Chemistry of Aqueous Silica Nanoparticle Surfaces and the Mechanism of Selective Peptide Adsorption

View Author Information
Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, U.K.
§ Department of Polymer Engineering, University of Akron, Akron, Ohio 44325-0301, United States
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
Unité POLY, Université Catholique de Louvain, Boltzmann A+2, Croix du Sud, 1, B-1348, Louvain-la-Neuve, Belgium
Cite this: J. Am. Chem. Soc. 2012, 134, 14, 6244–6256
Publication Date (Web):March 21, 2012
https://doi.org/10.1021/ja211307u
Copyright © 2012 American Chemical Society
Article Views
8851
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (6 MB)
Supporting Info (1)»

Abstract

Control over selective recognition of biomolecules on inorganic nanoparticles is a major challenge for the synthesis of new catalysts, functional carriers for therapeutics, and assembly of renewable biobased materials. We found low sequence similarity among sequences of peptides strongly attracted to amorphous silica nanoparticles of various size (15–450 nm) using combinatorial phage display methods. Characterization of the surface by acid base titrations and zeta potential measurements revealed that the acidity of the silica particles increased with larger particle size, corresponding to between 5% and 20% ionization of silanol groups at pH 7. The wide range of surface ionization results in the attraction of increasingly basic peptides to increasingly acidic nanoparticles, along with major changes in the aqueous interfacial layer as seen in molecular dynamics simulation. We identified the mechanism of peptide adsorption using binding assays, zeta potential measurements, IR spectra, and molecular simulations of the purified peptides (without phage) in contact with uniformly sized silica particles. Positively charged peptides are strongly attracted to anionic silica surfaces by ion pairing of protonated N-termini, Lys side chains, and Arg side chains with negatively charged siloxide groups. Further, attraction of the peptides to the surface involves hydrogen bonds between polar groups in the peptide with silanol and siloxide groups on the silica surface, as well as ion–dipole, dipole–dipole, and van-der-Waals interactions. Electrostatic attraction between peptides and particle surfaces is supported by neutralization of zeta potentials, an inverse correlation between the required peptide concentration for measurable adsorption and the peptide pI, and proximity of cationic groups to the surface in the computation. The importance of hydrogen bonds and polar interactions is supported by adsorption of noncationic peptides containing Ser, His, and Asp residues, including the formation of multilayers. We also demonstrate tuning of interfacial interactions using mutant peptides with an excellent correlation between adsorption measurements, zeta potentials, computed adsorption energies, and the proposed binding mechanism. Follow-on questions about the relation between peptide adsorption on silica nanoparticles and mineralization of silica from peptide-stabilized precursors are raised.

Supporting Information

ARTICLE SECTIONS
Jump To

Details of experimental and computational methods, as well as further results of measurements and simulations (3 tables and 13 figures). This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 289 publications.

  1. Stefano Pantaleone, Albert Rimola, Piero Ugliengo, Mariona Sodupe. First-Principles Modeling of Protein/Surface Interactions. Polyglycine Secondary Structure Adsorption on the TiO2 (101) Anatase Surface Adopting a Full Periodic Approach. Journal of Chemical Information and Modeling 2021, 61 (11) , 5484-5498. https://doi.org/10.1021/acs.jcim.1c00689
  2. Kechang Zhang, Peiliang Shen, Lu Yang, Meijuan Rao, Fazhou Wang. Improvement of the Hydration Kinetics of High Ferrite Cement: Synergic Effect of Gypsum and C3S–C4AF Systems. ACS Sustainable Chemistry & Engineering 2021, 9 (45) , 15127-15137. https://doi.org/10.1021/acssuschemeng.1c02323
