Bidirectional and Unidirectional PCET in a Molecular Model of a Cobalt-Based Oxygen-Evolving Catalyst

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
Cite this: J. Am. Chem. Soc. 2011, 133, 14, 5174–5177
Publication Date (Web):March 17, 2011
https://doi.org/10.1021/ja110908v
Copyright © 2011 American Chemical Society
Article Views
4982
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

The oxidation of water to molecular oxygen is a kinetically demanding reaction that requires efficient coupling of proton and electron transfer. The key proton-coupled electron transfer (PCET) event in water oxidation mediated by a cobalt-phosphate-based heterogeneous catalyst is the one-electron, one-proton conversion of CoIII−OH to CoIV−O. We now isolate the kinetics of this PCET step in a molecular Co4O4 cubane model compound. Detailed electrochemical, stopped-flow, and NMR studies of the CoIII−OH to CoIV−O reaction reveal distinct mechanisms for the unidirectional PCET self-exchange reaction and the corresponding bidirectional PCET. A stepwise mechanism, with rate-limiting electron transfer is observed for the bidirectional PCET at an electrode surface and in solution, whereas a concerted proton−electron transfer displaying a moderate KIE (4.3 ± 0.2), is observed for the unidirectional self-exchange reaction.

Supporting Information

ARTICLE SECTIONS
Jump To

This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 112 publications.

  1. Jaruwan Amtawong, Bastian Bjerkem Skjelstad, Rex C. Handford, Benjamin A. Suslick, David Balcells, T. Don Tilley. C–H Activation by RuCo3O4 Oxo Cubanes: Effects of Oxyl Radical Character and Metal–Metal Cooperativity. Journal of the American Chemical Society 2021, 143 (31) , 12108-12119. https://doi.org/10.1021/jacs.1c04069
  2. Nele Berg, Sebastian Bergwinkl, Patrick Nuernberger, Dominik Horinek, Ruth M. Gschwind. Extended Hydrogen Bond Networks for Effective Proton-Coupled Electron Transfer (PCET) Reactions: The Unexpected Role of Thiophenol and Its Acidic Channel in Photocatalytic Hydroamidations. Journal of the American Chemical Society 2021, 143 (2) , 724-735. https://doi.org/10.1021/jacs.0c08673
  3. Robin Tyburski, Tianfei Liu, Starla D. Glover, Leif Hammarström. Proton-Coupled Electron Transfer Guidelines, Fair and Square. Journal of the American Chemical Society 2021, 143 (2) , 560-576. https://doi.org/10.1021/jacs.0c09106
  4. Jaruwan Amtawong, Bastian B. Skjelstad, David Balcells, T. Don Tilley. Concerted Proton–Electron Transfer Reactivity at a Multimetallic Co4O4 Cubane Cluster. Inorganic Chemistry 2020, 59 (20) , 15553-15560. https://doi.org/10.1021/acs.inorgchem.0c02625
  5. Seihwan Ahn, Mannkyu Hong, Mahesh Sundararajan, Daniel H. Ess, Mu-Hyun Baik. Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews 2019, 119 (11) , 6509-6560. https://doi.org/10.1021/acs.chemrev.9b00073
  6. Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Petko Chernev, Mohammad Reza Mohammadi, Leonardo Guidoni, Rodney D. L. Smith, Holger Dau. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society 2019, 141 (7) , 2938-2948. https://doi.org/10.1021/jacs.8b10002
  7. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  8. Moumita Rana, Sanjit Mondal, Lipipuspa Sahoo, Kaustav Chatterjee, Pitchiah E. Karthik, Ujjal K. Gautam. Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces 2018, 10 (40) , 33737-33767. https://doi.org/10.1021/acsami.8b09024
