Electocatalytic Water Oxidation by Cobalt(III) Hangman β-Octafluoro Corroles

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
Cite this: J. Am. Chem. Soc. 2011, 133, 24, 9178–9180
Publication Date (Web):May 23, 2011
https://doi.org/10.1021/ja202138m
Copyright © 2011 American Chemical Society
Article Views
8340
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (970 KB)
Supporting Info (1)»

Abstract

Cobalt hangman corrole, bearing β-octafluoro and meso-pentafluorophenyl substituents, is an active water splitting catalyst. When immobilized in Nafion films, the turnover frequencies for the 4e/4H+ process at the single cobalt center of the hangman platform approach 1 s–1. The pH dependence of the water splitting reaction suggests a proton-coupled electron transfer (PCET) catalytic mechanism.

Supporting Information

ARTICLE SECTIONS
Jump To

Full synthetic details and characterization for Co(C6F5)3, CoHCX-CO2H, and CoHβFCX-CO2H; additional electrochemical data for Co(C6F5)3 and CoHβFCX-CO2H; and characterization after electrolysis of CoHβFCX-CO2H. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 404 publications.

  1. Sarmistha Bhunia, Atanu Rana, Shabnam Hematian, Kenneth D. Karlin, Abhishek Dey. Proton Relay in Iron Porphyrins for Hydrogen Evolution Reaction. Inorganic Chemistry 2021, 60 (18) , 13876-13887. https://doi.org/10.1021/acs.inorgchem.1c01079
  2. Xialiang Li, Xue-Peng Zhang, Mian Guo, Bin Lv, Kai Guo, Xiaotong Jin, Wei Zhang, Yong-Min Lee, Shunichi Fukuzumi, Wonwoo Nam, Rui Cao. Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. Journal of the American Chemical Society 2021, 143 (36) , 14613-14621. https://doi.org/10.1021/jacs.1c05204
  3. Zahra Abdi, S. Esmael Balaghi, Alla S. Sologubenko, Marc-Georg Willinger, Matthias Vandichel, Jian-Ren Shen, Suleyman I. Allakhverdiev, Greta R. Patzke, Mohammad Mahdi Najafpour. Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12. ACS Sustainable Chemistry & Engineering 2021, 9 (28) , 9494-9505. https://doi.org/10.1021/acssuschemeng.1c03539
  4. Shaojin Hu, Penglin Xu, Rui-Xue Xu, Xiao Zheng. Unveiling the High Catalytic Activity of a Dinuclear Iron Complex for the Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (10) , 7297-7305. https://doi.org/10.1021/acs.inorgchem.1c00394
  5. Kasturi Sahu, Sruti Mondal, Shaikh M. Mobin, Sanjib Kar. Photocatalytic C–H Thiocyanation of Corroles: Development of Near-Infrared (NIR)-Emissive Dyes. The Journal of Organic Chemistry 2021, 86 (4) , 3324-3333. https://doi.org/10.1021/acs.joc.0c02683
  6. Takashi Nakazono, Tohru Wada. Photochemical Water Oxidation Using a Doubly N-Confused Hexaphyrin Dinuclear Cobalt Complex. Inorganic Chemistry 2021, 60 (3) , 1284-1288. https://doi.org/10.1021/acs.inorgchem.0c02602
  7. Pradip K. Das, Sarmistha Bhunia, Priyanka Chakraborty, Sudipta Chatterjee, Atanu Rana, Karthik Peramaiah, Merfat M. Alsabban, Indranil Dutta, Abhishek Dey, Kuo-Wei Huang. Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen O═PN3-Pincer Cobalt Complex. Inorganic Chemistry 2021, 60 (2) , 614-622. https://doi.org/10.1021/acs.inorgchem.0c02376
  8. Yuki Tanahashi, Sho Nagai, Yuta Tsubonouchi, Masanari Hirahara, Taisei Sato, Eman A. Mohamed, Zaki N. Zahran, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Efficient Electrocatalytic Water Oxidation by a Dinuclear Ruthenium(II) Complex with Vicinal Aquo and Hydroxo Groups Adsorbed on a TiO2 Electrode. ACS Applied Energy Materials 2020, 3 (12) , 12172-12184. https://doi.org/10.1021/acsaem.0c02242
