Electronic Structure Description of a [Co(III)3Co(IV)O4] Cluster: A Model for the Paramagnetic Intermediate in Cobalt-Catalyzed Water Oxidation

View Author Information
Department of Chemistry and Department of Geology, University of California, One Shields Avenue, Davis, California 95616, United States
School of Chemistry, Monash University, Vic 3800, Australia
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
Cite this: J. Am. Chem. Soc. 2011, 133, 39, 15444–15452
Publication Date (Web):September 13, 2011
https://doi.org/10.1021/ja202320q
Copyright © 2011 American Chemical Society
Article Views
4764
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Multifrequency electron paramagnetic resonace (EPR) spectroscopy and electronic structure calculations were performed on [Co4O4(C5H5N)4(CH3CO2)4]+ (1+), a cobalt tetramer with total electron spin S = 1/2 and formal cobalt oxidation states III, III, III, and IV. The cuboidal arrangement of its cobalt and oxygen atoms is similar to that of proposed structures for the molecular cobaltate clusters of the cobalt–phosphate (Co–Pi) water-oxidizing catalyst. The Davies electron–nuclear double resonance (ENDOR) spectrum is well-modeled using a single class of hyperfine-coupled 59Co nuclei with a modestly strong interaction (principal elements of the hyperfine tensor are equal to [−20(±2), 77(±1), −5(±15)] MHz). Mims 1H ENDOR spectra of 1+ with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on the cobalt-bonding partner is significantly reduced from unity. Multifrequency 14N ESEEM spectra (acquired at 9.5 and 34.0 GHz) indicate that four nearly equivalent nitrogen nuclei are coupled to the electron spin. Cumulatively, our EPR spectroscopic findings indicate that the unpaired spin is delocalized almost equally across the eight core atoms, a finding corroborated by results from DFT calculations. Each octahedrally coordinated cobalt ion is forced into a low-spin electron configuration by the anionic oxo and carboxylato ligands, and a fractional electron hole is localized on each metal center in a Co 3dxz,yz-based molecular orbital for this essentially [Co+3.1254O4] system. Comparing the EPR spectrum of 1+ with that of the catalyst film allows us to draw conclusions about the electronic structure of this water-oxidation catalyst.

Supporting Information

ARTICLE SECTIONS
Jump To

Cartesian coordinates for models used in DFT calculations. Spectral simulations using MOD-1+opt DFT results. Spin densities and magnetic parameters computed using DFT. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 135 publications.

  1. Alyssa A. DeLucia, Kimberly A. Kelly, Kevin A. Herrera, Danielle L. Gray, Lisa Olshansky. Intramolecular Hydrogen-Bond Interactions Tune Reactivity in Biomimetic Bis(μ-hydroxo)dicobalt Complexes. Inorganic Chemistry 2021, 60 (20) , 15599-15609. https://doi.org/10.1021/acs.inorgchem.1c02210
  2. Pradip K. Das, Sarmistha Bhunia, Priyanka Chakraborty, Sudipta Chatterjee, Atanu Rana, Karthik Peramaiah, Merfat M. Alsabban, Indranil Dutta, Abhishek Dey, Kuo-Wei Huang. Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen O═PN3-Pincer Cobalt Complex. Inorganic Chemistry 2021, 60 (2) , 614-622. https://doi.org/10.1021/acs.inorgchem.0c02376
  3. Yan Li, Suhashini Handunneththige, Jin Xiong, Yisong Guo, Marat R. Talipov, Dong Wang. Opening the CoIII,IV2(μ-O)2 Diamond Core by Lewis Bases Leads to Enhanced C–H Bond Cleaving Reactivity. Journal of the American Chemical Society 2020, 142 (52) , 21670-21678. https://doi.org/10.1021/jacs.0c07294
  4. Jaruwan Amtawong, Bastian B. Skjelstad, David Balcells, T. Don Tilley. Concerted Proton–Electron Transfer Reactivity at a Multimetallic Co4O4 Cubane Cluster. Inorganic Chemistry 2020, 59 (20) , 15553-15560. https://doi.org/10.1021/acs.inorgchem.0c02625