  9. Giacomo Cioncoloni, Isolda Roger, Paul S. Wheatley, Claire Wilson, Russell E. Morris, Stephen Sproules, Mark D. Symes. Proton-Coupled Electron Transfer Enhances the Electrocatalytic Reduction of Nitrite to NO in a Bioinspired Copper Complex. ACS Catalysis 2018, 8 (6) , 5070-5084. https://doi.org/10.1021/acscatal.8b00361
  10. Robert Francke, Benjamin Schille, Michael Roemelt. Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts. Chemical Reviews 2018, 118 (9) , 4631-4701. https://doi.org/10.1021/acs.chemrev.7b00459
  11. Lisa Olshansky, Raúl Huerta-Lavorie, Andy I. Nguyen, Jaicy Vallapurackal, Ariel Furst, T. Don Tilley, and A. S. Borovik . Artificial Metalloproteins Containing Co4O4 Cubane Active Sites. Journal of the American Chemical Society 2018, 140 (8) , 2739-2742. https://doi.org/10.1021/jacs.7b13052
  12. Josh Baillargeon, Yuling Xie, and Thomas W. Hamann . Bifurcation of Regeneration and Recombination in Dye-Sensitized Solar Cells via Electronic Manipulation of Tandem Cobalt Redox Shuttles. ACS Applied Materials & Interfaces 2017, 9 (39) , 33544-33548. https://doi.org/10.1021/acsami.7b01626
  13. Florian H. Hodel and Sandra Luber . Dehydrogenation Free Energy of Co2+(aq) from Density Functional Theory-Based Molecular Dynamics. Journal of Chemical Theory and Computation 2017, 13 (3) , 974-981. https://doi.org/10.1021/acs.jctc.6b01077
  14. Qiao Zhang, Angela Bell-Taylor, Fraser M. Bronston, John D. Gorden, and Christian R. Goldsmith . Aldehyde Deformylation and Catalytic C–H Activation Resulting from a Shared Cobalt(II) Precursor. Inorganic Chemistry 2017, 56 (2) , 773-782. https://doi.org/10.1021/acs.inorgchem.6b02127
  15. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
  16. Noémie Elgrishi, Brian D. McCarthy, Eric S. Rountree, and Jillian L. Dempsey . Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes. ACS Catalysis 2016, 6 (6) , 3644-3659. https://doi.org/10.1021/acscatal.6b00778
  17. Mohammad Mahdi Najafpour, Gernot Renger, Małgorzata Hołyńska, Atefeh Nemati Moghaddam, Eva-Mari Aro, Robert Carpentier, Hiroshi Nishihara, Julian J. Eaton-Rye, Jian-Ren Shen, and Suleyman I. Allakhverdiev . Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews 2016, 116 (5) , 2886-2936. https://doi.org/10.1021/acs.chemrev.5b00340
  18. Florian H. Hodel and Sandra Luber . What Influences the Water Oxidation Activity of a Bioinspired Molecular CoII4O4 Cubane? An In-Depth Exploration of Catalytic Pathways. ACS Catalysis 2016, 6 (3) , 1505-1517. https://doi.org/10.1021/acscatal.5b02507
  19. Paul F. Smith, Liam Hunt, Anders B. Laursen, Viral Sagar, Shivam Kaushik, Karin U. D. Calvinho, Gabriele Marotta, Edoardo Mosconi, Filippo De Angelis, and G. Charles Dismukes . Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society 2015, 137 (49) , 15460-15468. https://doi.org/10.1021/jacs.5b09152
  20. Andy I. Nguyen, Micah S. Ziegler, Pascual Oña-Burgos, Manuel Sturzbecher-Hohne, Wooyul Kim, Donatela E. Bellone, and T. Don Tilley . Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. Journal of the American Chemical Society 2015, 137 (40) , 12865-12872. https://doi.org/10.1021/jacs.5b08396
  21. Jaeyune Ryu, Namgee Jung, Jong Hyun Jang, Hyoung-Juhn Kim, and Sung Jong Yoo . In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis 2015, 5 (7) , 4066-4074. https://doi.org/10.1021/acscatal.5b00349