  9. Biswajit Mondal, Samir Chattopadhyay, Subal Dey, Atif Mahammed, Kaustuv Mittra, Atanu Rana, Zeev Gross, Abhishek Dey. Elucidation of Factors That Govern the 2e–/2H+ vs 4e–/4H+ Selectivity of Water Oxidation by a Cobalt Corrole. Journal of the American Chemical Society 2020, 142 (50) , 21040-21049. https://doi.org/10.1021/jacs.0c08654
  10. Nicolás I. Neuman, Uta Albold, Eleonora Ferretti, Shubhadeep Chandra, Simon Steinhauer, Paul Rößner, Franc Meyer, Fabio Doctorovich, Santiago E. Vaillard, Biprajit Sarkar. Cobalt Corroles as Electrocatalysts for Water Oxidation: Strong Effect of Substituents on Catalytic Activity. Inorganic Chemistry 2020, 59 (22) , 16622-16634. https://doi.org/10.1021/acs.inorgchem.0c02550
  11. Agnieszka Nowak-Król, Beata Koszarna, Maciej Krzeszewski, Trevor D. Lohrey, John Arnold, Daniel T. Gryko. Access to Corrole-Appended Persubstituted Benzofurans by a Multicomponent Reaction: The Dual Role of p-Chloranil. Organic Letters 2020, 22 (20) , 8139-8143. https://doi.org/10.1021/acs.orglett.0c03133
  12. Mahesh Datt Bhatt, Jin Yong Lee. Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels 2020, 34 (6) , 6634-6695. https://doi.org/10.1021/acs.energyfuels.0c00953
  13. Kolle E. Thomas, Nicholas S. Settineri, Simon J. Teat, Erik Steene, Abhik Ghosh. Molecular Structure of Copper and μ-Oxodiiron Octafluorocorrole Derivatives: Insights into Ligand Noninnocence. ACS Omega 2020, 5 (17) , 10176-10182. https://doi.org/10.1021/acsomega.0c01035
  14. Mengran Liu, Dilek K. Dogutan, Daniel G. Nocera. Synthesis of Hangman Chlorins. The Journal of Organic Chemistry 2020, 85 (7) , 5065-5072. https://doi.org/10.1021/acs.joc.9b03465
  15. Woormileela Sinha, Atif Mahammed, Natalia Fridman, Zeev Gross. Water Oxidation Catalysis by Mono- and Binuclear Iron Corroles. ACS Catalysis 2020, 10 (6) , 3764-3772. https://doi.org/10.1021/acscatal.9b05382
  16. Charles G. Margarit, Naomi G. Asimow, Miguel I. Gonzalez, Daniel G. Nocera. Double Hangman Iron Porphyrin and the Effect of Electrostatic Nonbonding Interactions on Carbon Dioxide Reduction. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1890-1895. https://doi.org/10.1021/acs.jpclett.9b03897
  17. Zhiwei Fang, Ping Wu, Kang Yu, Yifan Li, Yue Zhu, Paulo J. Ferreira, Yuanyue Liu, Guihua Yu. Hybrid Organic–Inorganic Gel Electrocatalyst for Stable Acidic Water Oxidation. ACS Nano 2019, 13 (12) , 14368-14376. https://doi.org/10.1021/acsnano.9b07826
  18. Jose Luis Silva, Isaak Unger, Tiago Araujo Matias, Leandro Rezende Franco, Giane Damas, Luciano T. Costa, Kalil C. F. Toledo, Tulio C. R. Rocha, Arnaldo Naves de Brito, Clara-Magdalena Saak, Kaline Coutinho, Koiti Araki, Olle Björneholm, Barbara Brena, C. Moyses Araujo. X-ray Photoelectron Fingerprints of High-Valence Ruthenium–Oxo Complexes along the Oxidation Reaction Pathway in an Aqueous Environment. The Journal of Physical Chemistry Letters 2019, 10 (24) , 7636-7643. https://doi.org/10.1021/acs.jpclett.9b02756
  19. Tianfei Liu, Robin Tyburski, Shihuai Wang, Ricardo Fernández-Terán, Sascha Ott, Leif Hammarström. Elucidating Proton-Coupled Electron Transfer Mechanisms of Metal Hydrides with Free Energy- and Pressure-Dependent Kinetics. Journal of the American Chemical Society 2019, 141 (43) , 17245-17259. https://doi.org/10.1021/jacs.9b08189
  20. Shunsuke Watabe, Yuki Tanahashi, Masanari Hirahara, Hirosato Yamazaki, Kosuke Takahashi, Eman A. Mohamed, Yuta Tsubonouchi, Zaki N. Zahran, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Critical Hammett Electron-Donating Ability of Substituent Groups for Efficient Water Oxidation Catalysis by Mononuclear Ruthenium Aquo Complexes. Inorganic Chemistry 2019, 58 (19) , 12716-12723. https://doi.org/10.1021/acs.inorgchem.9b01623