  5. Hongfei Liu, Heinz Frei. Observation of O–O Bond Forming Step of Molecular Co4O4 Cubane Catalyst for Water Oxidation by Rapid-Scan FT-IR Spectroscopy. ACS Catalysis 2020, 10 (3) , 2138-2147. https://doi.org/10.1021/acscatal.9b03281
  6. Yan Li, Suhashini Handunneththige, Erik R. Farquhar, Yisong Guo, Marat R. Talipov, Feifei Li, Dong Wang. Highly Reactive CoIII,IV2(μ-O)2 Diamond Core Complex That Cleaves C–H Bonds. Journal of the American Chemical Society 2019, 141 (51) , 20127-20136. https://doi.org/10.1021/jacs.9b09531
  7. Tiening Tan, Wenxuan Wang, Peiyan Ma, Jingjing Xie, Weimin Wang, Zhengyi Fu. Photosynthesis-Inspired Acceleration of Carrier Separation: Co–O–Ac and CH3COO– Ions Synergistically Enhanced Photocatalytic Hydrogen Evolution of Graphitic Carbon Nitride. ACS Sustainable Chemistry & Engineering 2019, 7 (14) , 12574-12581. https://doi.org/10.1021/acssuschemeng.9b02445
  8. Jiachen Li, Qingwen Zhou, Chenglin Zhong, Shengwen Li, Zihan Shen, Jun Pu, Jinyun Liu, Yongning Zhou, Huigang Zhang, Haixia Ma. (Co/Fe)4O4 Cubane-Containing Nanorings Fabricated by Phosphorylating Cobalt Ferrite for Highly Efficient Oxygen Evolution Reaction. ACS Catalysis 2019, 9 (5) , 3878-3887. https://doi.org/10.1021/acscatal.9b00293
  9. Hiroaki Kotani, Dachao Hong, Kenta Satonaka, Tomoya Ishizuka, Takahiko Kojima. Mechanistic Insight into Dioxygen Evolution from Diastereomeric μ-Peroxo Dinuclear Co(III) Complexes Based on Stoichiometric Electron-Transfer Oxidation. Inorganic Chemistry 2019, 58 (6) , 3676-3682. https://doi.org/10.1021/acs.inorgchem.8b03245
  10. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  11. Lisa Olshansky, Raúl Huerta-Lavorie, Andy I. Nguyen, Jaicy Vallapurackal, Ariel Furst, T. Don Tilley, and A. S. Borovik . Artificial Metalloproteins Containing Co4O4 Cubane Active Sites. Journal of the American Chemical Society 2018, 140 (8) , 2739-2742. https://doi.org/10.1021/jacs.7b13052
  12. Fumin Tang, Weiren Cheng, Yuanyuan Huang, Hui Su, Tao Yao, Qinghua Liu, Jinkun Liu, Fengchun Hu, Yong Jiang, Zhihu Sun, and Shiqiang Wei . Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (32) , 26867-26873. https://doi.org/10.1021/acsami.7b07088
  13. Georgia Zahariou . Characterization of the High-Spin Co(II) Intermediate Species of the O2-Evolving Co4O4 Cubic Molecules. Inorganic Chemistry 2017, 56 (11) , 6105-6113. https://doi.org/10.1021/acs.inorgchem.7b00079
  14. Andy I. Nguyen, Daniel L. M. Suess, Lucy E. Darago, Paul H. Oyala, Daniel S. Levine, Micah S. Ziegler, R. David Britt, and T. Don Tilley . Manganese–Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts. Journal of the American Chemical Society 2017, 139 (15) , 5579-5587. https://doi.org/10.1021/jacs.7b01792
  15. Florian H. Hodel and Sandra Luber . Dehydrogenation Free Energy of Co2+(aq) from Density Functional Theory-Based Molecular Dynamics. Journal of Chemical Theory and Computation 2017, 13 (3) , 974-981. https://doi.org/10.1021/acs.jctc.6b01077
  16. Troy A. Stich, J. Gregory McAlpin, Ryan M. Wall, Matthew L. Rigsby, and R. David Britt . Electron Paramagnetic Resonance Characterization of Dioxygen-Bridged Cobalt Dimers with Relevance to Water Oxidation. Inorganic Chemistry 2016, 55 (24) , 12728-12736. https://doi.org/10.1021/acs.inorgchem.6b01954
  17. Shannon A. Bonke, Alan M. Bond, Leone Spiccia, and Alexandr N. Simonov . Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society 2016, 138 (49) , 16095-16104. https://doi.org/10.1021/jacs.6b10304
  18. Ian G. McKendry, Akila C. Thenuwara, Jianwei Sun, Haowei Peng, John P. Perdew, Daniel R. Strongin, and Michael J. Zdilla . Water Oxidation Catalyzed by Cobalt Oxide Supported on the Mattagamite Phase of CoTe2. ACS Catalysis 2016, 6 (11) , 7393-7397. https://doi.org/10.1021/acscatal.6b01878
