. Coronado, Javier Soria, Masatake Haruta, José C. Conesa. EPR Study of CO and O2 Interaction with Supported Au Catalysts. Journal of Catalysis 2001, 203 (1) , 168-174. https://doi.org/10.1006/jcat.2001.3307
  69. Eduardo Muñoz, José L. Boldú, Eduardo Andrade, Octavio Novaro, Xi. Bokhimi, Tessy López, Ricardo Gómez. Intrinsically Formed Trivalent Titanium Ions in Sol-Gel Titania. Journal of the American Ceramic Society 2001, 84 (2) , 392-98. https://doi.org/10.1111/j.1151-2916.2001.tb00667.x
  70. C. Force, J.P. Belzunegu, J.Sanz. H2 Adsorption in Rhodium metal catalysts supported in oxides with different reducibility. 2001,,, 47-54. https://doi.org/10.1016/S0167-2991(01)80012-4
  71. Jacques Fraissard. NMR studies of supported metal catalysts. Catalysis Today 1999, 51 (3-4) , 481-499. https://doi.org/10.1016/S0920-5861(99)00035-8
  72. Satoshi Kaneco, Hidekazu Kurimoto, Yasuhiro Shimizu, Kiyohisa Ohta, Takayuki Mizuno. Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy 1999, 24 (1) , 21-30. https://doi.org/10.1016/S0360-5442(98)00070-X
  73. A.B. da Silva, E. Jordão, M.J. Mendes, P. Fouilloux. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT. Brazilian Journal of Chemical Engineering 1998, 15 (2) , 140-144. https://doi.org/10.1590/S0104-66321998000200007
  74. B.E. Hayden, Alex King, Mark A. Newton. The reaction of hydrogen with TiO2(110) supported rhodium gem-dicarbonyl. Surface Science 1998, 397 (1-3) , 306-313. https://doi.org/10.1016/S0039-6028(97)00749-8
  75. Umit S Ozkan, Mahesh W Kumthekar, Gurkan Karakas. Characterization and temperature-programmed studies over Pd/TiO2 catalysts for NO reduction with methane. Catalysis Today 1998, 40 (1) , 3-14. https://doi.org/10.1016/S0920-5861(97)00112-0
  76. Mahesh W. Kumthekar, Umit S. Ozkan. Nitric Oxide Reduction with Methane over Pd/TiO2Catalysts. Journal of Catalysis 1997, 171 (1) , 45-53. https://doi.org/10.1006/jcat.1997.1770
  77. Mahesh W. Kumthekar, Umit S. Ozkan. Nitric Oxide Reduction with Methane over Pd/TiO2Catalysts. Journal of Catalysis 1997, 171 (1) , 54-66. https://doi.org/10.1006/jcat.1997.1771
  78. Satoshi Kaneco, Hidekazu Kurimoto, Kiyohisa Ohta, Takayuki Mizuno, Akira Saji. Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium. Journal of Photochemistry and Photobiology A: Chemistry 1997, 109 (1) , 59-63. https://doi.org/10.1016/S1010-6030(97)00107-X
  79. T. Lopez, E. Sanchez, R. Gomez, L. Ioffe, Y. Borodko. Platinum acetylacetonate effect on sol-gel derived titania catalysts. Reaction Kinetics and Catalysis Letters 1997, 61 (2) , 289-295. https://doi.org/10.1007/BF02478385
  80. Shu-Hua Chien, Yu-Wen Wei, Mau-Chen Lin. EPR Studies of Photoreduction of Ni/TiO 2 Catalysts. Journal of the Chinese Chemical Society 1997, 44 (3) , 195-201. https://doi.org/10.1002/jccs.199700031
  81. Valerii V Rozanov, Oleg V Krylov. Hydrogen spillover in heterogeneous catalysis. Russian Chemical Reviews 1997, 66 (2) , 107-119. https://doi.org/10.1070/RC1997v066n02ABEH000308
  82. U. Roland, F. Roessner. A new model on the nature of spilt-over hydrogen. 1997,,, 191-200. https://doi.org/10.1016/S0167-2991(97)80838-5
  83. U. Roland, R. Salzer, L. Sümmchen. Electronic effects of hydrogen spillover on titania. 1997,,, 339-348. https://doi.org/10.1016/S0167-2991(97)80855-5
  84. A. Gutsze, U. Roland, H.G. Karge. Evidence for a charge transfer from spilt-over hydrogen to platinum by means of ESR spectroscopy. 1997,,, 417-424. https://doi.org/10.1016/S0167-2991(97)80864-6
  85. S. Bernal, F. J. Botana, J. J. Calvino, C. López, J. A. Pérez-Omil, J. M. Rodríguez-Izquierdo. High-resolution electron microscopy investigation of metal–support interactions in Rh/TiO 2. J. Chem. Soc., Faraday Trans. 1996, 92 (15) , 2799-2809. https://doi.org/10.1039/FT9969202799