  3. Gregory M. Odegard, Sagar U. Patil, Prathamesh P. Deshpande, Krishan Kanhaiya, Jordan J. Winetrout, Hendrik Heinz, Sagar P. Shah, Marianna Maiaru. Molecular Dynamics Modeling of Epoxy Resins Using the Reactive Interface Force Field. Macromolecules 2021, 54 (21) , 9815-9824. https://doi.org/10.1021/acs.macromol.1c01813
  4. Hao Huang, Chengcheng Zhang, Ralph Crisci, Tieyi Lu, Hsiang-Chieh Hung, Md Symon Jahan Sajib, Pranab Sarker, Jinrong Ma, Tao Wei, Shaoyi Jiang, Zhan Chen. Strong Surface Hydration and Salt Resistant Mechanism of a New Nonfouling Zwitterionic Polymer Based on Protein Stabilizer TMAO. Journal of the American Chemical Society 2021, 143 (40) , 16786-16795. https://doi.org/10.1021/jacs.1c08280
  5. Stefan Rauwolf, Saientan Bag, Rodrigo Rouqueiro, Sebastian Patrick Schwaminger, Ana Cristina Dias-Cabral, Sonja Berensmeier, Wolfgang Wenzel. Insights on Alanine and Arginine Binding to Silica with Atomic Resolution. The Journal of Physical Chemistry Letters 2021, 12 (38) , 9384-9390. https://doi.org/10.1021/acs.jpclett.1c02398
  6. Ali Javadi, Tariq Jamil, Ebrahim Abouzari-Lotf, Mark D. Soucek, Hendrik Heinz. Working Mechanisms and Design Principles of Comb-like Polycarboxylate Ether Superplasticizers in Cement Hydration: Quantitative Insights for a Series of Well-Defined Copolymers. ACS Sustainable Chemistry & Engineering 2021, 9 (25) , 8354-8371. https://doi.org/10.1021/acssuschemeng.0c08566
  7. Agata Wiertel-Pochopien, Piotr Batys, Jan Zawala, Przemyslaw B. Kowalczuk. Synergistic Effect of Binary Surfactant Mixtures in Two-Phase and Three-Phase Systems. The Journal of Physical Chemistry B 2021, 125 (15) , 3855-3866. https://doi.org/10.1021/acs.jpcb.1c00664
  8. Joseph R. H. Manning, Brant Walkley, John L. Provis, Siddharth V. Patwardhan. Mimicking Biosintering: The Identification of Highly Condensed Surfaces in Bioinspired Silica Materials. Langmuir 2021, 37 (1) , 561-568. https://doi.org/10.1021/acs.langmuir.0c03261
  9. Arindam Raj, Neeraj Dhandia, Kantesh Balani. Adhesin Protein Interaction of Staphylococcus Aureus Bacteria with Various Biomaterial Surfaces. ACS Biomaterials Science & Engineering 2020, 6 (11) , 6161-6172. https://doi.org/10.1021/acsbiomaterials.0c01285
  10. Janani Sampath, Sarah Alamdari, Jim Pfaendtner. Closing the Gap Between Modeling and Experiments in the Self-Assembly of Biomolecules at Interfaces and in Solution. Chemistry of Materials 2020, 32 (19) , 8043-8059. https://doi.org/10.1021/acs.chemmater.0c01891
  11. Mi Chin, Seiichi Tada, Min-Han Tsai, Yoshihiro Ito, Shyh-Chyang Luo. Strategy to Immobilize Peptide Probe Selected through In Vitro Ribosome Display for Electrochemical Aptasensor Application. Analytical Chemistry 2020, 92 (16) , 11260-11267. https://doi.org/10.1021/acs.analchem.0c01891
  12. Solène Lecot, Yann Chevolot, Magali Phaner-Goutorbe, Christelle Yeromonahos. Impact of Silane Monolayers on the Adsorption of Streptavidin on Silica and Its Subsequent Interactions with Biotin: Molecular Dynamics and Steered Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2020, 124 (31) , 6786-6796. https://doi.org/10.1021/acs.jpcb.0c04382
  13. Lesli O. Mark, Cheng Zhu, J. Will Medlin, Hendrik Heinz. Understanding the Surface Reactivity of Ligand-Protected Metal Nanoparticles for Biomass Upgrading. ACS Catalysis 2020, 10 (10) , 5462-5474. https://doi.org/10.1021/acscatal.9b04772
  14. Fateh El-Taboni, Emily Caseley, Maria Katsikogianni, Linda Swanson, Thomas Swift, Maria E. Romero-González. Fluorescence Spectroscopy Analysis of the Bacteria–Mineral Interface: Adsorption of Lipopolysaccharides to Silica and Alumina. Langmuir 2020, 36 (7) , 1623-1632. https://doi.org/10.1021/acs.langmuir.9b02158
  15. Brittney Hellner, Sarah Alamdari, Harley Pyles, Shuai Zhang, Arushi Prakash, Kayla G. Sprenger, James J. De Yoreo, David Baker, Jim Pfaendtner, François Baneyx. Sequence–Structure–Binding Relationships Reveal Adhesion Behavior of the Car9 Solid-Binding Peptide: An Integrated Experimental and Simulation Study. Journal of the American Chemical Society 2020, 142 (5) , 2355-2363. https://doi.org/10.1021/jacs.9b11617