  19. Amendra Fernando and Christine M. Aikens . Theoretical Investigation of Water Oxidation Catalysis by a Model Manganese Cubane Complex. The Journal of Physical Chemistry C 2016, 120 (38) , 21148-21161. https://doi.org/10.1021/acs.jpcc.6b03029
  20. Justin J. Talbot, Xiaolu Cheng, Jonathan D. Herr, and Ryan P. Steele . Vibrational Signatures of Electronic Properties in Oxidized Water: Unraveling the Anomalous Spectrum of the Water Dimer Cation. Journal of the American Chemical Society 2016, 138 (36) , 11936-11945. https://doi.org/10.1021/jacs.6b07182
  21. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
  22. Florian H. Hodel and Sandra Luber . What Influences the Water Oxidation Activity of a Bioinspired Molecular CoII4O4 Cubane? An In-Depth Exploration of Catalytic Pathways. ACS Catalysis 2016, 6 (3) , 1505-1517. https://doi.org/10.1021/acscatal.5b02507
  23. Tomoya Ishizuka, Atsuko Watanabe, Hiroaki Kotani, Dachao Hong, Kenta Satonaka, Tohru Wada, Yoshihito Shiota, Kazunari Yoshizawa, Kazuaki Ohara, Kentaro Yamaguchi, Satoshi Kato, Shunichi Fukuzumi, and Takahiko Kojima . Homogeneous Photocatalytic Water Oxidation with a Dinuclear CoIII–Pyridylmethylamine Complex. Inorganic Chemistry 2016, 55 (3) , 1154-1164. https://doi.org/10.1021/acs.inorgchem.5b02336
  24. Alexander Schnegg, Joscha Nehrkorn, Archana Singh, Irati Alonso Calafell, Shannon A. Bonke, Rosalie K. Hocking, Klaus Lips, and Leone Spiccia . Probing the Fate of Mn Complexes in Nafion: A Combined Multifrequency EPR and XAS Study. The Journal of Physical Chemistry C 2016, 120 (2) , 853-861. https://doi.org/10.1021/acs.jpcc.5b10451
  25. Paul F. Smith, Liam Hunt, Anders B. Laursen, Viral Sagar, Shivam Kaushik, Karin U. D. Calvinho, Gabriele Marotta, Edoardo Mosconi, Filippo De Angelis, and G. Charles Dismukes . Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society 2015, 137 (49) , 15460-15468. https://doi.org/10.1021/jacs.5b09152
  26. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
  27. Andy I. Nguyen, Micah S. Ziegler, Pascual Oña-Burgos, Manuel Sturzbecher-Hohne, Wooyul Kim, Donatela E. Bellone, and T. Don Tilley . Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. Journal of the American Chemical Society 2015, 137 (40) , 12865-12872. https://doi.org/10.1021/jacs.5b08396
  28. Amendra Fernando, K. L. Dimuthu M. Weerawardene, Natalia V. Karimova, and Christine M. Aikens . Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chemical Reviews 2015, 115 (12) , 6112-6216. https://doi.org/10.1021/cr500506r
  29. Amendra Fernando and Christine M. Aikens . Reaction Pathways for Water Oxidation to Molecular Oxygen Mediated by Model Cobalt Oxide Dimer and Cubane Catalysts. The Journal of Physical Chemistry C 2015, 119 (20) , 11072-11085. https://doi.org/10.1021/jp511805x
  30. Jonathan D. Herr, Justin Talbot, and Ryan P. Steele . Structural Progression in Clusters of Ionized Water, (H2O)n=1–5+. The Journal of Physical Chemistry A 2015, 119 (4) , 752-766. https://doi.org/10.1021/jp509698y
  31. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  32. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
  33. Deidra L. Gerlach, Salome Bhagan, Alex A. Cruce, Dalton B. Burks, Ismael Nieto, Hai T. Truong, Steven P. Kelley, Corey J. Herbst-Gervasoni, Katherine L. Jernigan, Michael K. Bowman, Shanlin Pan, Matthias Zeller, and Elizabeth T. Papish . Studies of the Pathways Open to Copper Water Oxidation Catalysts Containing Proximal Hydroxy Groups During Basic Electrocatalysis. Inorganic Chemistry 2014, 53 (24) , 12689-12698. https://doi.org/10.1021/ic501018a
  34. Long Zhang, Yuesheng Liu, and Liang Deng . Three-Coordinate Cobalt(IV) and Cobalt(V) Imido Complexes with N-Heterocyclic Carbene Ligation: Synthesis, Structure, and Their Distinct Reactivity in C–H Bond Amination. Journal of the American Chemical Society 2014, 136 (44) , 15525-15528. https://doi.org/10.1021/ja509731z