  21. Jingguo Li, Wenchao Wan, C. A. Triana, Zbynek Novotny, Jürg Osterwalder, Rolf Erni, Greta R. Patzke. Dynamic Role of Cluster Cocatalysts on Molecular Photoanodes for Water Oxidation. Journal of the American Chemical Society 2019, 141 (32) , 12839-12848. https://doi.org/10.1021/jacs.9b06100
  22. Shaoqi Zhan, Juan Angel De Gracia Triviño, Mårten S. G. Ahlquist. The Carboxylate Ligand as an Oxide Relay in Catalytic Water Oxidation. Journal of the American Chemical Society 2019, 141 (26) , 10247-10252. https://doi.org/10.1021/jacs.9b02585
  23. Haitao Lei, Xialiang Li, Jia Meng, Haoquan Zheng, Wei Zhang, Rui Cao. Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catalysis 2019, 9 (5) , 4320-4344. https://doi.org/10.1021/acscatal.9b00310
  24. Charles G. Margarit, Christoph Schnedermann, Naomi G. Asimow, Daniel G. Nocera. Carbon Dioxide Reduction by Iron Hangman Porphyrins. Organometallics 2019, 38 (6) , 1219-1223. https://doi.org/10.1021/acs.organomet.8b00334
  25. Hiroaki Kotani, Dachao Hong, Kenta Satonaka, Tomoya Ishizuka, Takahiko Kojima. Mechanistic Insight into Dioxygen Evolution from Diastereomeric μ-Peroxo Dinuclear Co(III) Complexes Based on Stoichiometric Electron-Transfer Oxidation. Inorganic Chemistry 2019, 58 (6) , 3676-3682. https://doi.org/10.1021/acs.inorgchem.8b03245
  26. Noah D. McMillion, Amanda W. Wilson, McKenna K. Goetz, Mu-Chieh Chang, Chia-Cheng Lin, Wei-Jie Feng, Charles C. L. McCrory, John S. Anderson. Imidazole for Pyridine Substitution Leads to Enhanced Activity Under Milder Conditions in Cobalt Water Oxidation Electrocatalysis. Inorganic Chemistry 2019, 58 (2) , 1391-1397. https://doi.org/10.1021/acs.inorgchem.8b02942
  27. Rong-Zhen Liao, Shigeyuki Masaoka, Per E. M. Siegbahn. Metal Oxidation States for the O–O Bond Formation in the Water Oxidation Catalyzed by a Pentanuclear Iron Complex. ACS Catalysis 2018, 8 (12) , 11671-11678. https://doi.org/10.1021/acscatal.8b02791
  28. Totan Ghosh, Pritam Ghosh, Galia Maayan. A Copper-Peptoid as a Highly Stable, Efficient, and Reusable Homogeneous Water Oxidation Electrocatalyst. ACS Catalysis 2018, 8 (11) , 10631-10640. https://doi.org/10.1021/acscatal.8b03661
  29. Enrico Pomarico, Petr Pospíšil, Marine E. F. Bouduban, Jenya Vestfrid, Zeev Gross, Stanislav Záliš, Majed Chergui, Antonín Vlček. Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin–Orbit Coupling and Density of States. The Journal of Physical Chemistry A 2018, 122 (37) , 7256-7266. https://doi.org/10.1021/acs.jpca.8b05311
  30. Guillaume Passard, Dilek K. Dogutan, Mengting Qiu, Cyrille Costentin, Daniel G. Nocera. Oxygen Reduction Reaction Promoted by Manganese Porphyrins. ACS Catalysis 2018, 8 (9) , 8671-8679. https://doi.org/10.1021/acscatal.8b01944
  31. Markus D. Kärkäs, Ying-Ying Li, Per E. M. Siegbahn, Rong-Zhen Liao, Björn Åkermark. Metal–Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined Experimental and Quantum Chemical Approach. Inorganic Chemistry 2018, 57 (17) , 10881-10895. https://doi.org/10.1021/acs.inorgchem.8b01527
  32. Michael Busch, Alberto Fabrizio, Sandra Luber, Jürg Hutter, Clemence Corminboeuf. Exploring the Limitation of Molecular Water Oxidation Catalysts. The Journal of Physical Chemistry C 2018, 122 (23) , 12404-12412. https://doi.org/10.1021/acs.jpcc.8b03935
  33. Chandani Singh, Subhabrata Mukhopadhyay, Samar K. Das. Polyoxometalate-Supported Bis(2,2′-bipyridine)mono(aqua)nickel(II) Coordination Complex: an Efficient Electrocatalyst for Water Oxidation. Inorganic Chemistry 2018, 57 (11) , 6479-6490. https://doi.org/10.1021/acs.inorgchem.8b00541
  34. Giacomo Cioncoloni, Isolda Roger, Paul S. Wheatley, Claire Wilson, Russell E. Morris, Stephen Sproules, Mark D. Symes. Proton-Coupled Electron Transfer Enhances the Electrocatalytic Reduction of Nitrite to NO in a Bioinspired Copper Complex. ACS Catalysis 2018, 8 (6) , 5070-5084. https://doi.org/10.1021/acscatal.8b00361