  16. Gianvito Grasso, Stefano Mercuri, Andrea Danani, Marco A. Deriu. Biofunctionalization of Silica Nanoparticles with Cell-Penetrating Peptides: Adsorption Mechanism and Binding Energy Estimation. The Journal of Physical Chemistry B 2019, 123 (50) , 10622-10630. https://doi.org/10.1021/acs.jpcb.9b08106
  17. Vladislav Perelygin, Maxim A. Voinov, Antonin Marek, Erkang Ou, Jacqueline Krim, Donald Brenner, Tatyana I. Smirnova, Alex I. Smirnov. Dielectric and Electrostatic Properties of the Silica Nanoparticle–Water Interface by EPR of pH-Sensitive Spin Probes. The Journal of Physical Chemistry C 2019, 123 (49) , 29972-29985. https://doi.org/10.1021/acs.jpcc.9b08007
  18. Wai-Yim Ching, Lokendra Poudel, Saro San, Khagendra Baral. Interfacial Interaction between Suolunite Crystal and Silica Binding Peptide for Novel Bioinspired Cement. ACS Combinatorial Science 2019, 21 (12) , 794-804. https://doi.org/10.1021/acscombsci.9b00131
  19. Tiffany R. Walsh, Marc R. Knecht. Biomolecular Material Recognition in Two Dimensions: Peptide Binding to Graphene, h-BN, and MoS2 Nanosheets as Unique Bioconjugates. Bioconjugate Chemistry 2019, 30 (11) , 2727-2750. https://doi.org/10.1021/acs.bioconjchem.9b00593
  20. Monika Michaelis, Aneeqa Fayyaz, Mithun Parambath, Susan Koeppen, Lucio Colombi Ciacchi, Quentin S. Hanley, Carole C. Perry. Platform for Screening Abiotic/Biotic Interactions Using Indicator Displacement Assays. Langmuir 2019, 35 (44) , 14230-14237. https://doi.org/10.1021/acs.langmuir.9b03085
  21. Souvik Chakraborty, Freda C. H. Lim, Jun Ye. Achieving an Optimal Tg Change by Elucidating the Polymer–Nanoparticle Interface: A Molecular Dynamics Simulation Study of the Poly(vinyl alcohol)–Silica Nanocomposite System. The Journal of Physical Chemistry C 2019, 123 (39) , 23995-24006. https://doi.org/10.1021/acs.jpcc.9b05545
  22. Yuan Hu, Yuqing Huang, Rongdong Deng, Lin Ma, Wanzhong Yin. Improvement Effect of FeSO4·7H2O on Flotation Separation of Scheelite from Fluorite. ACS Omega 2019, 4 (7) , 11364-11371. https://doi.org/10.1021/acsomega.9b00941
  23. Amanda Garley, Samuel E. Hoff, Nabanita Saikia, Sumanth Jamadagni, Arif Baig, Hendrik Heinz. Adsorption and Substitution of Metal Ions on Hydroxyapatite as a Function of Crystal Facet and Electrolyte pH. The Journal of Physical Chemistry C 2019, 123 (27) , 16982-16993. https://doi.org/10.1021/acs.jpcc.9b02808
  24. Max F. Döpke, Johannes Lützenkirchen, Othonas A. Moultos, Bertrand Siboulet, Jean-François Dufrêche, Johan T. Padding, Remco Hartkamp. Preferential Adsorption in Mixed Electrolytes Confined by Charged Amorphous Silica. The Journal of Physical Chemistry C 2019, 123 (27) , 16711-16720. https://doi.org/10.1021/acs.jpcc.9b02975
  25. Seung Ho Hahn, Adri C. T. van Duin. Surface Reactivity and Leaching of a Sodium Silicate Glass under an Aqueous Environment: A ReaxFF Molecular Dynamics Study. The Journal of Physical Chemistry C 2019, 123 (25) , 15606-15617. https://doi.org/10.1021/acs.jpcc.9b02940
  26. Coco M. Mao, Janani Sampath, K. G. Sprenger, Gary Drobny, Jim Pfaendtner. Molecular Driving Forces in Peptide Adsorption to Metal Oxide Surfaces. Langmuir 2019, 35 (17) , 5911-5920. https://doi.org/10.1021/acs.langmuir.8b01392
  27. Mohammadreza Samieegohar, Feng Sha, Andre Z. Clayborne, Tao Wei. ReaxFF MD Simulations of Peptide-Grafted Gold Nanoparticles. Langmuir 2019, 35 (14) , 5029-5036. https://doi.org/10.1021/acs.langmuir.8b03951
  28. Brittney Hellner, Seong Beom Lee, Akshay Subramaniam, Venkat R. Subramanian, François Baneyx. Modeling the Cooperative Adsorption of Solid-Binding Proteins on Silica: Molecular Insights from Surface Plasmon Resonance Measurements. Langmuir 2019, 35 (14) , 5013-5020. https://doi.org/10.1021/acs.langmuir.9b00283
  29. Brianna R. Knowles, Dan Yang, Pawel Wagner, Shane Maclaughlin, Michael J. Higgins, Paul J. Molino. Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein, Bacteria, and Fungal Spore Adhesion. Langmuir 2019, 35 (5) , 1335-1345. https://doi.org/10.1021/acs.langmuir.8b01550