  35. Sijie Luo, Collin J. Dibble, Michael A. Duncan, and Donald. G. Truhlar . Ligand-Mediated Ring → Cube Transformation in a Catalytic Subnanocluster: Co4O4(MeCN)n with n = 1–6. The Journal of Physical Chemistry Letters 2014, 5 (15) , 2528-2532. https://doi.org/10.1021/jz501167s
  36. Paul F. Smith, Christopher Kaplan, John E. Sheats, David M. Robinson, Nicholas S. McCool, Nicholas Mezle, and G. Charles Dismukes . What Determines Catalyst Functionality in Molecular Water Oxidation? Dependence on Ligands and Metal Nuclearity in Cobalt Clusters. Inorganic Chemistry 2014, 53 (4) , 2113-2121. https://doi.org/10.1021/ic402720p
  37. Delina Barats-Damatov, Linda J. W. Shimon, Lev Weiner, Roy E. Schreiber, Pablo Jiménez-Lozano, Josep M. Poblet, Coen de Graaf, and Ronny Neumann . Dicobalt-μ-oxo Polyoxometalate Compound, [(α2-P2W17O61Co)2O]14–: A Potent Species for Water Oxidation, C–H Bond Activation, and Oxygen Transfer. Inorganic Chemistry 2014, 53 (3) , 1779-1787. https://doi.org/10.1021/ic402962c
  38. Fabio Evangelisti, Robin Güttinger, René Moré, Sandra Luber, and Greta R. Patzke . Closer to Photosystem II: A Co4O4 Cubane Catalyst with Flexible Ligand Architecture. Journal of the American Chemical Society 2013, 135 (50) , 18734-18737. https://doi.org/10.1021/ja4098302
  39. Giuseppe Mattioli, Paolo Giannozzi, Aldo Amore Bonapasta, and Leonardo Guidoni . Reaction Pathways for Oxygen Evolution Promoted by Cobalt Catalyst. Journal of the American Chemical Society 2013, 135 (41) , 15353-15363. https://doi.org/10.1021/ja401797v
  40. Xichen Li and Per E. M. Siegbahn . Water Oxidation Mechanism for Synthetic Co–Oxides with Small Nuclearity. Journal of the American Chemical Society 2013, 135 (37) , 13804-13813. https://doi.org/10.1021/ja4053448
  41. Joseph DePasquale, Ismael Nieto, Lauren E. Reuther, Corey J. Herbst-Gervasoni, Jared J. Paul, Vadym Mochalin, Matthias Zeller, Christine M. Thomas, Anthony W. Addison, and Elizabeth T. Papish . Iridium Dihydroxybipyridine Complexes Show That Ligand Deprotonation Dramatically Speeds Rates of Catalytic Water Oxidation. Inorganic Chemistry 2013, 52 (16) , 9175-9183. https://doi.org/10.1021/ic302448d
  42. Jonathan Rosen, Gregory S. Hutchings, and Feng Jiao . Ordered Mesoporous Cobalt Oxide as Highly Efficient Oxygen Evolution Catalyst. Journal of the American Chemical Society 2013, 135 (11) , 4516-4521. https://doi.org/10.1021/ja400555q
  43. D. Kwabena Bediako, Yogesh Surendranath, and Daniel G. Nocera . Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. Journal of the American Chemical Society 2013, 135 (9) , 3662-3674. https://doi.org/10.1021/ja3126432
  44. Junjie Liu, J. Krzystek, Stephen Hill, Leonı́ Barrios, and Guillem Aromı́ . Elucidating Magnetic Exchange and Anisotropy in Weakly Coupled MnIII Dimers. Inorganic Chemistry 2013, 52 (2) , 718-723. https://doi.org/10.1021/ic301849f
  45. Xiao Liang Hu, Simone Piccinin, Alessandro Laio, and Stefano Fabris . Atomistic Structure of Cobalt-Phosphate Nanoparticles for Catalytic Water Oxidation. ACS Nano 2012, 6 (12) , 10497-10504. https://doi.org/10.1021/nn3044325
  46. Seif Yusuf and Feng Jiao . Effect of the Support on the Photocatalytic Water Oxidation Activity of Cobalt Oxide Nanoclusters. ACS Catalysis 2012, 2 (12) , 2753-2760. https://doi.org/10.1021/cs300581k
  47. Rony S. Khnayzer, Michael W. Mara, Jier Huang, Megan L. Shelby, Lin X. Chen, and Felix N. Castellano . Structure and Activity of Photochemically Deposited “CoPi” Oxygen Evolving Catalyst on Titania. ACS Catalysis 2012, 2 (10) , 2150-2160. https://doi.org/10.1021/cs3005192
  48. Daniel G. Nocera . The Artificial Leaf. Accounts of Chemical Research 2012, 45 (5) , 767-776. https://doi.org/10.1021/ar2003013