  35. Christopher M. Lemon, Seung Jun Hwang, Andrew G. Maher, David C. Powers, Daniel G. Nocera. Halogen Photoelimination from SbV Dihalide Corroles. Inorganic Chemistry 2018, 57 (9) , 5333-5342. https://doi.org/10.1021/acs.inorgchem.8b00314
  36. Ying-Ying Li, Lian-Peng Tong, Rong-Zhen Liao. Mechanism of Water Oxidation Catalyzed by a Mononuclear Iron Complex with a Square Polypyridine Ligand: A DFT Study. Inorganic Chemistry 2018, 57 (8) , 4590-4601. https://doi.org/10.1021/acs.inorgchem.8b00333
  37. Xiongyi Huang, John T. Groves. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chemical Reviews 2018, 118 (5) , 2491-2553. https://doi.org/10.1021/acs.chemrev.7b00373
  38. Michael L. Pegis, Catherine F. Wise, Daniel J. Martin, James M. Mayer. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical Reviews 2018, 118 (5) , 2340-2391. https://doi.org/10.1021/acs.chemrev.7b00542
  39. Konstantin G. Kottrup, Silvia D’Agostini, Phebe H. van Langevelde, Maxime A. Siegler, and Dennis G. H. Hetterscheid . Catalytic Activity of an Iron-Based Water Oxidation Catalyst: Substrate Effects of Graphitic Electrodes. ACS Catalysis 2018, 8 (2) , 1052-1061. https://doi.org/10.1021/acscatal.7b03284
  40. Hao-Yi Du, Si-Cong Chen, Xiao-Jun Su, Lei Jiao, and Ming-Tian Zhang . Redox-Active Ligand Assisted Multielectron Catalysis: A Case of CoIII Complex as Water Oxidation Catalyst. Journal of the American Chemical Society 2018, 140 (4) , 1557-1565. https://doi.org/10.1021/jacs.8b00032
  41. Woormileela Sinha, Amir Mizrahi, Atif Mahammed, Boris Tumanskii, and Zeev Gross . Reactive Intermediates Involved in Cobalt Corrole Catalyzed Water Oxidation (and Oxygen Reduction). Inorganic Chemistry 2018, 57 (1) , 478-485. https://doi.org/10.1021/acs.inorgchem.7b02696
  42. Sumit Ganguly, Diemo Renz, Logan J. Giles, Kevin J. Gagnon, Laura J. McCormick, Jeanet Conradie, Ritimukta Sarangi, and Abhik Ghosh . Cobalt- and Rhodium-Corrole-Triphenylphosphine Complexes Revisited: The Question of a Noninnocent Corrole. Inorganic Chemistry 2017, 56 (24) , 14788-14800. https://doi.org/10.1021/acs.inorgchem.7b01828
  43. Fangfang Chen, Ni Wang, Haitao Lei, Dingyi Guo, Hongfei Liu, Zongyao Zhang, Wei Zhang, Wenzhen Lai, and Rui Cao . Electrocatalytic Water Oxidation by a Water-Soluble Copper(II) Complex with a Copper-Bound Carbonate Group Acting as a Potential Proton Shuttle. Inorganic Chemistry 2017, 56 (21) , 13368-13375. https://doi.org/10.1021/acs.inorgchem.7b02125
  44. Fangyuan Song, René Moré, Mauro Schilling, Grigory Smolentsev, Nicolo Azzaroli, Thomas Fox, Sandra Luber, and Greta R. Patzke . {Co4O4} and {CoxNi4–xO4} Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. Journal of the American Chemical Society 2017, 139 (40) , 14198-14208. https://doi.org/10.1021/jacs.7b07361
  45. Jijun Tang, Zhongping Ou, Rui Guo, Yuanyuan Fang, Dong Huang, Jing Zhang, Jiaoxia Zhang, Song Guo, Frederick M. McFarland, and Karl M. Kadish . Functionalized Cobalt Triarylcorrole Covalently Bonded with Graphene Oxide: A Selective Catalyst for the Two- or Four-Electron Reduction of Oxygen. Inorganic Chemistry 2017, 56 (15) , 8954-8963. https://doi.org/10.1021/acs.inorgchem.7b00936
  46. Zhiji Han, Kyle T. Horak, Heui Beom Lee, and Theodor Agapie . Tetranuclear Manganese Models of the OEC Displaying Hydrogen Bonding Interactions: Application to Electrocatalytic Water Oxidation to Hydrogen Peroxide. Journal of the American Chemical Society 2017, 139 (27) , 9108-9111. https://doi.org/10.1021/jacs.7b03044