  30. Marion J. Limo, Anna Sola-Rabada, Estefania Boix, Veeranjaneyulu Thota, Zayd C. Westcott, Valeria Puddu, Carole C. Perry. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chemical Reviews 2018, 118 (22) , 11118-11193. https://doi.org/10.1021/acs.chemrev.7b00660
  31. Olga Borozenko, Manon Faral, Shirin Behyan, Abdullah Khan, Jennifer Coulombe, Christine DeWolf, Antonella Badia. Silica Nanoparticle-Induced Structural Reorganizations in Pulmonary Surfactant Films: What Monolayer Compression Isotherms Do Not Say. ACS Applied Nano Materials 2018, 1 (9) , 5268-5278. https://doi.org/10.1021/acsanm.8b01259
  32. Anna Sola-Rabada, Monika Michaelis, Daniel J. Oliver, Martin J. Roe, Lucio Colombi Ciacchi, Hendrik Heinz, Carole C. Perry. Interactions at the Silica–Peptide Interface: Influence of the Extent of Functionalization on the Conformational Ensemble. Langmuir 2018, 34 (28) , 8255-8263. https://doi.org/10.1021/acs.langmuir.8b00874
  33. Juan Liu, Emrys Tennessen, Jianwei Miao, Yu Huang, James M. Rondinelli, Hendrik Heinz. Understanding Chemical Bonding in Alloys and the Representation in Atomistic Simulations. The Journal of Physical Chemistry C 2018, 122 (26) , 14996-15009. https://doi.org/10.1021/acs.jpcc.8b01891
  34. Victor V. Volkov, David J. Belton, Carole C. Perry. Do Material Discontinuities in Silica Affect Vibration Modes?. The Journal of Physical Chemistry A 2018, 122 (22) , 4997-5003. https://doi.org/10.1021/acs.jpca.8b01688
  35. Kexin Bian, Xuwu Zhang, Kai Liu, Tian Yin, Huan Liu, Kang Niu, Weiwei Cao, Dawei Gao. Peptide-Directed Hierarchical Mineralized Silver Nanocages for Anti-Tumor Photothermal Therapy. ACS Sustainable Chemistry & Engineering 2018, 6 (6) , 7574-7588. https://doi.org/10.1021/acssuschemeng.8b00415
  36. Laurent Marichal, Jean-Philippe Renault, Stéphane Chédin, Gilles Lagniel, Géraldine Klein, Jean-Christophe Aude, Carine Tellier-Lebegue, Jean Armengaud, Serge Pin, Jean Labarre, Yves Boulard. Importance of Post-translational Modifications in the Interaction of Proteins with Mineral Surfaces: The Case of Arginine Methylation and Silica surfaces. Langmuir 2018, 34 (18) , 5312-5322. https://doi.org/10.1021/acs.langmuir.8b00752
  37. Erika L. Buckle, June S. Lum, Adrienne M. Roehrich, Robert E. Stote, Branden Vandermoon, Martin Dracinsky, Shaun F. Filocamo, Gary P. Drobny. Serine–Lysine Peptides as Mediators for the Production of Titanium Dioxide: Investigating the Effects of Primary and Secondary Structures Using Solid-State NMR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry B 2018, 122 (17) , 4708-4718. https://doi.org/10.1021/acs.jpcb.8b00745
  38. K. G. Sprenger, Arushi Prakash, Gary Drobny, and Jim Pfaendtner . Investigating the Role of Phosphorylation in the Binding of Silaffin Peptide R5 to Silica with Molecular Dynamics Simulations. Langmuir 2018, 34 (3) , 1199-1207. https://doi.org/10.1021/acs.langmuir.7b02868
  39. Lokendra Poudel, Candan Tamerler, Anil Misra, and Wai-Yim Ching . Atomic-Scale Quantification of Interfacial Binding between Peptides and Inorganic Crystals: The Case of Calcium Carbonate Binding Peptide on Aragonite. The Journal of Physical Chemistry C 2017, 121 (51) , 28354-28363. https://doi.org/10.1021/acs.jpcc.7b10004
  40. Felipe Jiménez-Ángeles, Atefeh Khoshnood, and Abbas Firoozabadi . Molecular Dynamics Simulation of the Adsorption and Aggregation of Ionic Surfactants at Liquid–Solid Interfaces. The Journal of Physical Chemistry C 2017, 121 (46) , 25908-25920. https://doi.org/10.1021/acs.jpcc.7b09466
  41. Nina Dinjaski, Davoud Ebrahimi, Shengjie Ling, Suraj Shah, Markus J. Buehler, and David L. Kaplan . Integrated Modeling and Experimental Approaches to Control Silica Modification of Design Silk-Based Biomaterials. ACS Biomaterials Science & Engineering 2017, 3 (11) , 2877-2888. https://doi.org/10.1021/acsbiomaterials.6b00236
  42. Tiffany R. Walsh and Marc R. Knecht . Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chemical Reviews 2017, 117 (20) , 12641-12704. https://doi.org/10.1021/acs.chemrev.7b00139