  49. Timothy R. Cook, Brian D. McCarthy, Daniel A. Lutterman, and Daniel G. Nocera . Halogen Oxidation and Halogen Photoelimination Chemistry of a Platinum–Rhodium Heterobimetallic Core. Inorganic Chemistry 2012, 51 (9) , 5152-5163. https://doi.org/10.1021/ic300004x
  50. Gina M. Chiarella, F. Albert Cotton, Naresh S. Dalal, Carlos A. Murillo, Zhenxing Wang, and Mark D. Young . Direct Evidence from Electron Paramagnetic Resonance for Additional Configurations in Uncommon Paddlewheel Re27+ Units Surrounded by an Unsymmetrical Bicyclic Guanidinate. Inorganic Chemistry 2012, 51 (9) , 5257-5263. https://doi.org/10.1021/ic300169f
  51. John S. Maass, Matthias Zeller, Tanya M. Breault, Bart M. Bartlett, Hiroshi Sakiyama, and Rudy L. Luck . Syntheses and Structures of Three Complexes of Formulas [L3Co(μ2-O2P(Bn)2)3CoL′][L″], Featuring Octahedral and Tetrahedral Cobalt(II) Geometries; Variable-Temperature Magnetic Susceptibility Measurement and Analysis on [(py)3Co(μ2-O2PBn2)3Co(py)][ClO4]. Inorganic Chemistry 2012, 51 (9) , 4903-4905. https://doi.org/10.1021/ic3004799
  52. Alec Bigness, Shivaiah Vaddypally, Michael J. Zdilla, Jose L. Mendoza-Cortes. Ubiquity of cubanes in bioinorganic relevant compounds. Coordination Chemistry Reviews 2022, 450 , 214168. https://doi.org/10.1016/j.ccr.2021.214168
  53. Shannon A. Bonke, Thomas Risse, Alexander Schnegg, Angelika Brückner. In situ electron paramagnetic resonance spectroscopy for catalysis. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-021-00031-4
  54. Yusef Shari'ati, Josh Vura-Weis. Polymer thin films as universal substrates for extreme ultraviolet absorption spectroscopy of molecular transition metal complexes. Journal of Synchrotron Radiation 2021, 28 (6) , 1850-1857. https://doi.org/10.1107/S1600577521010596
  55. Yan Zhang, Jie-Jie Tan, Hao Yang, Xia-Xing Sun, Juan Du, Chun-Li Wang, Shu-Zhong Zhan. An infinite chain, {[Ni(tn)2]3[Fe(CN)4(μ-CN)2]2}n, a new catalyst for electrochemical-driven water splitting and photochemical-driven hydrogen evolution from water under blue light. International Journal of Hydrogen Energy 2021, 334 https://doi.org/10.1016/j.ijhydene.2021.10.123
  56. Jie-Jie Tan, Xia-Xing Sun, Chun-Li Wang, Shu-Zhong Zhan. Electrochemical-driven water reduction and oxidation catalyzed by an iron(III) complex supported by a N2O2 ligand. Journal of Electroanalytical Chemistry 2021, 285 , 115895. https://doi.org/10.1016/j.jelechem.2021.115895
  57. Sharif Najafishirtari, Klaus Friedel Ortega, Mark Douthwaite, Samuel Pattisson, Graham J. Hutchings, Christoph J. Bondue, Kristina Tschulik, Daniel Waffel, Baoxiang Peng, Michel Deitermann, G. Wilma Busser, Martin Muhler, Malte Behrens. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry – A European Journal 2021, 8 https://doi.org/10.1002/chem.202102868
  58. Muhammad Waqas Ishaq, Raziq Nawaz, Abdul Jalil, Muhammad Ali Hashmi, Tao Zheng, Lianwei Li. Ligand Exchange Reaction in [Co4O4]-Cobalt Cubane: A Versatile Strategy Towards the Preparation of Cobalt Cubane-based Functional Small Molecules and Polymeric Materials. Journal of Molecular Structure 2021, 1235 , 130216. https://doi.org/10.1016/j.molstruc.2021.130216
  59. Roman Ezhov, Alireza Karbakhsh Ravari, Gabriel Bury, Paul F. Smith, Yulia Pushkar. Do multinuclear 3d metal catalysts achieve O–O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co4O4]n+. Chem Catalysis 2021, 1 (2) , 407-422. https://doi.org/10.1016/j.checat.2021.03.013
  60. Danilo González, Javier Heras-Domingo, Mariona Sodupe, Luis Rodríguez-Santiago, Xavier Solans-Monfort. Importance of the oxyl character on the IrO2 surface dependent catalytic activity for the oxygen evolution reaction. Journal of Catalysis 2021, 396 , 192-201. https://doi.org/10.1016/j.jcat.2021.02.026
  61. J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews 2021, 50 (4) , 2444-2485. https://doi.org/10.1039/D0CS00978D
