Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania

View Author Information
Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and §Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
# Department of Civil & Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
Cite this: J. Am. Chem. Soc. 2011, 133, 11, 3964–3971
Publication Date (Web):February 24, 2011
https://doi.org/10.1021/ja108791u
Copyright © 2011 American Chemical Society
Article Views
8563
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Using the electron paramagnetic resonance technique, we have elucidated the multiple roles of water and carbonates in the overall photocatalytic reduction of carbon dioxide to methane over titania nanoparticles. The formation of H atoms (reduction product) and OH radicals (oxidation product) from water, and CO3 radical anions (oxidation product) from carbonates, was detected in CO2-saturated titania aqueous dispersion under UV illumination. Additionally, methoxyl, OCH3, and methyl, CH3, radicals were identified as reaction intermediates. The two-electron, one-proton reaction proposed as an initial step in the reduction of CO2 on the surface of TiO2 is supported by the results of first-principles calculations.

Supporting Information

ARTICLE SECTIONS
Jump To

Determination of quantum yield for CH4 formation; evolution of EPR spectra with time of illumination and CO2 concentration, together with EPR spectra of reference samples (blank experiments), for both direct and spin-trap EPR measurements; electron density distribution from PBE calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 329 publications.

  1. Cong Wang, Shao-Yi Jia, You Han, Yang Li, Yong Liu, Hai-Tao Ren, Song-Hai Wu, Xu Han. Selective Oxidation of Various Phenolic Contaminants by Activated Persulfate via the Hydrogen Abstraction Pathway. ACS ES&T Engineering 2021, 1 (9) , 1275-1286. https://doi.org/10.1021/acsestengg.1c00091
  2. Risov Das, Subhajit Chakraborty, Sebastian C. Peter. Systematic Assessment of Solvent Selection in Photocatalytic CO2 Reduction. ACS Energy Letters 2021, 6 (9) , 3270-3274. https://doi.org/10.1021/acsenergylett.1c01522
  3. Lei Jin, Ehab Shaaban, Scott Bamonte, Daniel Cintron, Seth Shuster, Lei Zhang, Gonghu Li, Jie He. Surface Basicity of [email protected] to Enhance Photocatalytic Efficiency for CO2 Reduction. ACS Applied Materials & Interfaces 2021, 13 (32) , 38595-38603. https://doi.org/10.1021/acsami.1c09119
  4. Yao Zhu, Shaoqin Chen, Siyuan Fang, Zhangyang Li, Chunling Wang, Yun Hang Hu. Distinct Pathways in Visible-Light Driven Thermo-Photo Catalytic Methane Conversion. The Journal of Physical Chemistry Letters 2021, 12 (31) , 7459-7465. https://doi.org/10.1021/acs.jpclett.1c02053
  5. Meysam Pazoki, Ernst Dennis Larsson, Jolla Kullgren. Density Functional Tight Binding Theory Approach for the CO2 Reduction Reaction Paths on Anatase TiO2 Surfaces. ACS Omega 2020, 5 (40) , 25819-25823. https://doi.org/10.1021/acsomega.0c03117
  6. Hangfan Ma, Xinyong Li, Shiying Fan, Zhifan Yin, Guoqiang Gan, Meichun Qin, Penglei Wang, Yaxuan Li, Lianzhou Wang. In Situ Formation of Interfacial Defects between Co-Based Spinel/Carbon Nitride Hybrids for Efficient CO2 Photoreduction. ACS Applied Energy Materials 2020, 3 (5) , 5083-5094. https://doi.org/10.1021/acsaem.0c00881
  7. Gengnan Li, Bin Wang, Daniel E. Resasco. Water-Mediated Heterogeneously Catalyzed Reactions. ACS Catalysis 2020, 10 (2) , 1294-1309. https://doi.org/10.1021/acscatal.9b04637
  8. Shenzhen Xu, Emily A. Carter. Theoretical Insights into Heterogeneous (Photo)electrochemical CO2 Reduction. Chemical Reviews 2019, 119 (11) , 6631-6669. https://doi.org/10.1021/acs.chemrev.8b00481