  22. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  23. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
  24. Yi Liu and Daniel G. Nocera . Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17060-17066. https://doi.org/10.1021/jp5008347
  25. Ethan L. Demeter, Shayna L. Hilburg, Newell R. Washburn, Terrence J. Collins, and John R. Kitchin . Electrocatalytic Oxygen Evolution with an Immobilized TAML Activator. Journal of the American Chemical Society 2014, 136 (15) , 5603-5606. https://doi.org/10.1021/ja5015986
  26. Paul F. Smith, Christopher Kaplan, John E. Sheats, David M. Robinson, Nicholas S. McCool, Nicholas Mezle, and G. Charles Dismukes . What Determines Catalyst Functionality in Molecular Water Oxidation? Dependence on Ligands and Metal Nuclearity in Cobalt Clusters. Inorganic Chemistry 2014, 53 (4) , 2113-2121. https://doi.org/10.1021/ic402720p
  27. Delina Barats-Damatov, Linda J. W. Shimon, Lev Weiner, Roy E. Schreiber, Pablo Jiménez-Lozano, Josep M. Poblet, Coen de Graaf, and Ronny Neumann . Dicobalt-μ-oxo Polyoxometalate Compound, [(α2-P2W17O61Co)2O]14–: A Potent Species for Water Oxidation, C–H Bond Activation, and Oxygen Transfer. Inorganic Chemistry 2014, 53 (3) , 1779-1787. https://doi.org/10.1021/ic402962c
  28. Fabio Evangelisti, Robin Güttinger, René Moré, Sandra Luber, and Greta R. Patzke . Closer to Photosystem II: A Co4O4 Cubane Catalyst with Flexible Ligand Architecture. Journal of the American Chemical Society 2013, 135 (50) , 18734-18737. https://doi.org/10.1021/ja4098302
  29. Emily Y. Tsui, Jacob S. Kanady, and Theodor Agapie . Synthetic Cluster Models of Biological and Heterogeneous Manganese Catalysts for O2 Evolution. Inorganic Chemistry 2013, 52 (24) , 13833-13848. https://doi.org/10.1021/ic402236f
  30. Xiaoxin Zou, Anandarup Goswami, and Tewodros Asefa . Efficient Noble Metal-Free (Electro)Catalysis of Water and Alcohol Oxidations by Zinc–Cobalt Layered Double Hydroxide. Journal of the American Chemical Society 2013, 135 (46) , 17242-17245. https://doi.org/10.1021/ja407174u
  31. Ommid Anamimoghadam, Mark D. Symes, Christoph Busche, De-Liang Long, Stuart T. Caldwell, Cristina Flors, Santi Nonell, Leroy Cronin, and Götz Bucher . Naphthoxanthenyl, a New Stable Phenalenyl Type Radical Stabilized by Electronic Effects. Organic Letters 2013, 15 (12) , 2970-2973. https://doi.org/10.1021/ol401117g
  32. Marco Armandi, Simelys Hernandez, Svetoslava Vankova, Simone Zanarini, Barbara Bonelli, and Edoardo Garrone . Visible-Light Driven Oxidation of Water as Catalyzed by Co-APO-5 in the Presence of Ru Sensitizer. ACS Catalysis 2013, 3 (6) , 1272-1278. https://doi.org/10.1021/cs400067m
  33. Christopher L. Farrow, D. Kwabena Bediako, Yogesh Surendranath, Daniel G. Nocera, and Simon J. L. Billinge . Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst. Journal of the American Chemical Society 2013, 135 (17) , 6403-6406. https://doi.org/10.1021/ja401276f
  34. Yusuke Nishida, Yuma Morimoto, Yong-Min Lee, Wonwoo Nam, and Shunichi Fukuzumi . Effects of Proton Acceptors on Formation of a Non-Heme Iron(IV)–Oxo Complex via Proton-Coupled Electron Transfer. Inorganic Chemistry 2013, 52 (6) , 3094-3101. https://doi.org/10.1021/ic302573x