  86. Young-Gi Yoon, Su-Il Pyun. Hydrogen transport through plasma enhanced chemical vapour-deposited TiO2 film-palladium bilayer by ac-impedance spectroscopy. Electrochimica Acta 1995, 40 (8) , 999-1004. https://doi.org/10.1016/0013-4686(94)00366-9
  87. Xin Sheng Li, Yan Xin Chen, When Zhao Li. Transformation of a Pt/TiO2 catalyst from non-SMSI to SMSI studied by repeated H2−O2 titration. Reaction Kinetics & Catalysis Letters 1995, 55 (1) , 235-243. https://doi.org/10.1007/BF02075856
  88. Xin Sheng Li, Wen Zhao Li, Yan Xin Chen, Hong Li Wang. Enhancement of hydrogen spillover by surface labile oxygen species on oxidized Pt/TiO2 catalyst. Catalysis Letters 1995, 32 (1-2) , 31-42. https://doi.org/10.1007/BF00806099
  89. Z.L. Zhang, A. Kladi, X.E. Verykios. Structural alterations of highly dispersed Rh/TiO2 catalyst upon CO adsorption and desorption investigated by infrared spectroscopy. Journal of Molecular Catalysis 1994, 89 (1-2) , 229-246. https://doi.org/10.1016/0304-5102(93)E0329-F
  90. M.J. López-Muñoz, J. Soria, J.C. Conesa, V. Augugliaro. ESR study of photo-oxidation of phenol at low temperature on polycrystalline titanium dioxide. 1994,,, 693-701. https://doi.org/10.1016/S0167-2991(08)63465-5
  91. J.P.S. Badyal. Strong Metal-Support Interactions. 1993,,, 311-340. https://doi.org/10.1016/B978-0-444-81468-5.50015-7
  92. Tarek M. Salama, Hideshi Hattori, Hideaki Kita, Kohki Ebitani, Tsunehiro Tanaka. X-ray absorption spectroscopic and electron paramagnetic resonance studies on the strong metal–support interaction of platinum supported on titania dispersed on silica. J. Chem. Soc., Faraday Trans. 1993, 89 (12) , 2067-2073. https://doi.org/10.1039/FT9938902067
  93. Huizhen Chen, E. Ruckenstein. The conductivity and the adsorption capacity of surfactant modified hydrous titanium oxide gels. Colloids and Surfaces 1992, 68 (3) , 179-188. https://doi.org/10.1016/0166-6622(92)80202-D
  94. C.C.A. Riley, P. Jonsen, P. Meehan, J.C. Frost, K.J. Packer, J-P.S. Badyal. Investigation of the strong metal support interaction state of Ru/TiO2 by 1H nuclear magnetic resonance. Catalysis Today 1991, 9 (1-2) , 121-127. https://doi.org/10.1016/0920-5861(91)85015-Z
  95. M. J. Holgado, V. Rives. Olefins polymerization on titania and titania-supported rhodium. Catalysis Letters 1991, 8 (1) , 37-43. https://doi.org/10.1007/BF00764381
  96. M.J. Holgado, V. Rives. Carbonaceous residues in Rh/TiO2-catalyzed hydrogenolysis of short alkanes. Journal of Molecular Catalysis 1990, 63 (3) , 353-359. https://doi.org/10.1016/0304-5102(90)85127-4
  97. Juan Carlos Paniagua, Francesc Illas. Chemisorption of atomic hydrogen on rhodium: An ab initio cluster-model approach. Chemical Physics Letters 1990, 170 (5-6) , 561-564. https://doi.org/10.1016/S0009-2614(90)87102-W
  98. O.S. Alekseev, V.I. Zaikovskii, Yu.I. Ryndin*. Effects of the Interaction of Dispersed Metal Particles with the Support in Catalysts prepared using Organometallic Compounds.. Applied Catalysis 1990, 63 (1) , 37-50. https://doi.org/10.1016/S0166-9834(00)81704-2
  99. B. Coq, A. Bittar, R. Dutartre, F. Figueras. Influence of the precursor and the support on the catalytic properties of ruthenium for alkane hydrogenolysis. Applied Catalysis 1990, 60 (1) , 33-46. https://doi.org/10.1016/S0166-9834(00)82170-3
  100. Ewa M. Serwicka. ESR of Polycrystalline Titania Reduced at Room Temperature with H Atoms. Zeitschrift für Physikalische Chemie 1990, 166 (Part_2) , 249-252. https://doi.org/10.1524/zpch.1990.166.Part_2.249
Load all citations