  62. Sulay Saha, Prashant Kumar Gupta, Raj Ganesh S. Pala. Stabilization of non‐native polymorphs for electrocatalysis and energy storage systems. WIREs Energy and Environment 2021, 10 (2) https://doi.org/10.1002/wene.389
  63. M.K. Goetz, J.S. Anderson. Cobalt-Oxo Complexes. 2021,,https://doi.org/10.1016/B978-0-08-102688-5.00046-5
  64. Jisi Li, Jingjing Ma, Kun Du, Erling Zhao, Jiaxin Guo, Jing Mao, Tao Ling. Double exchange interaction promoted high-valence metal sites for neutral oxygen evolution reaction. Chemical Communications 2020, 56 (95) , 15004-15007. https://doi.org/10.1039/D0CC06453J
  65. Rong Chen, Zhi‐Hao Yan, Xiang‐Jian Kong. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. ChemPhotoChem 2020, 4 (3) , 157-167. https://doi.org/10.1002/cptc.201900237
  66. Shanti G. Patra, Erzsébet Illés, Amir Mizrahi, Dan Meyerstein. Cobalt Carbonate as an Electrocatalyst for Water Oxidation. Chemistry – A European Journal 2020, 26 (3) , 711-720. https://doi.org/10.1002/chem.201904051
  67. Yulia Budnikova, Olga Bochkova, Mikhail Khrizanforov, Irek Nizameev, Kirill Kholin, Tatyana Gryaznova, Artem Laskin, Yulia Dudkina, Sofia Strekalova, Svetlana Fedorenko, Aleksandr Kononov, Asia Mustafina. Selective C(sp 2 )‐H Amination Catalyzed by High‐Valent Cobalt(III)/(IV)‐bpy Complex Immobilized on Silica Nanoparticles. ChemCatChem 2019, 11 (22) , 5615-5624. https://doi.org/10.1002/cctc.201901391
  68. Yury Kutin, Nicholas Cox, Wolfgang Lubitz, Alexander Schnegg, Olaf Rüdiger. In Situ EPR Characterization of a Cobalt Oxide Water Oxidation Catalyst at Neutral pH. Catalysts 2019, 9 (11) , 926. https://doi.org/10.3390/catal9110926
  69. Ivy Ghosh, Sridhar Banerjee, Satadal Paul, Teresa Corona, Tapan Kanti Paine. Highly Selective and Catalytic Oxygenations of C−H and C=C Bonds by a Mononuclear Nonheme High‐Spin Iron(III)‐Alkylperoxo Species. Angewandte Chemie 2019, 131 (36) , 12664-12669. https://doi.org/10.1002/ange.201906978
  70. Ivy Ghosh, Sridhar Banerjee, Satadal Paul, Teresa Corona, Tapan Kanti Paine. Highly Selective and Catalytic Oxygenations of C−H and C=C Bonds by a Mononuclear Nonheme High‐Spin Iron(III)‐Alkylperoxo Species. Angewandte Chemie International Edition 2019, 58 (36) , 12534-12539. https://doi.org/10.1002/anie.201906978
  71. Ruocheng Han, Katharina Rempfer, Miao Zhang, Holger Dobbek, Athina Zouni, Holger Dau, Sandra Luber. Investigating the Structure and Dynamics of Apo‐Photosystem II. ChemCatChem 2019, 11 (16) , 4072-4080. https://doi.org/10.1002/cctc.201900351
  72. Qiaoqiao Zhang, Jingqi Guan. Mono‐/Multinuclear Water Oxidation Catalysts. ChemSusChem 2019, 12 (14) , 3209-3235. https://doi.org/10.1002/cssc.201900704
  73. Andy I. Nguyen, Kurt M. Van Allsburg, Maxwell W. Terban, Michal Bajdich, Julia Oktawiec, Jaruwan Amtawong, Micah S. Ziegler, James P. Dombrowski, K. V. Lakshmi, Walter S. Drisdell, Junko Yano, Simon J. L. Billinge, T. Don Tilley. Stabilization of reactive Co 4 O 4 cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Sciences 2019, 20 , 201815013. https://doi.org/10.1073/pnas.1815013116
  74. Xiao Lin, Hongliang Bao, Dehua Zheng, Jing Zhou, Guoping Xiao, Chengzhi Guan, Linjuan Zhang, Jian‐Qiang Wang. An Efficient Family of Misfit‐Layered Calcium Cobalt Oxide Catalyst for Oxygen Evolution Reaction. Advanced Materials Interfaces 2018, 5 (23) , 1801281. https://doi.org/10.1002/admi.201801281
  75. Zhishan Luo, Min Zhou, Xinchen Wang. Cobalt-based cubane molecular co-catalysts for photocatalytic water oxidation by polymeric carbon nitrides. Applied Catalysis B: Environmental 2018, 238 , 664-671. https://doi.org/10.1016/j.apcatb.2018.07.056