  9. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
  10. Yongfei Ji, Yi Luo. Direct Donation of Protons from H2O to CO2 in Artificial Photosynthesis on the Anatase TiO2(101) Surface. The Journal of Physical Chemistry C 2019, 123 (5) , 3019-3023. https://doi.org/10.1021/acs.jpcc.8b11936
  11. Fernando Fresno, Ignacio J. Villar-García, Laura Collado, Elena Alfonso-González, Patricia Reñones, Mariam Barawi, Víctor A. de la Peña O’Shea. Mechanistic View of the Main Current Issues in Photocatalytic CO2 Reduction. The Journal of Physical Chemistry Letters 2018, 9 (24) , 7192-7204. https://doi.org/10.1021/acs.jpclett.8b02336
  12. Benjamin M. Comer, Yu-Hsuan Liu, Marm B. Dixit, Kelsey B. Hatzell, Yifan Ye, Ethan J. Crumlin, Marta C. Hatzell, Andrew J. Medford. The Role of Adventitious Carbon in Photo-catalytic Nitrogen Fixation by Titania. Journal of the American Chemical Society 2018, 140 (45) , 15157-15160. https://doi.org/10.1021/jacs.8b08464
  13. Giulia Tarantino, Ceri Hammond. Catalytic Formation of C(sp3)–F Bonds via Heterogeneous Photocatalysis. ACS Catalysis 2018, 8 (11) , 10321-10330. https://doi.org/10.1021/acscatal.8b02844
  14. Samiksha Poudyal, Siris Laursen. Insights into Elevated-Temperature Photocatalytic Reduction of CO2 by H2O. The Journal of Physical Chemistry C 2018, 122 (15) , 8045-8057. https://doi.org/10.1021/acs.jpcc.7b12662
  15. Liang Li, Rui Zhang, John Vinson, Eric L. Shirley, Jeffrey P. Greeley, Jeffrey R. Guest, Maria K. Y. Chan. Imaging Catalytic Activation of CO2 on Cu2O (110): A First-Principles Study. Chemistry of Materials 2018, 30 (6) , 1912-1923. https://doi.org/10.1021/acs.chemmater.7b04803
  16. Yangang Wang, Qing Cai, Mingcui Yao, Shifei Kang, Zhigang Ge, and Xi Li . Easy Synthesis of Ordered Mesoporous Carbon–Carbon Nanotube Nanocomposite as a Promising Support for CO2 Photoreduction. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 2529-2534. https://doi.org/10.1021/acssuschemeng.7b03974
  17. Naixu Li, Xiaoyue Zou, Ming Liu, Lingfei Wei, Quanhao Shen, Rehana Bibi, Chongjiu Xu, Quanhong Ma, and Jiancheng Zhou . Enhanced Visible Light Photocatalytic Hydrogenation of CO2 into Methane over a Pd/Ce-TiO2 Nanocomposition. The Journal of Physical Chemistry C 2017, 121 (46) , 25795-25804. https://doi.org/10.1021/acs.jpcc.7b07298
  18. Daniele Selli, Gianluca Fazio, Gotthard Seifert, and Cristiana Di Valentin . Water Multilayers on TiO2 (101) Anatase Surface: Assessment of a DFTB-Based Method. Journal of Chemical Theory and Computation 2017, 13 (8) , 3862-3873. https://doi.org/10.1021/acs.jctc.7b00479
  19. Konstantin Klyukin and Vitaly Alexandrov . CO2 Adsorption and Reactivity on Rutile TiO2(110) in Water: An Ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry C 2017, 121 (19) , 10476-10483. https://doi.org/10.1021/acs.jpcc.7b02777
  20. Jiahui Kou, Chunhua Lu, Jian Wang, Yukai Chen, Zhongzi Xu, and Rajender S. Varma . Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chemical Reviews 2017, 117 (3) , 1445-1514. https://doi.org/10.1021/acs.chemrev.6b00396
  21. Yongfei Ji and Yi Luo . New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. Journal of the American Chemical Society 2016, 138 (49) , 15896-15902. https://doi.org/10.1021/jacs.6b05695
  22. Jian-Ping Zou, Dan-Dan Wu, Jinming Luo, Qiu-Ju Xing, Xu-Biao Luo, Wen-Hua Dong, Sheng-Lian Luo, Hong-Mei Du, and Steven L. Suib . A Strategy for One-Pot Conversion of Organic Pollutants into Useful Hydrocarbons through Coupling Photodegradation of MB with Photoreduction of CO2. ACS Catalysis 2016, 6 (10) , 6861-6867. https://doi.org/10.1021/acscatal.6b01729