  43. Erika L. Buckle, Adrienne Roehrich, Branden Vandermoon, and Gary P. Drobny . Comparative Study of Secondary Structure and Interactions of the R5 Peptide in Silicon Oxide and Titanium Oxide Coprecipitates Using Solid-State NMR Spectroscopy. Langmuir 2017, 33 (40) , 10517-10524. https://doi.org/10.1021/acs.langmuir.7b01048
  44. Karina Kubiak-Ossowska, Karolina Tokarczyk, Barbara Jachimska, and Paul A. Mulheran . Bovine Serum Albumin Adsorption at a Silica Surface Explored by Simulation and Experiment. The Journal of Physical Chemistry B 2017, 121 (16) , 3975-3986. https://doi.org/10.1021/acs.jpcb.7b01637
  45. Stéphanie Devineau, Loussiné Zargarian, Jean Philippe Renault, and Serge Pin . Structure and Function of Adsorbed Hemoglobin on Silica Nanoparticles: Relationship between the Adsorption Process and the Oxygen Binding Properties. Langmuir 2017, 33 (13) , 3241-3252. https://doi.org/10.1021/acs.langmuir.6b04281
  46. Oluwamayowa O. Adigun, Erin Lynn Retzlaff-Roberts, Gloria Novikova, Longfei Wang, Bong-Suk Kim, Jan Ilavsky, Jeffrey T. Miller, L. Sue Loesch-Fries, and Michael T. Harris . BSMV as a Biotemplate for Palladium Nanomaterial Synthesis. Langmuir 2017, 33 (7) , 1716-1724. https://doi.org/10.1021/acs.langmuir.6b03341
  47. Arundhati Sengupta, Rohan Rao, and D. Bahadur . Zn2+–Silica Modified Cobalt Ferrite Magnetic Nanostructured Composite for Efficient Adsorption of Cationic Pollutants from Water. ACS Sustainable Chemistry & Engineering 2017, 5 (2) , 1280-1286. https://doi.org/10.1021/acssuschemeng.6b01186
  48. Qiang Cui, Rigoberto Hernandez, Sara E. Mason, Thomas Frauenheim, Joel A. Pedersen, and Franz Geiger . Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies. The Journal of Physical Chemistry B 2016, 120 (30) , 7297-7306. https://doi.org/10.1021/acs.jpcb.6b03976
  49. Zsuzsanna Pápa, Sathish Kumar Ramakrishnan, Marta Martin, Thierry Cloitre, László Zimányi, Jessica Márquez, Judit Budai, Zsolt Tóth, and Csilla Gergely . Interactions at the Peptide/Silicon Surfaces: Evidence of Peptide Multilayer Assembly. Langmuir 2016, 32 (28) , 7250-7258. https://doi.org/10.1021/acs.langmuir.6b00916
  50. Morgane Pfeiffer-Laplaud and Marie-Pierre Gaigeot . Electrolytes at the Hydroxylated (0001) α-Quartz/Water Interface: Location and Structural Effects on Interfacial Silanols by DFT-Based MD. The Journal of Physical Chemistry C 2016, 120 (26) , 14034-14047. https://doi.org/10.1021/acs.jpcc.6b01819
  51. Yasmin Geiger, Hugo E. Gottlieb, Ümit Akbey, Hartmut Oschkinat, and Gil Goobes . Studying the Conformation of a Silaffin-Derived Pentalysine Peptide Embedded in Bioinspired Silica using Solution and Dynamic Nuclear Polarization Magic-Angle Spinning NMR. Journal of the American Chemical Society 2016, 138 (17) , 5561-5567. https://doi.org/10.1021/jacs.5b07809
  52. Jan-Michael Y. Carrillo, Miles A. Sakwa-Novak, Adam Holewinski, Matthew E. Potter, Gernot Rother, Christopher W. Jones, and Bobby G. Sumpter . Unraveling the Dynamics of Aminopolymer/Silica Composites. Langmuir 2016, 32 (11) , 2617-2625. https://doi.org/10.1021/acs.langmuir.5b04299
  53. Tzu-Jen Lin and Hendrik Heinz . Accurate Force Field Parameters and pH Resolved Surface Models for Hydroxyapatite to Understand Structure, Mechanics, Hydration, and Biological Interfaces. The Journal of Physical Chemistry C 2016, 120 (9) , 4975-4992. https://doi.org/10.1021/acs.jpcc.5b12504
  54. Kai Ma, Duhan Zhang, Ying Cong, and Ulrich Wiesner . Elucidating the Mechanism of Silica Nanoparticle PEGylation Processes Using Fluorescence Correlation Spectroscopies. Chemistry of Materials 2016, 28 (5) , 1537-1545. https://doi.org/10.1021/acs.chemmater.6b00030
  55. Fateme S. Emami, Valeria Puddu, Rajiv J. Berry, Vikas Varshney, Siddharth V. Patwardhan, Carole C. Perry, and Hendrik Heinz. Correction to Force Field and a Surface Model Database for Silica to Simulate Interfacial Properties in Atomic Resolution. Chemistry of Materials 2016, 28 (1) , 406-407. https://doi.org/10.1021/acs.chemmater.5b04760
