ADDITION / CORRECTIONThis article has been corrected. View the notice.

Water Oxidation Electrocatalyzed by an Efficient Mn3O4/CoSe2 Nanocomposite

View Author Information
Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, The People’s Republic of China
Cite this: J. Am. Chem. Soc. 2012, 134, 6, 2930–2933
Publication Date (Web):January 26, 2012
https://doi.org/10.1021/ja211526y
Copyright © 2012 American Chemical Society
Article Views
11368
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

The design of efficient, cheap, and abundant oxygen evolution reaction (OER) catalysts is crucial to the development of sustainable energy sources for powering fuel cells. We describe here a novel Mn3O4/CoSe2 hybrid which could be a promising candidate for such electrocatalysts. Possibly due to the synergetic chemical coupling effects between Mn3O4 and CoSe2, the constructed hybrid displayed superior OER catalytic performance relative to its parent CoSe2/DETA nanobelts. Notably, such earth-abundant cobalt (Co)-based catalyst afforded a current density of 10 mA cm–2 at a small overpotential of ∼0.45 V and a small Tafel slope down to 49 mV/decade, comparable to the best performance of the well-investigated cobalt oxides. Moreover, this Mn3O4/CoSe2 hybrid shows good stability in 0.1 M KOH electrolyte, which is highly required to a promising OER electrocatalyst.

Supporting Information

ARTICLE SECTIONS
Jump To

Full synthetic procedures, details of electrochemical measurements, RHE calibration, and FT-IR, XRD, TEM, HRTEM, additional electrochemical data. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 563 publications.