  23. Naoto Umezawa, Henrik H. Kristoffersen, Lasse B. Vilhelmsen, and Bjørk Hammer . Reduction of CO2 with Water on Pt-Loaded Rutile TiO2(110) Modeled with Density Functional Theory. The Journal of Physical Chemistry C 2016, 120 (17) , 9160-9164. https://doi.org/10.1021/acs.jpcc.5b11625
  24. Anqi Song, Erik S. Skibinski, William J. I. DeBenedetti, Amnon G. Ortoll-Bloch, and Melissa A. Hines . Nanoscale Solvation Leads to Spontaneous Formation of a Bicarbonate Monolayer on Rutile (110) under Ambient Conditions: Implications for CO2 Photoreduction. The Journal of Physical Chemistry C 2016, 120 (17) , 9326-9333. https://doi.org/10.1021/acs.jpcc.6b02132
  25. Yongfei Ji and Yi Luo . Theoretical Study on the Mechanism of Photoreduction of CO2 to CH4 on the Anatase TiO2(101) Surface. ACS Catalysis 2016, 6 (3) , 2018-2025. https://doi.org/10.1021/acscatal.5b02694
  26. James L. White , Maor F. Baruch , James E. Pander III , Yuan Hu , Ivy C. Fortmeyer , James Eujin Park , Tao Zhang , Kuo Liao , Jing Gu , Yong Yan , Travis W. Shaw , Esta Abelev , and Andrew B. Bocarsly . Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews 2015, 115 (23) , 12888-12935. https://doi.org/10.1021/acs.chemrev.5b00370
  27. Wen-Jin Yin, Matthias Krack, Bo Wen, Shang-Yi Ma, and Li-Min Liu . CO2 Capture and Conversion on Rutile TiO2(110) in the Water Environment: Insight by First-Principles Calculations. The Journal of Physical Chemistry Letters 2015, 6 (13) , 2538-2545. https://doi.org/10.1021/acs.jpclett.5b00798
  28. Trystan Bennett, Rohul H. Adnan, Jason F. Alvino, Rantej Kler, Vladimir B. Golovko, Gregory F. Metha, and Gunther G. Andersson . Effect of Gold Nanoclusters on the Production of Ti3+ Defect Sites in Titanium Dioxide Nanoparticles under Ultraviolet and Soft X-ray Radiation. The Journal of Physical Chemistry C 2015, 119 (20) , 11171-11177. https://doi.org/10.1021/jp5119162
  29. Hyunwoong Park, Hsin-Hung Ou, Agustín J. Colussi, and Michael R. Hoffmann . Artificial Photosynthesis of C1–C3 Hydrocarbons from Water and CO2 on Titanate Nanotubes Decorated with Nanoparticle Elemental Copper and CdS Quantum Dots. The Journal of Physical Chemistry A 2015, 119 (19) , 4658-4666. https://doi.org/10.1021/jp511329d
  30. Svatopluk Civiš, Martin Ferus, Markéta Zukalová, Arnošt Zukal, Ladislav Kavan, Kenneth D. Jordan, and Dan C. Sorescu . Oxygen Atom Exchange between Gaseous CO2 and TiO2 Nanoclusters. The Journal of Physical Chemistry C 2015, 119 (7) , 3605-3612. https://doi.org/10.1021/jp512059b
  31. Qian Zhang, Cheng-Fang Lin, Bor-Yann Chen, Tong Ouyang, and Chang-Tang Chang . Deciphering Visible Light Photoreductive Conversion of CO2 to Formic Acid and Methanol Using Waste Prepared Material. Environmental Science & Technology 2015, 49 (4) , 2405-2417. https://doi.org/10.1021/es505301x
  32. Ji Su, Lisha Yang, Xiaokun Yang, Mi Lu, Bing Luo, and Hongfei Lin . Simultaneously Converting Carbonate/Bicarbonate and Biomass to Value-added Carboxylic Acid Salts by Aqueous-phase Hydrogen Transfer. ACS Sustainable Chemistry & Engineering 2015, 3 (1) , 195-203. https://doi.org/10.1021/sc5007158
  33. Houman Yaghoubi, Zhi Li, Yao Chen, Huong T. Ngo, Venkat R. Bhethanabotla, Babu Joseph, Shengqian Ma, Rudy Schlaf, and Arash Takshi . Toward a Visible Light-Driven Photocatalyst: The Effect of Midgap-States-Induced Energy Gap of Undoped TiO2 Nanoparticles. ACS Catalysis 2015, 5 (1) , 327-335. https://doi.org/10.1021/cs501539q
  34. Yasuo Izumi . Recent Advances (2012–2015) in the Photocatalytic Conversion of Carbon Dioxide to Fuels Using Solar Energy: Feasibilty for a New Energy. 2015,,, 1-46. https://doi.org/10.1021/bk-2015-1194.ch001