  35. Xiao Liang Hu, Simone Piccinin, Alessandro Laio, and Stefano Fabris . Atomistic Structure of Cobalt-Phosphate Nanoparticles for Catalytic Water Oxidation. ACS Nano 2012, 6 (12) , 10497-10504. https://doi.org/10.1021/nn3044325
  36. Benjamin Klahr, Sixto Gimenez, Francisco Fabregat-Santiago, Juan Bisquert, and Thomas W. Hamann . Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with “Co–Pi”-Coated Hematite Electrodes. Journal of the American Chemical Society 2012, 134 (40) , 16693-16700. https://doi.org/10.1021/ja306427f
  37. Rony S. Khnayzer, Michael W. Mara, Jier Huang, Megan L. Shelby, Lin X. Chen, and Felix N. Castellano . Structure and Activity of Photochemically Deposited “CoPi” Oxygen Evolving Catalyst on Titania. ACS Catalysis 2012, 2 (10) , 2150-2160. https://doi.org/10.1021/cs3005192
  38. C. J. Dibble, S. T. Akin, S. Ard, C. P. Fowler, and M. A. Duncan . Photodissociation of Cobalt and Nickel Oxide Cluster Cations. The Journal of Physical Chemistry A 2012, 116 (22) , 5398-5404. https://doi.org/10.1021/jp302560p
  39. Daniel G. Nocera . The Artificial Leaf. Accounts of Chemical Research 2012, 45 (5) , 767-776. https://doi.org/10.1021/ar2003013
  40. Timothy R. Cook, Brian D. McCarthy, Daniel A. Lutterman, and Daniel G. Nocera . Halogen Oxidation and Halogen Photoelimination Chemistry of a Platinum–Rhodium Heterobimetallic Core. Inorganic Chemistry 2012, 51 (9) , 5152-5163. https://doi.org/10.1021/ic300004x
  41. Johannes Thiel, Pedro I. Molina, Mark D. Symes, and Leroy Cronin . Insights into the Self-Assembly Mechanism of the Modular Polyoxometalate “Keggin-Net” Family of Framework Materials and Their Electronic Properties. Crystal Growth & Design 2012, 12 (2) , 902-908. https://doi.org/10.1021/cg201342z
  42. J. Gregory McAlpin, Troy A. Stich, C. André Ohlin, Yogesh Surendranath, Daniel G. Nocera, William H. Casey, and R. David Britt . Electronic Structure Description of a [Co(III)3Co(IV)O4] Cluster: A Model for the Paramagnetic Intermediate in Cobalt-Catalyzed Water Oxidation. Journal of the American Chemical Society 2011, 133 (39) , 15444-15452. https://doi.org/10.1021/ja202320q
  43. Monica Barroso, Alexander J. Cowan, Stephanie R. Pendlebury, Michael Grätzel, David R. Klug, and James R. Durrant . The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe2O3 toward Water Oxidation. Journal of the American Chemical Society 2011, 133 (38) , 14868-14871. https://doi.org/10.1021/ja205325v
  44. Xu Zhou, Chunyan Wang, Fulin Liu, Chengyu He, Shiming Zhang. Insight into the improvement mechanism of Co−Pi-modified hematite nanowire photoanodes for solar water oxidation. Chinese Chemical Letters 2021, 32 (10) , 3261-3263. https://doi.org/10.1016/j.cclet.2021.05.015
  45. Ana C. García-Álvarez, Stefani Gamboa-Ramírez, Diego Martínez-Otero, Maylis Orio, Ivan Castillo. Self-assembled nickel cubanes as oxygen evolution catalysts. Chemical Communications 2021, 57 (69) , 8608-8611. https://doi.org/10.1039/D1CC03227E
  46. Roman Ezhov, Alireza Karbakhsh Ravari, Gabriel Bury, Paul F. Smith, Yulia Pushkar. Do multinuclear 3d metal catalysts achieve O–O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co4O4]n+. Chem Catalysis 2021, 1 (2) , 407-422. https://doi.org/10.1016/j.checat.2021.03.013
  47. Francesco Rigodanza, Nadia Marino, Alessandro Bonetto, Antonio Marcomini, Marcella Bonchio, Mirco Natali, Andrea Sartorel. Water‐Assisted Concerted Proton‐Electron Transfer at Co(II)‐Aquo Sites in Polyoxotungstates With Photogenerated Ru III (bpy) 3 3+ Oxidant. ChemPhysChem 2021, 22 (12) , 1208-1218. https://doi.org/10.1002/cphc.202100190