  76. Kousik Ghosh, Klaus Harms, Antonio Bauzá, Antonio Frontera, Shouvik Chattopadhyay. σ-Hole halogen bonding interactions in a mixed valence cobalt( iii / ii ) complex and anti-electrostatic hydrogen bonding interaction in a cobalt( iii ) complex: a theoretical insight. CrystEngComm 2018, 20 (45) , 7281-7292. https://doi.org/10.1039/C8CE01323C
  77. Tiago F.C. Cruz, Pedro M.M. Machado, Clara S.B. Gomes, Laura C.J. Pereira, Pedro T. Gomes. Variations in the molecularity of bis(formylpyrrolyl)cobalt(II) complexes. Inorganica Chimica Acta 2018, 478 , 118-124. https://doi.org/10.1016/j.ica.2018.04.004
  78. Johannes Lang, Daniela V. Fries, Gereon Niedner-Schatteburg. Characterization of Trinuclear Oxo Bridged Cobalt Complexes in Isolation. Zeitschrift für Physikalische Chemie 2018, 232 (5-6) , 649-669. https://doi.org/10.1515/zpch-2017-1046
  79. Debraj Chandra, Kou Tanaka, Ryouchi Takeuchi, Naoto Abe, Takanari Togashi, Masato Kurihara, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Facile Templateless Fabrication of a Cobalt Oxyhydroxide Nanosheet Film with Nanoscale Porosity as an Efficient Electrocatalyst for Water Oxidation. ChemPhotoChem 2018, 2 (3) , 332-339. https://doi.org/10.1002/cptc.201700200
  80. Yuanyuan Huang, Xu Zhao, Fumin Tang, Xusheng Zheng, Weiren Cheng, Wei Che, Fengchun Hu, Yong Jiang, Qinghua Liu, Shiqiang Wei. Strongly electrophilic heteroatoms confined in atomic CoOOH nanosheets realizing efficient electrocatalytic water oxidation. Journal of Materials Chemistry A 2018, 6 (7) , 3202-3210. https://doi.org/10.1039/C7TA09412D
  81. Zhishan Luo, Yidong Hou, Jinshui Zhang, Sibo Wang, Xinchen Wang. Bioinspired cobalt cubanes with tunable redox potentials for photocatalytic water oxidation and CO 2 reduction. Beilstein Journal of Organic Chemistry 2018, 14 , 2331-2339. https://doi.org/10.3762/bjoc.14.208
  82. Si Liu, You-Jia Lei, Zhi-Juan Xin, Rui-Juan Xiang, Stenbjörn Styring, Anders Thapper, Hong-Yan Wang. Ligand modification to stabilize the cobalt complexes for water oxidation. International Journal of Hydrogen Energy 2017, 42 (50) , 29716-29724. https://doi.org/10.1016/j.ijhydene.2017.10.066
  83. Mauro Schilling, Florian H. Hodel, Sandra Luber. Discovery of Open Cubane Core Structures for Biomimetic LnCo 3 (OR) 4 Water Oxidation Catalysts. ChemSusChem 2017, 10 (22) , 4561-4569. https://doi.org/10.1002/cssc.201701527
  84. Dirk Hollmann, Nils Rockstroh, Kathleen Grabow, Ursula Bentrup, Jabor Rabeah, Mykola Polyakov, Annette-Enrica Surkus, Wolfgang Schuhmann, Sascha Hoch, Angelika Brückner. From the Precursor to the Active State: Monitoring Metamorphosis of Electrocatalysts During Water Oxidation by In Situ Spectroscopy. ChemElectroChem 2017, 4 (8) , 2117-2122. https://doi.org/10.1002/celc.201700142
  85. Joaquín Soriano-López, Djamaladdin G. Musaev, Craig L. Hill, José Ramón Galán-Mascarós, Jorge J. Carbó, Josep M. Poblet. Tetracobalt-polyoxometalate catalysts for water oxidation: Key mechanistic details. Journal of Catalysis 2017, 350 , 56-63. https://doi.org/10.1016/j.jcat.2017.03.018
  86. Casey N. Brodsky, Ryan G. Hadt, Dugan Hayes, Benjamin J. Reinhart, Nancy Li, Lin X. Chen, Daniel G. Nocera. In situ characterization of cofacial Co(IV) centers in Co 4 O 4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proceedings of the National Academy of Sciences 2017, 114 (15) , 3855-3860. https://doi.org/10.1073/pnas.1701816114
  87. Wei Liu, Hu Liu, Lianna Dang, Hongxiu Zhang, Xiaolin Wu, Bin Yang, Zhongjian Li, Xingwang Zhang, Lecheng Lei, Song Jin. Amorphous Cobalt-Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photo-Electrochemical Oxygen Evolution. Advanced Functional Materials 2017, 27 (14) , 1603904. https://doi.org/10.1002/adfm.201603904