  35. Michael Nolan, Anna Iwaszuk, and Kimberly A. Gray . Localization of Photoexcited Electrons and Holes on Low Coordinated Ti and O Sites in Free and Supported TiO2 Nanoclusters. The Journal of Physical Chemistry C 2014, 118 (48) , 27890-27900. https://doi.org/10.1021/jp508822v
  36. Lixia Sang, Yixin Zhao, and Clemens Burda . TiO2 Nanoparticles as Functional Building Blocks. Chemical Reviews 2014, 114 (19) , 9283-9318. https://doi.org/10.1021/cr400629p
  37. Yi Ma, Xiuli Wang, Yushuai Jia, Xiaobo Chen, Hongxian Han, and Can Li . Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews 2014, 114 (19) , 9987-10043. https://doi.org/10.1021/cr500008u
  38. Tijana Rajh, Nada M. Dimitrijevic, Marc Bissonnette, Tamara Koritarov, and Vani Konda . Titanium Dioxide in the Service of the Biomedical Revolution. Chemical Reviews 2014, 114 (19) , 10177-10216. https://doi.org/10.1021/cr500029g
  39. Ganganahalli K. Ramesha, Joan F. Brennecke, and Prashant V. Kamat . Origin of Catalytic Effect in the Reduction of CO2 at Nanostructured TiO2 Films. ACS Catalysis 2014, 4 (9) , 3249-3254. https://doi.org/10.1021/cs500730w
  40. Zhiqiao He, Lina Wen, Da Wang, Yijun Xue, Qianwen Lu, Cuiwei Wu, Jianmeng Chen, and Shuang Song . Photocatalytic Reduction of CO2 in Aqueous Solution on Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets. Energy & Fuels 2014, 28 (6) , 3982-3993. https://doi.org/10.1021/ef500648k
  41. Hsin-Hsi Lo, Neeruganti O. Gopal, Shiann-Cherng Sheu, and Shyue-Chu Ke . Electron Paramagnetic Resonance Investigation of Charge Transfer in TiO2(B)/Anatase and N–TiO2(B)/Anatase Mixed-Phase Nanowires: The Relative Valence and Conduction Band Edges in the Two Phases. The Journal of Physical Chemistry C 2014, 118 (5) , 2877-2884. https://doi.org/10.1021/jp411723m
  42. David J. Boston, Chengdong Xu, Daniel W. Armstrong, and Frederick M. MacDonnell . Photochemical Reduction of Carbon Dioxide to Methanol and Formate in a Homogeneous System with Pyridinium Catalysts. Journal of the American Chemical Society 2013, 135 (44) , 16252-16255. https://doi.org/10.1021/ja406074w
  43. Weiqiang Wu, Kaustava Bhattacharyya, Kimberly Gray, and Eric Weitz . Photoinduced Reactions of Surface-Bound Species on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FTIR Study. The Journal of Physical Chemistry C 2013, 117 (40) , 20643-20655. https://doi.org/10.1021/jp405902a
  44. Kaustava Bhattacharyya, Alon Danon, Baiju K.Vijayan, Kimberly A. Gray, Peter C. Stair, and Eric Weitz . Role of the Surface Lewis Acid and Base Sites in the Adsorption of CO2 on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FT-IR Study. The Journal of Physical Chemistry C 2013, 117 (24) , 12661-12678. https://doi.org/10.1021/jp402979m
  45. Chao Liu, Kevin D. Dubois, Michael E. Louis, Alexander S. Vorushilov, and Gonghu Li . Photocatalytic CO2 Reduction and Surface Immobilization of a Tricarbonyl Re(I) Compound Modified with Amide Groups. ACS Catalysis 2013, 3 (4) , 655-662. https://doi.org/10.1021/cs300796e
  46. Daniel Finkelstein-Shapiro, Sarah Hurst Petrosko, Nada M. Dimitrijevic, David Gosztola, Kimberly A. Gray, Tijana Rajh, Pilarisetty Tarakeshwar, and Vladimiro Mujica . CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles. The Journal of Physical Chemistry Letters 2013, 4 (3) , 475-479. https://doi.org/10.1021/jz3020327
  47. Donghwa Lee and Yosuke Kanai . Role of Four-Fold Coordinated Titanium and Quantum Confinement in CO2 Reduction at Titania Surface. Journal of the American Chemical Society 2012, 134 (50) , 20266-20269. https://doi.org/10.1021/ja309871m