  47. Georgia Zahariou . Characterization of the High-Spin Co(II) Intermediate Species of the O2-Evolving Co4O4 Cubic Molecules. Inorganic Chemistry 2017, 56 (11) , 6105-6113. https://doi.org/10.1021/acs.inorgchem.7b00079
  48. Mioy T. Huynh, S. Jimena Mora, Matias Villalba, Marely E. Tejeda-Ferrari, Paul A. Liddell, Brian R. Cherry, Anne-Lucie Teillout, Charles W. Machan, Clifford P. Kubiak, Devens Gust, Thomas A. Moore, Sharon Hammes-Schiffer, and Ana L. Moore . Concerted One-Electron Two-Proton Transfer Processes in Models Inspired by the Tyr-His Couple of Photosystem II. ACS Central Science 2017, 3 (5) , 372-380. https://doi.org/10.1021/acscentsci.7b00125
  49. Katherine J. Fisher, Kelly L. Materna, Brandon Q. Mercado, Robert H. Crabtree, and Gary W. Brudvig . Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand. ACS Catalysis 2017, 7 (5) , 3384-3387. https://doi.org/10.1021/acscatal.7b00494
  50. Ignacio Funes-Ardoiz, Pablo Garrido-Barros, Antoni Llobet, and Feliu Maseras . Single Electron Transfer Steps in Water Oxidation Catalysis. Redefining the Mechanistic Scenario. ACS Catalysis 2017, 7 (3) , 1712-1719. https://doi.org/10.1021/acscatal.6b03253
  51. Wei Zhang, Wenzhen Lai, and Rui Cao . Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews 2017, 117 (4) , 3717-3797. https://doi.org/10.1021/acs.chemrev.6b00299
  52. Joana F. B. Barata, M. Graça P. M. S. Neves, M. Amparo F. Faustino, Augusto C. Tomé, and José A. S. Cavaleiro . Strategies for Corrole Functionalization. Chemical Reviews 2017, 117 (4) , 3192-3253. https://doi.org/10.1021/acs.chemrev.6b00476
  53. Yuanyuan Fang, Zhongping Ou, and Karl M. Kadish . Electrochemistry of Corroles in Nonaqueous Media. Chemical Reviews 2017, 117 (4) , 3377-3419. https://doi.org/10.1021/acs.chemrev.6b00546
  54. Jia-Heng Xu, Ling-Yu Guo, Hai-Feng Su, Xiang Gao, Xiao-Fan Wu, Wen-Guang Wang, Chen-Ho Tung, and Di Sun . Heptanuclear CoII5CoIII2 Cluster as Efficient Water Oxidation Catalyst. Inorganic Chemistry 2017, 56 (3) , 1591-1598. https://doi.org/10.1021/acs.inorgchem.6b02698
  55. Lijuan Han, Pengyi Tang, Álvaro Reyes-Carmona, Bárbara Rodríguez-García, Mabel Torréns, Joan Ramon Morante, Jordi Arbiol, and Jose Ramon Galan-Mascaros . Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching. Journal of the American Chemical Society 2016, 138 (49) , 16037-16045. https://doi.org/10.1021/jacs.6b09778
  56. M. Kyle Brennaman, Robert J. Dillon, Leila Alibabaei, Melissa K. Gish, Christopher J. Dares, Dennis L. Ashford, Ralph L. House, Gerald J. Meyer, John M. Papanikolas, and Thomas J. Meyer . Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society 2016, 138 (40) , 13085-13102. https://doi.org/10.1021/jacs.6b06466
  57. Kushal Sengupta, Sudipta Chatterjee, and Abhishek Dey . In Situ Mechanistic Investigation of O2 Reduction by Iron Porphyrin Electrocatalysts Using Surface-Enhanced Resonance Raman Spectroscopy Coupled to Rotating Disk Electrode (SERRS-RDE) Setup. ACS Catalysis 2016, 6 (10) , 6838-6852. https://doi.org/10.1021/acscatal.6b01122
  58. Haitao Lei, Chengyu Liu, Zhaojun Wang, Zongyao Zhang, Meining Zhang, Xingmao Chang, Wei Zhang, and Rui Cao . Noncovalent Immobilization of a Pyrene-Modified Cobalt Corrole on Carbon Supports for Enhanced Electrocatalytic Oxygen Reduction and Oxygen Evolution in Aqueous Solutions. ACS Catalysis 2016, 6 (10) , 6429-6437. https://doi.org/10.1021/acscatal.6b01579
  59. Justin J. Talbot, Xiaolu Cheng, Jonathan D. Herr, and Ryan P. Steele . Vibrational Signatures of Electronic Properties in Oxidized Water: Unraveling the Anomalous Spectrum of the Water Dimer Cation. Journal of the American Chemical Society 2016, 138 (36) , 11936-11945. https://doi.org/10.1021/jacs.6b07182