  48. . Theoretical Study of Co ‐ C atalysis. 2021,,, 289-327. https://doi.org/10.1002/9783527346028.ch7
  49. Carlota Bozal-Ginesta, Camilo A. Mesa, Annika Eisenschmidt, Laia Francàs, Ravi B. Shankar, Daniel Antón-García, Julien Warnan, Janina Willkomm, Anna Reynal, Erwin Reisner, James R. Durrant. Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO 2. Chemical Science 2021, 12 (3) , 946-959. https://doi.org/10.1039/D0SC04344C
  50. Zijie Zhou, Xiangmei Kong, Tianfei Liu. Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chinese Journal of Organic Chemistry 2021, 41 (10) , 3844. https://doi.org/10.6023/cjoc202106001
  51. Hao-Lin Wu, Xu-Bing Li, Chen-Ho Tung, Li-Zhu Wu. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chemical Communications 2020, 56 (99) , 15496-15512. https://doi.org/10.1039/D0CC05870J
  52. Fei Liu, Peng Zhang, Xiaohua Ma, Qi Wang, Yanping Liang, B.A. Parkinson. In situ detection of the product of the CoPi-catalyzed oxygen evolution reaction. Electrochemistry Communications 2020, 121 , 106851. https://doi.org/10.1016/j.elecom.2020.106851
  53. Umberto Raucci, Maria Gabriella Chiariello, Federico Coppola, Fulvio Perrella, Marika Savarese, Ilaria Ciofini, Nadia Rega. An electron density based analysis to establish the electronic adiabaticity of proton coupled electron transfer reactions. Journal of Computational Chemistry 2020, 41 (20) , 1835-1841. https://doi.org/10.1002/jcc.26224
  54. Jiangquan Lv, Xiangfeng Guan, Muxin Yu, Xiaoyan Li, Yunlong Yu, Dagui Chen. Boosting water oxidation activity by tuning the proton transfer process of cobalt phosphonates in neutral solution. Physical Chemistry Chemical Physics 2020, 22 (25) , 14255-14260. https://doi.org/10.1039/D0CP02194F
  55. Atanu Dey, Vierandra Kumar, Shubhadeep Pal, Anku Guha, Sumit Bawari, Tharangattu N. Narayanan, Vadapalli Chandrasekhar. A tetranuclear cobalt( ii ) phosphate possessing a D4R core: an efficient water oxidation catalyst. Dalton Transactions 2020, 49 (15) , 4878-4886. https://doi.org/10.1039/D0DT00010H
  56. Rong Chen, Zhi‐Hao Yan, Xiang‐Jian Kong. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. ChemPhotoChem 2020, 4 (3) , 157-167. https://doi.org/10.1002/cptc.201900237
  57. Jayeeta Saha, Sonam Verma, Ranadeb Ball, Chandramouli Subramaniam, Ramaswamy Murugavel. Compositional Control as the Key for Achieving Highly Efficient OER Electrocatalysis with Cobalt Phosphates Decorated Nanocarbon Florets. Small 2020, 16 (12) , 1903334. https://doi.org/10.1002/smll.201903334
  58. Matteo Duca, Marc T.M. Koper. Fundamental Aspects of Electrocatalysis 1). 2020,,, 773-890. https://doi.org/10.1002/9783527680603.ch59
  59. Feriel Bouhjar, Lotfi Derbali, Bernabé Marí, Brahim Bessaïs. Photo-deposition of cobalt-phosphate group modified hematite for efficient water splitting. Solar Energy Materials and Solar Cells 2019, 195 , 241-249. https://doi.org/10.1016/j.solmat.2019.03.010
  60. Mirco Natali, Francesco Nastasi, Fausto Puntoriero, Andrea Sartorel. Mechanistic Insights into Light‐Activated Catalysis for Water Oxidation. European Journal of Inorganic Chemistry 2019, 2019 (15) , 2027-2039. https://doi.org/10.1002/ejic.201801236