  56. Tao Wei, Md. Symon Jahan Sajib, Mohammadreza Samieegohar, Heng Ma, and Katherine Shing . Self-Assembled Monolayers of an Azobenzene Derivative on Silica and Their Interactions with Lysozyme. Langmuir 2015, 31 (50) , 13543-13552. https://doi.org/10.1021/acs.langmuir.5b03603
  57. Stephan Köhler, Friederike Schmid, and Giovanni Settanni . Molecular Dynamics Simulations of the Initial Adsorption Stages of Fibrinogen on Mica and Graphite Surfaces. Langmuir 2015, 31 (48) , 13180-13190. https://doi.org/10.1021/acs.langmuir.5b03371
  58. Chengchen Guo and Gregory P. Holland . Alanine Adsorption and Thermal Condensation at the Interface of Fumed Silica Nanoparticles: A Solid-State NMR Investigation. The Journal of Physical Chemistry C 2015, 119 (45) , 25663-25672. https://doi.org/10.1021/acs.jpcc.5b10236
  59. Gianvito Grasso, Marco A. Deriu, Maria Prat, Lia Rimondini, Enrica Vernè, Antonia Follenzi, and Andrea Danani . Cell Penetrating Peptide Adsorption on Magnetite and Silica Surfaces: A Computational Investigation. The Journal of Physical Chemistry B 2015, 119 (26) , 8239-8246. https://doi.org/10.1021/jp512782e
  60. Nicholas M. Bedford, Hadi Ramezani-Dakhel, Joseph M. Slocik, Beverly D. Briggs, Yang Ren, Anatoly I. Frenkel, Valeri Petkov, Hendrik Heinz, Rajesh R. Naik, and Marc R. Knecht . Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts. ACS Nano 2015, 9 (5) , 5082-5092. https://doi.org/10.1021/acsnano.5b00168
  61. Ahmad Seyfaee, Frances Neville, and Roberto Moreno-Atanasio . Experimental Results and Theoretical Modeling of the Growth Kinetics of Polyamine-Derived Silica Particles. Industrial & Engineering Chemistry Research 2015, 54 (9) , 2466-2475. https://doi.org/10.1021/acs.iecr.5b00093
  62. Wei Wei, Jing Yu, Matthew A. Gebbie, Yerpeng Tan, Nadine R. Martinez Rodriguez, Jacob N. Israelachvili, and J. Herbert Waite . Bridging Adhesion of Mussel-Inspired Peptides: Role of Charge, Chain Length, and Surface Type. Langmuir 2015, 31 (3) , 1105-1112. https://doi.org/10.1021/la504316q
  63. Sebastian Roeder, Stephan Hobe, and Harald Paulsen . Silica Entrapment for Significantly Stabilized, Energy-Conducting Light-Harvesting Complex (LHCII). Langmuir 2014, 30 (47) , 14234-14240. https://doi.org/10.1021/la503858t
  64. Chengchen Guo and Gregory P. Holland . Investigating Lysine Adsorption on Fumed Silica Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (44) , 25792-25801. https://doi.org/10.1021/jp508627h
  65. Fateme S. Emami, Valeria Puddu, Rajiv J. Berry, Vikas Varshney, Siddharth V. Patwardhan, Carole C. Perry, and Hendrik Heinz . Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of pH and Particle Size. Chemistry of Materials 2014, 26 (19) , 5725-5734. https://doi.org/10.1021/cm5026987
  66. Karina Kubiak-Ossowska, Paul A. Mulheran, and Wieslaw Nowak . Fibronectin Module FNIII9 Adsorption at Contrasting Solid Model Surfaces Studied by Atomistic Molecular Dynamics. The Journal of Physical Chemistry B 2014, 118 (33) , 9900-9908. https://doi.org/10.1021/jp5020077
  67. Imali A. Mudunkotuwa and Vicki H. Grassian . Histidine Adsorption on TiO2 Nanoparticles: An Integrated Spectroscopic, Thermodynamic, and Molecular-Based Approach toward Understanding Nano–Bio Interactions. Langmuir 2014, 30 (29) , 8751-8760. https://doi.org/10.1021/la500722n
  68. Bartosz Gabryelczyk, Géza R. Szilvay, and Markus B. Linder . The Structural Basis for Function in Diamond-like Carbon Binding Peptides. Langmuir 2014, 30 (29) , 8798-8802. https://doi.org/10.1021/la502396p
  69. Nicholas M. Bedford, Rohit Bhandari, Joseph M. Slocik, Soenke Seifert, Rajesh R. Naik, and Marc R. Knecht . Peptide-Modified Dendrimers as Templates for the Production of Highly Reactive Catalytic Nanomaterials. Chemistry of Materials 2014, 26 (14) , 4082-4091. https://doi.org/10.1021/cm5007444
  70. Mei-Keat Liang, Marion J. Limo, Anna Sola-Rabada, Martin J. Roe, and Carole C. Perry . New Insights into the Mechanism of ZnO Formation from Aqueous Solutions of Zinc Acetate and Zinc Nitrate. Chemistry of Materials 2014, 26 (14) , 4119-4129. https://doi.org/10.1021/cm501096p