  48. Lianjun Liu, Huilei Zhao, Jean M. Andino, and Ying Li . Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis 2012, 2 (8) , 1817-1828. https://doi.org/10.1021/cs300273q
  49. Li Liu, Weiliu Fan, Xian Zhao, Honggang Sun, Pan Li, and Liming Sun . Surface Dependence of CO2 Adsorption on Zn2GeO4. Langmuir 2012, 28 (28) , 10415-10424. https://doi.org/10.1021/la301679h
  50. Ching S. Chen, Tse C. Chen, Chen C. Chen, Yuan T. Lai, Jiann H. You, Te M. Chou, Ching H. Chen, and Jyh-Fu Lee . Effect of Ti3+ on TiO2-Supported Cu Catalysts Used for CO Oxidation. Langmuir 2012, 28 (26) , 9996-10006. https://doi.org/10.1021/la301684h
  51. Ilya A. Shkrob, Timothy W. Marin, Haiying He, and Peter Zapol . Photoredox Reactions and the Catalytic Cycle for Carbon Dioxide Fixation and Methanogenesis on Metal Oxides. The Journal of Physical Chemistry C 2012, 116 (17) , 9450-9460. https://doi.org/10.1021/jp300122v
  52. Ilya A. Shkrob, Nada M. Dimitrijevic, Timothy W. Marin, Haiying He, and Peter Zapol . Heteroatom-Transfer Coupled Photoreduction and Carbon Dioxide Fixation on Metal Oxides. The Journal of Physical Chemistry C 2012, 116 (17) , 9461-9471. https://doi.org/10.1021/jp300123z
  53. Lianjun Liu, Cunyu Zhao, and Ying Li . Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2–x Nanoparticles at Room Temperature. The Journal of Physical Chemistry C 2012, 116 (14) , 7904-7912. https://doi.org/10.1021/jp300932b
  54. Kevin D. Dubois, Anton Petushkov, Elizabeth Garcia Cardona, Sarah C. Larsen, and Gonghu Li . Adsorption and Photochemical Properties of a Molecular CO2 Reduction Catalyst in Hierarchical Mesoporous ZSM-5: An In Situ FTIR Study. The Journal of Physical Chemistry Letters 2012, 3 (4) , 486-492. https://doi.org/10.1021/jz201701y
  55. Nada M. Dimitrijevic, Ilya A. Shkrob, David J. Gosztola, and Tijana Rajh . Dynamics of Interfacial Charge Transfer to Formic Acid, Formaldehyde, and Methanol on the Surface of TiO2 Nanoparticles and Its Role in Methane Production. The Journal of Physical Chemistry C 2012, 116 (1) , 878-885. https://doi.org/10.1021/jp2090473
  56. Tatsuto Yui, Akira Kan, Chieko Saitoh, Kazuhide Koike, Takashi Ibusuki, and Osamu Ishitani . Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2. ACS Applied Materials & Interfaces 2011, 3 (7) , 2594-2600. https://doi.org/10.1021/am200425y
  57. Laura Collado, Patricia Reñones, Javier Fermoso, Fernando Fresno, Leoncio Garrido, Virginia Pérez-Dieste, Carlos Escudero, María D. Hernández-Alonso, Juan M. Coronado, David P. Serrano, Víctor A. de la Peña O’Shea. The role of the surface acidic/basic centers and redox sites on TiO2 in the photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2022, 303 , 120931. https://doi.org/10.1016/j.apcatb.2021.120931
  58. András Sápi, Rajkumar Thangavel, Mohit Yadav, János Kiss, Ákos Kukovecz, Zoltán Kónya. Photocatalytic CO2 Reduction. 2022,,, 605-646. https://doi.org/10.1007/978-3-030-77371-7_20
  59. Manpreet Kaur Aulakh, Jyotsna Dua, Bonamali Pal. Influence of capping agents on morphology and photocatalytic response of ZnS nanostructures towards crystal violet degradation under UV and sunlight. Separation and Purification Technology 2022, 281 , 119869. https://doi.org/10.1016/j.seppur.2021.119869
  60. Roberto Fiorenza, Marianna Bellardita, Stefano Andrea Balsamo, Luca Spitaleri, Antonino Gulino, Marcello Condorelli, Luisa D'Urso, Salvatore Scirè, Leonardo Palmisano. A solar photothermocatalytic approach for the CO2 conversion: Investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts. Chemical Engineering Journal 2022, 428 , 131249. https://doi.org/10.1016/j.cej.2021.131249