  61. Hangjuan Ren, Thomas Dittrich, Hongyang Ma, Judy N. Hart, Steffen Fengler, Sheng Chen, Yibing Li, Yu Wang, Fuyang Cao, Mauricio Schieda, Yun Hau Ng, Zhirun Xie, Xin Bo, Pramod Koshy, Leigh R. Sheppard, Chuan Zhao, Charles C. Sorrell. Manipulation of Charge Transport by Metallic V 13 O 16 Decorated on Bismuth Vanadate Photoelectrochemical Catalyst. Advanced Materials 2019, 31 (8) , 1807204. https://doi.org/10.1002/adma.201807204
  62. Atif Ali, Waseem Akram, Hai-Yang Liu. Reactive Cobalt–Oxo Complexes of Tetrapyrrolic Macrocycles and N-based Ligand in Oxidative Transformation Reactions. Molecules 2019, 24 (1) , 78. https://doi.org/10.3390/molecules24010078
  63. Ailong Li, Yimeng Sun, Tingting Yao, Hongxian Han. Earth‐Abundant Transition‐Metal‐Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen. Chemistry – A European Journal 2018, 24 (69) , 18334-18355. https://doi.org/10.1002/chem.201803749
  64. Huayang Zhang, Wenjie Tian, Yunguo Li, Hongqi Sun, Moses O. Tadé, Shaobin Wang. A comparative study of metal (Ni, Co, or Mn)-borate catalysts and their photodeposition on rGO/ZnO nanoarrays for photoelectrochemical water splitting. Journal of Materials Chemistry A 2018, 6 (47) , 24149-24156. https://doi.org/10.1039/C8TA06921B
  65. Ben Peng, Mengyang Xia, Chao Li, Changshen Yue, Peng Diao. Network Structured CuWO4/BiVO4/Co-Pi Nanocomposite for Solar Water Splitting. Catalysts 2018, 8 (12) , 663. https://doi.org/10.3390/catal8120663
  66. Olivia Basu, Subhabrata Mukhopadhyay, Samar K Das. Cobalt based functional inorganic materials: Electrocatalytic water oxidation. Journal of Chemical Sciences 2018, 130 (7) https://doi.org/10.1007/s12039-018-1494-4
  67. Johannes Lang, Daniela V. Fries, Gereon Niedner-Schatteburg. Characterization of Trinuclear Oxo Bridged Cobalt Complexes in Isolation. Zeitschrift für Physikalische Chemie 2018, 232 (5-6) , 649-669. https://doi.org/10.1515/zpch-2017-1046
  68. Cyrille Costentin, Daniel G. Nocera. Self-healing catalysis in water. Proceedings of the National Academy of Sciences 2017, 114 (51) , 13380-13384. https://doi.org/10.1073/pnas.1711836114
  69. Mohammad Mahdi Najafpour, Mohadeseh Zarei Ghobadi, Seyedeh Maedeh Hosseini, Keun Hwa Chae, Somayeh Mehrabani, Parvin Rafighi, Robabeh Bagheri, Zhenlun Song. Rethink about electrolyte: Potassium fluoride as a promising additive to an electrolyte for the water oxidation by a nanolayered Mn oxide. International Journal of Hydrogen Energy 2017, 42 (22) , 15160-15166. https://doi.org/10.1016/j.ijhydene.2017.05.012
  70. Katherine J. Lee, Noémie Elgrishi, Banu Kandemir, Jillian L. Dempsey. Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nature Reviews Chemistry 2017, 1 (5) https://doi.org/10.1038/s41570-017-0039
  71. Kejing Liu, Cheng Liang, Qiyi Ma, Renfeng Du, Yongtao Wang, Jianyong Mao, Zhirong Chen, Haoran Li. Insight into the Co(II)/NaOH and Cu(II)/NaOH catalytic oxidation of 4-methyl guaiacol: Structures of catalysts and reaction pathways. Molecular Catalysis 2017, 428 , 24-32. https://doi.org/10.1016/j.molcata.2016.11.037
  72. David C. Miller, Kyle T. Tarantino, Robert R. Knowles. Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities. Topics in Current Chemistry 2016, 374 (3) https://doi.org/10.1007/s41061-016-0030-6
  73. Huabin Zhang, Guigao Liu, Li Shi, Huimin Liu, Tao Wang, Jinhua Ye. Engineering coordination polymers for photocatalysis. Nano Energy 2016, 22 , 149-168. https://doi.org/10.1016/j.nanoen.2016.01.029