  60. Shota Ooi, Takayuki Tanaka, and Atsuhiro Osuka . Metal Complexes of meso–meso Linked Corrole Dimers. Inorganic Chemistry 2016, 55 (17) , 8920-8927. https://doi.org/10.1021/acs.inorgchem.6b01422
  61. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
  62. Ba-Tian Chen, Natalia Morlanés, Enoch Adogla, Kazuhiro Takanabe, and Valentin O. Rodionov . An Efficient and Stable Hydrophobic Molecular Cobalt Catalyst for Water Electro-oxidation at Neutral pH. ACS Catalysis 2016, 6 (7) , 4647-4652. https://doi.org/10.1021/acscatal.6b01237
  63. Jacobus M. Koelewijn, Martin Lutz, Wojciech I. Dzik, Remko J. Detz, and Joost N. H. Reek . Reaction Progress Kinetic Analysis as a Tool To Reveal Ligand Effects in Ce(IV)-Driven IrCp*-Catalyzed Water Oxidation. ACS Catalysis 2016, 6 (6) , 3418-3427. https://doi.org/10.1021/acscatal.6b00297
  64. Benjamin Wurster, Doris Grumelli, Diana Hötger, Rico Gutzler, and Klaus Kern . Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts. Journal of the American Chemical Society 2016, 138 (11) , 3623-3626. https://doi.org/10.1021/jacs.5b10484
  65. Giovanni Li Manni, Simon D. Smart, and Ali Alavi . Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins. Journal of Chemical Theory and Computation 2016, 12 (3) , 1245-1258. https://doi.org/10.1021/acs.jctc.5b01190
  66. Sylvie Rangan, Charles Ruggieri, Robert Bartynski, José Ignacio Martínez, Fernando Flores, and José Ortega . Densely Packed ZnTPPs Monolayer on the Rutile TiO2(110)-(1 × 1) Surface: Adsorption Behavior and Energy Level Alignment. The Journal of Physical Chemistry C 2016, 120 (8) , 4430-4437. https://doi.org/10.1021/acs.jpcc.5b12736
  67. Tomoya Ishizuka, Atsuko Watanabe, Hiroaki Kotani, Dachao Hong, Kenta Satonaka, Tohru Wada, Yoshihito Shiota, Kazunari Yoshizawa, Kazuaki Ohara, Kentaro Yamaguchi, Satoshi Kato, Shunichi Fukuzumi, and Takahiko Kojima . Homogeneous Photocatalytic Water Oxidation with a Dinuclear CoIII–Pyridylmethylamine Complex. Inorganic Chemistry 2016, 55 (3) , 1154-1164. https://doi.org/10.1021/acs.inorgchem.5b02336
  68. Paul F. Smith, Liam Hunt, Anders B. Laursen, Viral Sagar, Shivam Kaushik, Karin U. D. Calvinho, Gabriele Marotta, Edoardo Mosconi, Filippo De Angelis, and G. Charles Dismukes . Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society 2015, 137 (49) , 15460-15468. https://doi.org/10.1021/jacs.5b09152
  69. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
  70. Dennis L. Ashford, Melissa K. Gish, Aaron K. Vannucci, M. Kyle Brennaman, Joseph L. Templeton, John M. Papanikolas, and Thomas J. Meyer . Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews 2015, 115 (23) , 13006-13049. https://doi.org/10.1021/acs.chemrev.5b00229
  71. Seung Jun Hwang, Bryce L. Anderson, David C. Powers, Andrew G. Maher, Ryan G. Hadt, and Daniel G. Nocera . Halogen Photoelimination from Monomeric Nickel(III) Complexes Enabled by the Secondary Coordination Sphere. Organometallics 2015, 34 (19) , 4766-4774. https://doi.org/10.1021/acs.organomet.5b00568
  72. Haitao Lei, Huayi Fang, Yongzhen Han, Wenzhen Lai, Xuefeng Fu, and Rui Cao . Reactivity and Mechanism Studies of Hydrogen Evolution Catalyzed by Copper Corroles. ACS Catalysis 2015, 5 (9) , 5145-5153. https://doi.org/10.1021/acscatal.5b00666
  73. Hongxing Jia, Zijun Sun, Daochuan Jiang, and Pingwu Du . Covalent Cobalt Porphyrin Framework on Multiwalled Carbon Nanotubes for Efficient Water Oxidation at Low Overpotential. Chemistry of Materials 2015, 27 (13) , 4586-4593. https://doi.org/10.1021/acs.chemmater.5b00882
  74. Liheng Wu, Qing Li, Cheng Hao Wu, Huiyuan Zhu, Adriana Mendoza-Garcia, Bo Shen, Jinghua Guo, and Shouheng Sun . Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society 2015, 137 (22) , 7071-7074. https://doi.org/10.1021/jacs.5b04142