  61. Christian A. Celaya, Cornelio Delesma, S. Torres-Arellano, P.J. Sebastian, Jesús Muñiz. Understanding CO 2 conversion into hydrocarbons via a photoreductive process supported on the Cu 2 O(1 0 0), (1 1 0) and (1 1 1) surface facets: A first principles study. Fuel 2021, 306 , 121643. https://doi.org/10.1016/j.fuel.2021.121643
  62. Yuying Wang, Yang Qu, Binhong Qu, Linlu Bai, Yang Liu, Zhao‐Di Yang, Wei Zhang, Liqiang Jing, Honggang Fu. Construction of Six‐Oxygen‐Coordinated Single Ni Sites on g‐C 3 N 4 with Boron‐Oxo Species for Photocatalytic Water‐Activation‐Induced CO 2 Reduction. Advanced Materials 2021, 33 (48) , 2105482. https://doi.org/10.1002/adma.202105482
  63. J. Fernández-Catalá, M. Navlani-García, Á. Berenguer-Murcia, D. Cazorla-Amorós. Exploring CuxO-doped TiO2 modified with carbon nanotubes for CO2 photoreduction in a 2D-flow reactor. Journal of CO2 Utilization 2021, 54 , 101796. https://doi.org/10.1016/j.jcou.2021.101796
  64. Nikolaos G. Moustakas, Felix Lorenz, Martin Dilla, Tim Peppel, Jennifer Strunk. Pivotal Role of Holes in Photocatalytic CO 2 Reduction on TiO 2. Chemistry – A European Journal 2021, 275 https://doi.org/10.1002/chem.202103070
  65. Pengyan Li, Li Liu, Weijia An, Huan Wang, Wenquan Cui. Efficient photothermal catalytic CO2 reduction to CH3CH2OH over Cu2O/g-C3N4 assisted by ionic liquids. Applied Surface Science 2021, 565 , 150448. https://doi.org/10.1016/j.apsusc.2021.150448
  66. Mohd Muslim, Arif Ali, Saima Kamaal, Musheer Ahmad, Mohammad Jane Alam, Qazi Inamur Rahman, M. Shahid. Efficient adsorption and facile photocatalytic degradation of organic dyes over H-bonded proton-transfer complex: An experimental and theoretical approach. Journal of Molecular Liquids 2021, 8 , 117951. https://doi.org/10.1016/j.molliq.2021.117951
  67. Khaled Alkanad, Abdo Hezam, Qasem Ahmed Drmosh, Sujay Shekar Ganganakatte Chandrashekar, Abeer A. AlObaid, Ismail Warad, Mohammed Abdullah Bajiri, Lokanath Neratur Krishnappagowda. Construction of Bi 2 S 3 /TiO 2 /MoS 2 S‐Scheme Heterostructure with a Switchable Charge Migration Pathway for Selective CO 2 Reduction. Solar RRL 2021, 5 (11) , 2100501. https://doi.org/10.1002/solr.202100501
  68. João Angelo Lima Perini, Kallyni Irikura, Lilian D. Moura Torquato, Jader Barbosa da S. Flor, Maria V. Boldrin Zanoni. Effect of ionic liquid in a pressurized reactor to enhance CO2 photocatalytic reduction at TiO2 modified by gold nanoparticles. Journal of Catalysis 2021, 106 https://doi.org/10.1016/j.jcat.2021.11.007
  69. Huidong Shen, Mengmeng Yang, Leiduan Hao, Jinrui Wang, Jennifer Strunk, Zhenyu Sun. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Research 2021, 360 https://doi.org/10.1007/s12274-021-3725-0
  70. Mahmoud M. Abdelnaby, Kaili Liu, Khaled Hassanein, Zongyou Yin. Photo/electrochemical Carbon Dioxide Conversion into C 3+ Hydrocarbons: Reactivity and Selectivity. ChemNanoMat 2021, 7 (9) , 969-981. https://doi.org/10.1002/cnma.202100106
  71. Li-Wen Chen, Hung-Lin Chen, Chung-Shin Lu, Shiuh-Tsuen Huang, Tsung-Wen Yeh, Chiing-Chang Chen. Preparation of perovskite-like PbBiO2I/g-C3N4 exhibiting visible-light-driven activity. Catalysis Today 2021, 375 , 472-483. https://doi.org/10.1016/j.cattod.2020.06.015
  72. Jiahui Shen, Zhiyi Wu, Chaoran Li, Chengcheng Zhang, Alexander Genest, Günther Rupprechter, Le He. Emerging applications of MXene materials in CO2 photocatalysis. FlatChem 2021, 28 , 100252. https://doi.org/10.1016/j.flatc.2021.100252
  73. Taozhu Li, Weining Zhang, Hao Qin, Lei Lu, Shicheng Yan, Zhigang Zou. Inorganic Frustrated Lewis Pairs in Photocatalytic CO 2 Reduction. ChemPhotoChem 2021, 5 (6) , 495-501. https://doi.org/10.1002/cptc.202000312