  74. Paulami Manna, Joyashish Debgupta, Suranjana Bose, Samar K. Das. A Mononuclear Co II Coordination Complex Locked in a Confined Space and Acting as an Electrochemical Water-Oxidation Catalyst: A “Ship-in-a-Bottle” Approach. Angewandte Chemie 2016, 128 (7) , 2471-2476. https://doi.org/10.1002/ange.201509643
  75. Paulami Manna, Joyashish Debgupta, Suranjana Bose, Samar K. Das. A Mononuclear Co II Coordination Complex Locked in a Confined Space and Acting as an Electrochemical Water-Oxidation Catalyst: A “Ship-in-a-Bottle” Approach. Angewandte Chemie International Edition 2016, 55 (7) , 2425-2430. https://doi.org/10.1002/anie.201509643
  76. Toshihiro Takashima, Koki Ishikawa, Hiroshi Irie. Efficient oxygen evolution on hematite at neutral pH enabled by proton-coupled electron transfer. Chemical Communications 2016, 52 (97) , 14015-14018. https://doi.org/10.1039/C6CC08379J
  77. Archana Singh, Monika Fekete, Thomas Gengenbach, Alexandr N. Simonov, Rosalie K. Hocking, Shery L. Y. Chang, Mathias Rothmann, Satvasheel Powar, Dongchuan Fu, Zheng Hu, Qiang Wu, Yi-Bing Cheng, Udo Bach, Leone Spiccia. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts. ChemSusChem 2015, 8 (24) , 4266-4274. https://doi.org/10.1002/cssc.201500835
  78. Gihan Kwon, Oleksandr Kokhan, Ali Han, Karena W. Chapman, Peter J. Chupas, Pingwu Du, David M. Tiede. Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 2015, 71 (6) , 713-721. https://doi.org/10.1107/S2052520615022180
  79. Zoel Codolà, Laura Gómez, Scott T. Kleespies, Lawrence Que Jr, Miquel Costas, Julio Lloret-Fillol. Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms6865
  80. Ibram Ganesh. Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review). Renewable and Sustainable Energy Reviews 2015, 44 , 904-932. https://doi.org/10.1016/j.rser.2015.01.019
  81. Jianqing Chen, Donghui Yang, Dan Song, Jinghua Jiang, Aibin Ma, Michael Z. Hu, Chaoying Ni. Recent progress in enhancing solar-to-hydrogen efficiency. Journal of Power Sources 2015, 280 , 649-666. https://doi.org/10.1016/j.jpowsour.2015.01.073
  82. D. Kwabena Bediako, Andrew M. Ullman, Daniel G. Nocera. Catalytic Oxygen Evolution by Cobalt Oxido Thin Films. 2015,,, 173-213. https://doi.org/10.1007/128_2015_649
  83. Lawrence Yoon Suk Lee, Kwok-Yin Wong. Recent Development in Water Oxidation Catalysts Based on Manganese and Cobalt Complexes. 2015,,, 365-394. https://doi.org/10.1007/978-3-662-46054-2_13
  84. Marcel Risch, Franziska Ringleb, Mike Kohlhoff, Peter Bogdanoff, Petko Chernev, Ivelina Zaharieva, Holger Dau. Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy & Environmental Science 2015, 8 (2) , 661-674. https://doi.org/10.1039/C4EE03004D
  85. Andrea Genoni, Giuseppina La Ganga, Andrea Volpe, Fausto Puntoriero, Marilena Di Valentin, Marcella Bonchio, Mirco Natali, Andrea Sartorel. Water oxidation catalysis upon evolution of molecular Co( iii ) cubanes in aqueous media. Faraday Discussions 2015, 185 , 121-141. https://doi.org/10.1039/C5FD00076A
  86. Jin You Zheng, Se In Son, Thanh Khue Van, Young Soo Kang. Preparation of α-Fe 2 O 3 films by electrodeposition and photodeposition of Co–Pi on them to enhance their photoelectrochemical properties. RSC Advances 2015, 5 (46) , 36307-36314. https://doi.org/10.1039/C5RA03029C