  88. Hussein A. Miran, M. Mahbubur Rahman, Zhong-Tao Jiang, Mohmmednoor Altarawneh, Lee Siang Chuah, Hooi-Ling Lee, Ehsan Mohammedpur, Amun Amri, Nicholas Mondinos, Bogdan Z. Dlugogorski. Structural and optical characteristics of pre- and post-annealed sol-gel derived CoCu-oxide coatings. Journal of Alloys and Compounds 2017, 701 , 222-235. https://doi.org/10.1016/j.jallcom.2017.01.079
  89. Andy I. Nguyen, Jianing Wang, Daniel S. Levine, Micah S. Ziegler, T. Don Tilley. Synthetic control and empirical prediction of redox potentials for Co 4 O 4 cubanes over a 1.4 V range: implications for catalyst design and evaluation of high-valent intermediates in water oxidation. Chemical Science 2017, 8 (6) , 4274-4284. https://doi.org/10.1039/C7SC00627F
  90. Yanyan Wang, Hanchun Xia, Ke Sun, Sheng Wu, Wangyang Lu, Jianfeng Xu, Nan Li, Kemei Pei, Zhexin Zhu, Wenxing Chen. Insights into the generation of high-valent copper-oxo species in ligand-modulated catalytic system for oxidizing organic pollutants. Chemical Engineering Journal 2016, 304 , 1000-1008. https://doi.org/10.1016/j.cej.2016.07.007
  91. Sheng Ye, Ruotian Chen, Yuxing Xu, Fengtao Fan, Pingwu Du, Fuxiang Zhang, Xu Zong, Tao Chen, Yu Qi, Ping Chen, Zheng Chen, Can Li. An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. Journal of Catalysis 2016, 338 , 168-173. https://doi.org/10.1016/j.jcat.2016.02.024
  92. David M. Herlihy, Matthias M. Waegele, Xihan Chen, C. D. Pemmaraju, David Prendergast, Tanja Cuk. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nature Chemistry 2016, 8 (6) , 549-555. https://doi.org/10.1038/nchem.2497
  93. Graeme Gardner, Jafar Al-Sharab, Nemanja Danilovic, Yong Bok Go, Katherine Ayers, Martha Greenblatt, G. Charles Dismukes. Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy & Environmental Science 2016, 9 (1) , 184-192. https://doi.org/10.1039/C5EE02195B
  94. Edwin B. Clatworthy, Xiaobo Li, Anthony F. Masters, Thomas Maschmeyer. Electrochemical investigation of [Co 4 (μ 3 -O) 4 (μ-OAc) 4 (py) 4 ] and peroxides by cyclic voltammetry. Chemical Communications 2016, 52 (100) , 14412-14415. https://doi.org/10.1039/C6CC08412E
  95. Wooyul Kim, Beth Anne McClure, Eran Edri, Heinz Frei. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews 2016, 45 (11) , 3221-3243. https://doi.org/10.1039/C6CS00062B
  96. Dong Un Lee, Pan Xu, Zachary P. Cano, Ali Ghorbani Kashkooli, Moon Gyu Park, Zhongwei Chen. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. Journal of Materials Chemistry A 2016, 4 (19) , 7107-7134. https://doi.org/10.1039/C6TA00173D
  97. Archana Singh, Monika Fekete, Thomas Gengenbach, Alexandr N. Simonov, Rosalie K. Hocking, Shery L. Y. Chang, Mathias Rothmann, Satvasheel Powar, Dongchuan Fu, Zheng Hu, Qiang Wu, Yi-Bing Cheng, Udo Bach, Leone Spiccia. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts. ChemSusChem 2015, 8 (24) , 4266-4274. https://doi.org/10.1002/cssc.201500835
  98. Zhuo-Qiang Wang, Ling-Zhi Tang, Yun-Xiao Zhang, Shu-Zhong Zhan, Jian-Shan Ye. Electrochemical-driven water splitting catalyzed by a water-soluble cobalt(II) complex supported by N,N′-bis(2′-pyridinecarboxamide)-1,2-benzene with high turnover frequency. Journal of Power Sources 2015, 287 , 50-57. https://doi.org/10.1016/j.jpowsour.2015.04.031
  99. Ting Fang, Ling-Zhi Fu, Ling-Ling Zhou, Shu-Zhong Zhan. A water-soluble dinuclear copper electrocatalyst, [Cu(oxpn)Cu(OH)2] for both water reduction and oxidation. Electrochimica Acta 2015, 161 , 388-394. https://doi.org/10.1016/j.electacta.2015.02.101
  100. Andreas Scheurer, Jana Korzekwa, Takayuki Nakajima, Frank Hampel, Anna Buling, Christine Derks, Manfred Neumann, Loïc Joly, Konstantin Petukhov, Klaus Gieb, Paul Müller, Karsten Kuepper, Karsten Meyer. Synthesis, Magnetic Properties, and X‐ray Spectroscopy of Divalent Cobalt(II) and Nickel(II) Cubanes [M II 4 (HL 2 ) 4 (OAc) 4 ]. European Journal of Inorganic Chemistry 2015, 2015 (11) , 1872-1901. https://doi.org/10.1002/ejic.201402988
Load all citations