  75. Yongzhen Han, Yizhen Wu, Wenzhen Lai, and Rui Cao . Electrocatalytic Water Oxidation by a Water-Soluble Nickel Porphyrin Complex at Neutral pH with Low Overpotential. Inorganic Chemistry 2015, 54 (11) , 5604-5613. https://doi.org/10.1021/acs.inorgchem.5b00924
  76. Biju Basumatary, Adiki Raja Sekhar, R. V. Ramana Reddy, and Jeyaraman Sankar . Corrole-BODIPY Dyads: Synthesis, Structure, and Electrochemical and Photophysical Properties. Inorganic Chemistry 2015, 54 (9) , 4257-4267. https://doi.org/10.1021/ic502919s
  77. Haiyan Chen, Zijun Sun, Xiang Liu, Ali Han, and Pingwu Du . Cobalt–Salen Complexes as Catalyst Precursors for Electrocatalytic Water Oxidation at Low Overpotential. The Journal of Physical Chemistry C 2015, 119 (17) , 8998-9004. https://doi.org/10.1021/jp511584z
  78. Matthew L. Rigsby, Derek J. Wasylenko, Michael L. Pegis, and James M. Mayer . Medium Effects Are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron–Porphyrin Complexes. Journal of the American Chemical Society 2015, 137 (13) , 4296-4299. https://doi.org/10.1021/jacs.5b00359
  79. Christopher M. Lemon, Robert L. Halbach, Michael Huynh, and Daniel G. Nocera . Photophysical Properties of β-Substituted Free-Base Corroles. Inorganic Chemistry 2015, 54 (6) , 2713-2725. https://doi.org/10.1021/ic502860g
  80. Lei Wang, Mohammad Mirmohades, Allison Brown, Lele Duan, Fusheng Li, Quentin Daniel, Reiner Lomoth, Licheng Sun, and Leif Hammarström . Sensitizer-Catalyst Assemblies for Water Oxidation. Inorganic Chemistry 2015, 54 (6) , 2742-2751. https://doi.org/10.1021/ic502915r
  81. Jonathan D. Herr, Justin Talbot, and Ryan P. Steele . Structural Progression in Clusters of Ionized Water, (H2O)n=1–5+. The Journal of Physical Chemistry A 2015, 119 (4) , 752-766. https://doi.org/10.1021/jp509698y
  82. Mu-Jeng Cheng, Martin Head-Gordon, and Alexis T. Bell . How to Chemically Tailor Metal-Porphyrin-Like Active Sites on Carbon Nanotubes and Graphene for Minimal Overpotential in the Electrochemical Oxygen Evolution and Oxygen Reduction Reactions. The Journal of Physical Chemistry C 2014, 118 (51) , 29482-29491. https://doi.org/10.1021/jp507638v
  83. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  84. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
  85. Yulia Pushkar, Dooshaye Moonshiram, Vatsal Purohit, Lifen Yan, and Igor Alperovich . Spectroscopic Analysis of Catalytic Water Oxidation by [RuII(bpy)(tpy)H2O]2+ Suggests That RuV═O Is Not a Rate-Limiting Intermediate. Journal of the American Chemical Society 2014, 136 (34) , 11938-11945. https://doi.org/10.1021/ja506586b
  86. Oscar Diaz-Morales, Thomas J. P. Hersbach, Dennis G. H. Hetterscheid, Joost N. H. Reek, and Marc T. M. Koper . Electrochemical and Spectroelectrochemical Characterization of an Iridium-Based Molecular Catalyst for Water Splitting: Turnover Frequencies, Stability, and Electrolyte Effects. Journal of the American Chemical Society 2014, 136 (29) , 10432-10439. https://doi.org/10.1021/ja504460w
  87. Ferran Acuña-Parés, Miquel Costas, Josep M. Luis, and Julio Lloret-Fillol . Theoretical Study of the Water Oxidation Mechanism with Non-heme Fe(Pytacn) Iron Complexes. Evidence That the FeIV(O)(Pytacn) Species Cannot React with the Water Molecule To Form the O–O Bond. Inorganic Chemistry 2014, 53 (11) , 5474-5485. https://doi.org/10.1021/ic500108g
  88. Hiroshi Isobe, Koji Tanaka, Jian-Ren Shen, and Kizashi Yamaguchi . Water Oxidation Chemistry of a Synthetic Dinuclear Ruthenium Complex Containing Redox-Active Quinone Ligands. Inorganic Chemistry 2014, 53 (8) , 3973-3984. https://doi.org/10.1021/ic402340d