  71. Toshifumi Mori, Robert J. Hamers, Joel A. Pedersen, and Qiang Cui . Integrated Hamiltonian Sampling: A Simple and Versatile Method for Free Energy Simulations and Conformational Sampling. The Journal of Physical Chemistry B 2014, 118 (28) , 8210-8220. https://doi.org/10.1021/jp501339t
  72. Md. Shahinul Islam, Won San Choi, and Ha-Jin Lee . Controlled Etching of Internal and External Structures of SiO2 Nanoparticles Using Hydrogen Bond of Polyelectrolytes. ACS Applied Materials & Interfaces 2014, 6 (12) , 9563-9571. https://doi.org/10.1021/am501941c
  73. Christopher S. Ewing, Saurabh Bhavsar, Götz Veser, Joseph J. McCarthy, and J. Karl Johnson . Accurate Amorphous Silica Surface Models from First-Principles Thermodynamics of Surface Dehydroxylation. Langmuir 2014, 30 (18) , 5133-5141. https://doi.org/10.1021/la500422p
  74. Fateme S. Emami, Valeria Puddu, Rajiv J. Berry, Vikas Varshney, Siddharth V. Patwardhan, Carole C. Perry, and Hendrik Heinz . Force Field and a Surface Model Database for Silica to Simulate Interfacial Properties in Atomic Resolution. Chemistry of Materials 2014, 26 (8) , 2647-2658. https://doi.org/10.1021/cm500365c
  75. Armin Hernández-Gordillo, Andrés Hernández-Arana, Antonio Campero, and L. Irais Vera-Robles . Biomimetic Sol–Gel Synthesis of TiO2 and SiO2 Nanostructures. Langmuir 2014, 30 (14) , 4084-4093. https://doi.org/10.1021/la500203k
  76. Matthew J. Penna, Milan Mijajlovic, and Mark J. Biggs . Molecular-Level Understanding of Protein Adsorption at the Interface between Water and a Strongly Interacting Uncharged Solid Surface. Journal of the American Chemical Society 2014, 136 (14) , 5323-5331. https://doi.org/10.1021/ja411796e
  77. Muralikrishna Raju, Adri C. T. van Duin, and Kristen A. Fichthorn . Mechanisms of Oriented Attachment of TiO2 Nanocrystals in Vacuum and Humid Environments: Reactive Molecular Dynamics. Nano Letters 2014, 14 (4) , 1836-1842. https://doi.org/10.1021/nl404533k
  78. Robert H. Meißner, Julian Schneider, Peter Schiffels, and Lucio Colombi Ciacchi . Computational Prediction of Circular Dichroism Spectra and Quantification of Helicity Loss upon Peptide Adsorption on Silica. Langmuir 2014, 30 (12) , 3487-3494. https://doi.org/10.1021/la500285m
  79. Melina Preari, Katrin Spinde, Joëlle Lazic, Eike Brunner, and Konstantinos D. Demadis . Bioinspired Insights into Silicic Acid Stabilization Mechanisms: The Dominant Role of Polyethylene Glycol-Induced Hydrogen Bonding. Journal of the American Chemical Society 2014, 136 (11) , 4236-4244. https://doi.org/10.1021/ja411822s
  80. Amauri J. Paula, Camila P. Silveira, Diego Stéfani T. Martinez, Antonio G. Souza Filho, Fabian V. Romero, Leandro C. Fonseca, Ljubica Tasic, Oswaldo L. Alves, and Nelson Durán . Topography-driven bionano-interactions on colloidal silica nanoparticles. ACS Applied Materials & Interfaces 2014, 6 (5) , 3437-3447. https://doi.org/10.1021/am405594q
  81. Jens Baumgartner, Maria Antonietta Carillo, Kevin M. Eckes, Peter Werner, and Damien Faivre . Biomimetic Magnetite Formation: From Biocombinatorial Approaches to Mineralization Effects. Langmuir 2014, 30 (8) , 2129-2136. https://doi.org/10.1021/la404290c
  82. Valeria Puddu and Carole C. Perry . Interactions at the Silica–Peptide Interface: The Influence of Particle Size and Surface Functionality. Langmuir 2014, 30 (1) , 227-233. https://doi.org/10.1021/la403242f
  83. Karina Kubiak-Ossowska, Glenn Burley, Siddharth V. Patwardhan, and Paul A. Mulheran . Spontaneous Membrane-Translocating Peptide Adsorption at Silica Surfaces: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2013, 117 (47) , 14666-14675. https://doi.org/10.1021/jp409130s
  84. Zak E. Hughes, Louise B. Wright, and Tiffany R. Walsh . Biomolecular Adsorption at Aqueous Silver Interfaces: First-Principles Calculations, Polarizable Force-Field Simulations, and Comparisons with Gold. Langmuir 2013, 29 (43) , 13217-13229. https://doi.org/10.1021/la402839q
  85. Aerial N. Camden, Stephen A. Barr, and Rajiv J. Berry . Simulations of Peptide-Graphene Interactions in Explicit Water. The Journal of Physical Chemistry B 2013, 117 (37) , 10691-10697. https://doi.org/10.1021/jp403505y