  74. Xiaolei Bao, Huiliang Li, Zeyan Wang, Fengxia Tong, Mu Liu, Zhaoke Zheng, Peng Wang, Hefeng Cheng, Yuanyuan Liu, Ying Dai, Yuchen Fan, Zhiyong Li, Baibiao Huang. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. Applied Catalysis B: Environmental 2021, 286 , 119885. https://doi.org/10.1016/j.apcatb.2021.119885
  75. Di Hu, Vitaly V. Ordomsky, Andrei Y. Khodakov. Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Applied Catalysis B: Environmental 2021, 286 , 119913. https://doi.org/10.1016/j.apcatb.2021.119913
  76. Ruonan Wang, Zhongyong Qiu, Shipeng Wan, Yanan Wang, Qiang Liu, Jie Ding, Qin Zhong. Insight into mechanism of divalent metal cations with different d-bands classification in layered double hydroxides for light-driven CO2 reduction. Chemical Engineering Journal 2021, 343 , 130863. https://doi.org/10.1016/j.cej.2021.130863
  77. Luqman Atanda, Mohammad A. Wahab, Jorge Beltramini. Recent Progress on Catalyst Development for CO 2 Conversion into Value‐Added Chemicals by Photo‐ and Electroreduction. 2021,,, 335-360. https://doi.org/10.1002/9783527346523.ch14
  78. Stephen Rhatigan, Lorenzo Niemitz, Michael Nolan. Modification of TiO 2 with metal chalcogenide nanoclusters for hydrogen evolution. Journal of Physics: Energy 2021, 3 (2) , 025001. https://doi.org/10.1088/2515-7655/abe424
  79. Feifei Li, Haoqiang Ai, Changmin Shi, Kin Ho Lo, Hui Pan. Single transition metal atom catalysts on Ti2CN2 for efficient CO2 reduction reaction. International Journal of Hydrogen Energy 2021, 46 (24) , 12886-12896. https://doi.org/10.1016/j.ijhydene.2021.01.096
  80. Yu-Yun Lin, Han-Ting Chi, Jia-Hao Lin, Fu-Hsuan Chen, Chiing-Chang Chen, Chung-Shin Lu. Eight crystalline phases of bismuth vanadate by controllable hydrothermal synthesis exhibiting visible-light-driven photocatalytic activity. Molecular Catalysis 2021, 506 , 111547. https://doi.org/10.1016/j.mcat.2021.111547
  81. Xing Li, Yang Bai, Xian Shi, Jinde Huang, Kai Zhang, Ren Wang, Liqun Ye. Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction. Applied Surface Science 2021, 546 , 149111. https://doi.org/10.1016/j.apsusc.2021.149111
  82. Dimitrij Ješić, Damjan Lašič Jurković, Andrej Pohar, Luka Suhadolnik, Blaž Likozar. Engineering photocatalytic and photoelectrocatalytic CO2 reduction reactions: Mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modelling simulations. Chemical Engineering Journal 2021, 407 , 126799. https://doi.org/10.1016/j.cej.2020.126799
  83. Guangfu Liao, Chunxue Li, Xinzheng Li, Baizeng Fang. Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Reports Physical Science 2021, 2 (3) , 100355. https://doi.org/10.1016/j.xcrp.2021.100355
  84. Xiaolei Liu, Qingzhe Zhang, Dongling Ma. Advances in 2D/2D Z‐Scheme Heterojunctions for Photocatalytic Applications. Solar RRL 2021, 5 (2) , 2000397. https://doi.org/10.1002/solr.202000397
  85. M.B. Tahir, Nisar Fatima, Urooj Fatima, M. Sagir. A review on the 2D black phosphorus materials for energy applications. Inorganic Chemistry Communications 2021, 124 , 108242. https://doi.org/10.1016/j.inoche.2020.108242
  86. Drashti K. Bhatt, Upendra D. Patel. Photocatalytic degradation of Reactive Black 5 using Ag3PO4 under visible light. Journal of Physics and Chemistry of Solids 2021, 149 , 109768. https://doi.org/10.1016/j.jpcs.2020.109768
  87. Abi M. Taddesse, Tigabu Bekele, Isabel Diaz, Abebaw Adgo. Polyaniline supported CdS/CeO2/Ag3PO4 nanocomposite: An “A-B” type tandem n-n heterojunctions with enhanced photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry 2021, 406 , 113005. https://doi.org/10.1016/j.jphotochem.2020.113005