  87. Seungwoo Hong, Florian F. Pfaff, Eunji Kwon, Yong Wang, Mi-Sook Seo, Eckhard Bill, Kallol Ray, Wonwoo Nam. Spectroscopic Capture and Reactivity of a Low-Spin Cobalt(IV)-Oxo Complex Stabilized by Binding Redox-Inactive Metal Ions. Angewandte Chemie 2014, 126 (39) , 10571-10575. https://doi.org/10.1002/ange.201405874
  88. Seungwoo Hong, Florian F. Pfaff, Eunji Kwon, Yong Wang, Mi-Sook Seo, Eckhard Bill, Kallol Ray, Wonwoo Nam. Spectroscopic Capture and Reactivity of a Low-Spin Cobalt(IV)-Oxo Complex Stabilized by Binding Redox-Inactive Metal Ions. Angewandte Chemie International Edition 2014, 53 (39) , 10403-10407. https://doi.org/10.1002/anie.201405874
  89. Nguyen Thanh Tung, Nguyen Minh Tam, Minh Tho Nguyen, Peter Lievens, Ewald Janssens. Influence of Cr doping on the stability and structure of small cobalt oxide clusters. The Journal of Chemical Physics 2014, 141 (4) , 044311. https://doi.org/10.1063/1.4890500
  90. Marcel Risch, Katharina Klingan, Ivelina Zaharieva, Holger Dau. Water Oxidation by Co-Based Oxides with Molecular Properties. 2014,,, 163-185. https://doi.org/10.1002/9781118698648.ch9
  91. Dalal K. Kanan, John A. Keith, Emily A. Carter. First-Principles Modeling of Electrochemical Water Oxidation on MnO:ZnO(001). ChemElectroChem 2014, 1 (2) , 407-415. https://doi.org/10.1002/celc.201300089
  92. Giuseppina La Ganga, Viviana Mollica Nardo, Massimiliano Cordaro, Mirco Natali, Stefania Vitale, Antonino Licciardello, Francesco Nastasi, Sebastiano Campagna. A functionalized, ethynyl-decorated, tetracobalt( iii ) cubane molecular catalyst for photoinduced water oxidation. Dalton Trans. 2014, 43 (40) , 14926-14930. https://doi.org/10.1039/C4DT01785D
  93. Emily A.A. Jarvis, Brian Lee, Bradley Neddenriep, Wendy Shoemaker. Computational comparison of stepwise oxidation and O–O bond formation in mononuclear ruthenium water oxidation catalysts. Chemical Physics 2013, 417 , 8-16. https://doi.org/10.1016/j.chemphys.2013.03.007
  94. Emily Y. Tsui, Rosalie Tran, Junko Yano, Theodor Agapie. Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters. Nature Chemistry 2013, 5 (4) , 293-299. https://doi.org/10.1038/nchem.1578
  95. Mark D. Symes, Daniel A. Lutterman, Thomas S. Teets, Bryce L. Anderson, John J. Breen, Daniel G. Nocera. Photo-active Cobalt Cubane Model of an Oxygen-Evolving Catalyst. ChemSusChem 2013, 6 (1) , 65-69. https://doi.org/10.1002/cssc.201200682
  96. A.J. Ward, A.F. Masters, T. Maschmeyer. Cobalt(II) Carboxylate Chemistry and Catalytic Applications. 2013,,, 665-684. https://doi.org/10.1016/B978-0-08-097774-4.00630-6
  97. M.T.M. Koper. Catalysis of Redox Reactions. 2013,,, 459-474. https://doi.org/10.1016/B978-0-08-097774-4.00815-9
  98. Andrea Sartorel, Marcella Bonchio, Sebastiano Campagna, Franco Scandola. Tetrametallic molecular catalysts for photochemical water oxidation. Chem. Soc. Rev. 2013, 42 (6) , 2262-2280. https://doi.org/10.1039/C2CS35287G
  99. Kelley M. H. Young, Benjamin M. Klahr, Omid Zandi, Thomas W. Hamann. Photocatalytic water oxidation with hematite electrodes. Catalysis Science & Technology 2013, 3 (7) , 1660. https://doi.org/10.1039/c3cy00310h
  100. J. Gregory McAlpin, Troy A. Stich, William H. Casey, R. David Britt. Comparison of cobalt and manganese in the chemistry of water oxidation. Coordination Chemistry Reviews 2012, 256 (21-22) , 2445-2452. https://doi.org/10.1016/j.ccr.2012.04.039
Load all citations