  86. Albert Rimola, Dominique Costa, Mariona Sodupe, Jean-François Lambert, and Piero Ugliengo . Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chemical Reviews 2013, 113 (6) , 4216-4313. https://doi.org/10.1021/cr3003054
  87. Ratan K. Mishra, Robert J. Flatt, and Hendrik Heinz . Force Field for Tricalcium Silicate and Insight into Nanoscale Properties: Cleavage, Initial Hydration, and Adsorption of Organic Molecules. The Journal of Physical Chemistry C 2013, 117 (20) , 10417-10432. https://doi.org/10.1021/jp312815g
  88. Lingyan Ruan, Hadi Ramezani-Dakhel, Chin-Yi Chiu, Enbo Zhu, Yujing Li, Hendrik Heinz, and Yu Huang . Tailoring Molecular Specificity Toward a Crystal Facet: a Lesson From Biorecognition Toward Pt{111}. Nano Letters 2013, 13 (2) , 840-846. https://doi.org/10.1021/nl400022g
  89. Hendrik Heinz, Tzu-Jen Lin, Ratan Kishore Mishra, and Fateme S. Emami . Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29 (6) , 1754-1765. https://doi.org/10.1021/la3038846
  90. Karina Kubiak-Ossowska and Paul A. Mulheran . Protein Diffusion and Long-Term Adsorption States at Charged Solid Surfaces. Langmuir 2012, 28 (44) , 15577-15585. https://doi.org/10.1021/la303323r
  91. Ritesh Jain and Daniel Forciniti . Adsorption of Diblock Polypeptides on Polystyrene Latex. Langmuir 2012, 28 (43) , 15323-15335. https://doi.org/10.1021/la302380z
  92. Rayk Hassert, Mareen Pagel, Zhou Ming, Tilmann Häupl, Bernd Abel, Klaus Braun, Manfred Wiessler, and Annette G. Beck-Sickinger . Biocompatible Silicon Surfaces through Orthogonal Click Chemistries and a High Affinity Silicon Oxide Binding Peptide. Bioconjugate Chemistry 2012, 23 (10) , 2129-2137. https://doi.org/10.1021/bc3003875
  93. Valeria Puddu and Carole C. Perry . Peptide Adsorption on Silica Nanoparticles: Evidence of Hydrophobic Interactions. ACS Nano 2012, 6 (7) , 6356-6363. https://doi.org/10.1021/nn301866q
  94. Rakesh Kumar Sharma, Bhawna Kaushik, Sneha Yadav, Pooja Rana, Pooja Rana, Kanika Solanki, Deepti Rawat. Ingeniously designed Silica nanostructures as an exceptional support: Opportunities, potential challenges and future prospects for viable degradation of pesticides. Journal of Environmental Management 2022, 301 , 113821. https://doi.org/10.1016/j.jenvman.2021.113821
  95. Samuel E. Hoff, Juan Liu, Hendrik Heinz. Binding mechanism and binding free energy of amino acids and citrate to hydroxyapatite surfaces as a function of crystallographic facet, pH, and electrolytes. Journal of Colloid and Interface Science 2022, 605 , 685-700. https://doi.org/10.1016/j.jcis.2021.07.109
  96. Changjiu Li, Wenhao Yang, Wen He, Xudong Zhang, Jiefang Zhu. Multifunctional surfactants for synthesizing high-performance energy storage materials. Energy Storage Materials 2021, 43 , 1-19. https://doi.org/10.1016/j.ensm.2021.08.033
  97. Ki Ha Min, Jin Woo Shin, Mi-Ran Ki, Sung Ho Kim, Kyung Hee Kim, Seung Pil Pack. Bio-inspired formation of silica particles using the silica-forming peptides found by silica-binding motif sequence, RRSSGGRR. Process Biochemistry 2021, 111 , 262-269. https://doi.org/10.1016/j.procbio.2021.11.002
  98. Guifa Li, Pengsen Zhao, Haizhong Zheng, Lixia Yang, Yongxiang Geng, Ping Peng. Nanometer effect promoting arsenic removal on α-MnO2 nano-surface in aqueous solution: DFT+U research. Environmental Science and Pollution Research 2021, 28 (46) , 65899-65910. https://doi.org/10.1007/s11356-021-15586-8
  99. Monica Mesa, Natalia Y. Becerra, . Silica/Protein and Silica/Polysaccharide Interactions and Their Contributions to the Functional Properties of Derived Hybrid Wound Dressing Hydrogels. International Journal of Biomaterials 2021, 2021 , 1-13. https://doi.org/10.1155/2021/6857204
  100. Elena Korina, Sergey Naifert, Nadezhda Palko, Maria Grishina, Vladimir Potemkin, Roman Morozov, Alaa Adawy, Rafael Merono, Vyacheslav Avdin, Artyom Schelokov, Vadim Popov, Oleg Bol'shakov. Probing Adsorption of Dipeptides on Anatase in H 2 O and D 2 O: Thermodynamics and Molecular Geometry. ChemPhysChem 2021, 14 https://doi.org/10.1002/cphc.202100540
Load more citations