  88. Yanjie Wang, Tao He. Recent advances in and comprehensive consideration of the oxidation half reaction in photocatalytic CO 2 conversion. Journal of Materials Chemistry A 2021, 9 (1) , 87-110. https://doi.org/10.1039/D0TA09011E
  89. Euntae Yang, Hend Omar Mohamed, Sung-Gwan Park, M. Obaid, Siham Y. Al-Qaradawi, Pedro Castaño, Kangmin Chon, Kyu-Jung Chae. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Bioresource Technology 2021, 320 , 124363. https://doi.org/10.1016/j.biortech.2020.124363
  90. Ting Song, Xiang Yu, Na Tian, Hong-wei Huang. Preparation, structure and application of g-C3N4/BiOX composite photocatalyst. International Journal of Hydrogen Energy 2021, 46 (2) , 1857-1878. https://doi.org/10.1016/j.ijhydene.2020.10.136
  91. Mohsen Lashgari. Fundamental aspects of CO2 transformation into C/H/O based fuels/chemicals. 2021,,, 283-305. https://doi.org/10.1016/B978-0-12-822894-4.00015-0
  92. Eunhee Gong, Shahzad Ali, Chaitanya B. Hiragond, Hong Soo Kim, Niket S. Powar, Dongyun Kim, Hwapyong Kim, Su-il In. Solar fuels: Research and development strategies to accelerate photocatalytic CO 2 conversion into hydrocarbon fuels. Energy & Environmental Science 2021, https://doi.org/10.1039/D1EE02714J
  93. Jie Wang, Sijia Sun, Hao Ding, Zetian He, Xuan Wang, Run Zhou, Han Zhang. A semiconductor-insulator heterojunction induced by hydroxyl groups formed on the surface of SiO2 microspheres. Applied Surface Science 2020, 531 , 147385. https://doi.org/10.1016/j.apsusc.2020.147385
  94. Abi M. Taddesse, Muluken Alemu, Tesfahun Kebede. Enhanced photocatalytic activity of p-n-n heterojunctions ternary composite Cu2O/ZnO/Ag3PO4 under visible light irradiation. Journal of Environmental Chemical Engineering 2020, 8 (5) , 104356. https://doi.org/10.1016/j.jece.2020.104356
  95. Wen-Jin Yin, Bo Wen, Qingxia Ge, Xi-Bo Li, Gilberto Teobaldi, Li-Min Liu. Activity and selectivity of CO 2 photoreduction on catalytic materials. Dalton Transactions 2020, 49 (37) , 12918-12928. https://doi.org/10.1039/D0DT02651D
  96. Williams Kweku Darkwah, Masso Kody Christelle Sandrine, Buanya Beryl Adormaa, Godfred Kwesi Teye, Joshua Buer Puplampu. Solar light harvest: modified d-block metals in photocatalysis. Catalysis Science & Technology 2020, 10 (16) , 5321-5344. https://doi.org/10.1039/C9CY02435B
  97. Cong Wang, Shaoyi Jia, Yongchao Zhang, Yao Nian, Yan Wang, You Han, Yong Liu, Haitao Ren, Songhai Wu, Kexin Yao, Xu Han. Catalytic reactivity of Co3O4 with different facets in the hydrogen abstraction of phenol by persulfate. Applied Catalysis B: Environmental 2020, 270 , 118819. https://doi.org/10.1016/j.apcatb.2020.118819
  98. Ching-Shiun Chen, Tse-Ching Chen, Hung-Chi Wu, Jia-Huang Wu, Jyh-Fu Lee. The influence of ceria on Cu/TiO 2 catalysts to produce abundant oxygen vacancies and induce highly efficient CO oxidation. Catalysis Science & Technology 2020, 10 (13) , 4271-4281. https://doi.org/10.1039/D0CY00792G
  99. Sheng Zeng, Ehsan Vahidzadeh, Collin G. VanEssen, Piyush Kar, Ryan Kisslinger, Ankur Goswami, Yun Zhang, Najia Mahdi, Saralyn Riddell, Alexander E. Kobryn, Sergey Gusarov, Pawan Kumar, Karthik Shankar. Optical control of selectivity of high rate CO2 photoreduction via interband- or hot electron Z-scheme reaction pathways in Au-TiO2 plasmonic photonic crystal photocatalyst. Applied Catalysis B: Environmental 2020, 267 , 118644. https://doi.org/10.1016/j.apcatb.2020.118644
  100. S. Sorcar, S. Yoriya, H. Lee, C.A. Grimes, S.P. Feng. A review of recent progress in gas phase CO2 reduction and suggestions on future advancement. Materials Today Chemistry 2020, 16 , 100264. https://doi.org/10.1016/j.mtchem.2020.100264
Load more citations