  89. Ethan L. Demeter, Shayna L. Hilburg, Newell R. Washburn, Terrence J. Collins, and John R. Kitchin . Electrocatalytic Oxygen Evolution with an Immobilized TAML Activator. Journal of the American Chemical Society 2014, 136 (15) , 5603-5606. https://doi.org/10.1021/ja5015986
  90. Biaobiao Zhang, Fei Li, Fengshou Yu, Xiaohong Wang, Xu Zhou, Hua Li, Yi Jiang, and Licheng Sun . Electrochemical and Photoelectrochemical Water Oxidation by Supported Cobalt–Oxo Cubanes. ACS Catalysis 2014, 4 (3) , 804-809. https://doi.org/10.1021/cs401109u
  91. Paul F. Smith, Christopher Kaplan, John E. Sheats, David M. Robinson, Nicholas S. McCool, Nicholas Mezle, and G. Charles Dismukes . What Determines Catalyst Functionality in Molecular Water Oxidation? Dependence on Ligands and Metal Nuclearity in Cobalt Clusters. Inorganic Chemistry 2014, 53 (4) , 2113-2121. https://doi.org/10.1021/ic402720p
  92. Wichard Beenken, Martin Presselt, Thien H. Ngo, Wim Dehaen, Wouter Maes, and Mikalai Kruk . Molecular Structures and Absorption Spectra Assignment of Corrole NH Tautomers. The Journal of Physical Chemistry A 2014, 118 (5) , 862-871. https://doi.org/10.1021/jp411033h
  93. Robert Staehle, Lianpeng Tong, Lei Wang, Lele Duan, Andreas Fischer, Mårten S. G. Ahlquist, Licheng Sun, and Sven Rau . Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a 2,2′-Bipyridine-6,6′-dicarboxylate (bda) Ligand: How Ligand Environment Influences the Catalytic Behavior. Inorganic Chemistry 2014, 53 (3) , 1307-1319. https://doi.org/10.1021/ic401701z
  94. Delina Barats-Damatov, Linda J. W. Shimon, Lev Weiner, Roy E. Schreiber, Pablo Jiménez-Lozano, Josep M. Poblet, Coen de Graaf, and Ronny Neumann . Dicobalt-μ-oxo Polyoxometalate Compound, [(α2-P2W17O61Co)2O]14–: A Potent Species for Water Oxidation, C–H Bond Activation, and Oxygen Transfer. Inorganic Chemistry 2014, 53 (3) , 1779-1787. https://doi.org/10.1021/ic402962c
  95. Jakub D. Baran, Henrik Grönbeck, and Anders Hellman . Analysis of Porphyrines as Catalysts for Electrochemical Reduction of O2 and Oxidation of H2O. Journal of the American Chemical Society 2014, 136 (4) , 1320-1326. https://doi.org/10.1021/ja4060299
  96. Teng Zhang, Cheng Wang, Shubin Liu, Jin-Liang Wang, and Wenbin Lin . A Biomimetic Copper Water Oxidation Catalyst with Low Overpotential. Journal of the American Chemical Society 2014, 136 (1) , 273-281. https://doi.org/10.1021/ja409267p
  97. Sanae El Ghachtouli, Maxime Fournier, Stéphanie Cherdo, Régis Guillot, Marie-France Charlot, Elodie Anxolabéhère-Mallart, Marc Robert, and Ally Aukauloo . Monometallic Cobalt–Trisglyoximato Complexes as Precatalysts for Catalytic H2 Evolution in Water. The Journal of Physical Chemistry C 2013, 117 (33) , 17073-17077. https://doi.org/10.1021/jp405134a
  98. Joseph DePasquale, Ismael Nieto, Lauren E. Reuther, Corey J. Herbst-Gervasoni, Jared J. Paul, Vadym Mochalin, Matthias Zeller, Christine M. Thomas, Anthony W. Addison, and Elizabeth T. Papish . Iridium Dihydroxybipyridine Complexes Show That Ligand Deprotonation Dramatically Speeds Rates of Catalytic Water Oxidation. Inorganic Chemistry 2013, 52 (16) , 9175-9183. https://doi.org/10.1021/ic302448d
  99. Lele Duan, Lei Wang, A. Ken Inge, Andreas Fischer, Xiaodong Zou, and Licheng Sun . Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities. Inorganic Chemistry 2013, 52 (14) , 7844-7852. https://doi.org/10.1021/ic302687d
  100. Wah-Leung Tong, Shek-Man Yiu, and Michael C. W. Chan . Crowded Bis-(M-salphen) [M = Pt(II), Zn(II)] Coordination Architectures: Luminescent Properties and Ion-Selective Responses. Inorganic Chemistry 2013, 52 (12) , 7114-7124. https://doi.org/10.1021/ic400692x
Load more citations