  1. Feifei Yuan, Enli Zhang, Zihao Liu, Kun Yang, Qingqing Zha, Yonghong Ni. Hollow CoSx Nanoparticles Grown on FeCo-LDH Microtubes for Enhanced Electrocatalytic Performances for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (11) , 12211-12223. https://doi.org/10.1021/acsaem.1c01947
  2. Hongzhe He, Yan Zhang, Wenqin Zhang, Yuanyuan Li, Ying Wang, Ping Wang, Dongmei Hu. Dual Metal-Loaded Porous Carbon Materials Derived from Silk Fibroin as Bifunctional Electrocatalysts for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (26) , 30678-30692. https://doi.org/10.1021/acsami.1c07058
  3. Shengsheng Liu, Linhan Liu, Zhiying Cheng, Jing Zhu, Rong Yu. Surface Structures of Mn3O4 and the Partition of Oxidation States of Mn. The Journal of Physical Chemistry Letters 2021, 12 (24) , 5675-5681. https://doi.org/10.1021/acs.jpclett.1c01422
  4. Di Li, Changjian Zhou, Rong Yang, Yingying Xing, Shengjie Xu, Deli Jiang, Dan Tian, Weidong Shi. Interfacial Engineering of the CoxP–Fe2P Heterostructure for Efficient and Robust Electrochemical Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2021, 9 (23) , 7737-7748. https://doi.org/10.1021/acssuschemeng.0c09377
  5. Cheng-Zong Yuan, Kwan San Hui, Hong Yin, Siqi Zhu, Jintao Zhang, Xi-Lin Wu, Xiaoting Hong, Wei Zhou, Xi Fan, Feng Bin, Fuming Chen, Kwun Nam Hui. Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. ACS Materials Letters 2021, 3 (6) , 752-780. https://doi.org/10.1021/acsmaterialslett.0c00549
  6. Tanmay Bhowmik, Ranjit Mishra, Sudip Barman. Co1Al2(OH)m Layered Double Hydroxide/Graphitic Carbon Nitride Composite Nanostructure: An Efficient Water Oxidation Reaction Electrocatalyst in an Alkaline Electrolyte. Energy & Fuels 2021, 35 (6) , 5206-5216. https://doi.org/10.1021/acs.energyfuels.0c03613
  7. Sourav Ghosh, Gouri Tudu, Ayan Mondal, Sagar Ganguli, Harish Reddy Inta, Venkataramanan Mahalingam. Inception of Co3O4 as Microstructural Support to Promote Alkaline Oxygen Evolution Reaction for Co0.85Se/Co9Se8 Network. Inorganic Chemistry 2020, 59 (23) , 17326-17339. https://doi.org/10.1021/acs.inorgchem.0c02618
  8. Sukanta Chakrabartty, Subhajit Karmakar, C. Retna Raj. An Electrocatalytically Active Nanoflake-Like Co9S8-CoSe2 Heterostructure for Overall Water Splitting. ACS Applied Nano Materials 2020, 3 (11) , 11326-11334. https://doi.org/10.1021/acsanm.0c02431
  9. Chao Wang, Xiaodan Wang, Fengyu Lai, Zheng Liu, Ruohao Dong, Wen Li, Hongxia Sun, Baoyou Geng. Pt Nanoparticles Supported on N-Doped Porous Carbon Derived from Metal–Organic Frameworks for Oxygen Reduction. ACS Applied Nano Materials 2020, 3 (6) , 5698-5705. https://doi.org/10.1021/acsanm.0c00906
  10. Yulu Zhang, Na Li, Zhiyong Zhang, Shuang Li, Meiyang Cui, Lu Ma, Hua Zhou, Dong Su, Sen Zhang. Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion. Journal of the American Chemical Society 2020, 142 (18) , 8490-8497. https://doi.org/10.1021/jacs.0c02584
  11. Jie Yu, Tao Zhang, Yiqiang Sun, Xuejiao Li, Xinyang Li, Bo Wu, Dandan Men, Yue Li. Hollow FeP/Fe3O4 Hybrid Nanoparticles on Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2020, 12 (11) , 12783-12792. https://doi.org/10.1021/acsami.9b21927
  12. Arumugam Sivanantham, Pandian Ganesan, Ajayan Vinu, Sangaraju Shanmugam. Surface Activation and Reconstruction of Non-Oxide-Based Catalysts Through in Situ Electrochemical Tuning for Oxygen Evolution Reactions in Alkaline Media. ACS Catalysis 2020, 10 (1) , 463-493. https://doi.org/10.1021/acscatal.9b04216
  13. Qianbao Wu, Mengjun Xiao, Wei Wang, Chunhua Cui. In Situ Coordination Environment Tuning of Cobalt Sites for Efficient Water Oxidation. ACS Catalysis 2019, 9 (12) , 11734-11742. https://doi.org/10.1021/acscatal.9b03762
  14. Imran K., Ramya. K., P. C. Ghosh, A. Sarkar, Rajalakshmi N.. Ion Immobilized Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reaction. ACS Applied Energy Materials 2019, 2 (11) , 7811-7822. https://doi.org/10.1021/acsaem.9b01217
  15. Dennis Becker, Michael Klos, Guido Kickelbick. Mechanochemical Synthesis of Mn3O4 Nanocrystals and Their Lithium Intercalation Capability. Inorganic Chemistry 2019, 58 (22) , 15021-15024. https://doi.org/10.1021/acs.inorgchem.9b02429
  16. Hui Xu, Hongyuan Shang, Junwei Di, Yukou Du. Geometric and Electronic Engineering of Mn-Doped Cu(OH)2 Hexagonal Nanorings for Superior Oxygen Evolution Reaction Electrocatalysis. Inorganic Chemistry 2019, 58 (22) , 15433-15442. https://doi.org/10.1021/acs.inorgchem.9b02524
  17. Hua-Jun Qiu, Gang Fang, Jiaojiao Gao, Yuren Wen, Juan Lv, Huanglong Li, Guoqiang Xie, Xingjun Liu, Shuhui Sun. Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Materials Letters 2019, 1 (5) , 526-533. https://doi.org/10.1021/acsmaterialslett.9b00414
  18. Yelena Gershinsky, Melina Zysler, Victor Shokhen, Yakov Stone, David Zitoun. Dual Alkaline Ion Route to Chemical De-insertion in Oxygen Evolution Olivine Electrocatalysts. ACS Catalysis 2019, 9 (9) , 8355-8363. https://doi.org/10.1021/acscatal.9b02532
  19. Lin Wang, Junhui Cao, Chaojun Lei, Qizhou Dai, Bin Yang, Zhongjian Li, Xingwang Zhang, Chris Yuan, Lecheng Lei, Yang Hou. Strongly Coupled 3D N-Doped MoO2/Ni3S2 Hybrid for High Current Density Hydrogen Evolution Electrocatalysis and Biomass Upgrading. ACS Applied Materials & Interfaces 2019, 11 (31) , 27743-27750. https://doi.org/10.1021/acsami.9b06502
  20. Zhuoxun Yin, Yue Sun, Yongjie Jiang, Feng Yan, Chunling Zhu, Yujin Chen. Hierarchical Cobalt-Doped Molybdenum–Nickel Nitride Nanowires as Multifunctional Electrocatalysts. ACS Applied Materials & Interfaces 2019, 11 (31) , 27751-27759. https://doi.org/10.1021/acsami.9b06543
  21. Man Yang, Wei Lu, Renxi Jin, Xian-Chun Liu, Shuyan Song, Yan Xing. Superior Oxygen Evolution Reaction Performance of Co3O4/NiCo2O4/Ni Foam Composite with Hierarchical Structure. ACS Sustainable Chemistry & Engineering 2019, 7 (14) , 12214-12221. https://doi.org/10.1021/acssuschemeng.9b01535
  22. Yan Yang, Huiqin Yao, Zihuan Yu, Saiful M. Islam, Haiying He, Mengwei Yuan, Yonghai Yue, Kang Xu, Weichang Hao, Genban Sun, Huifeng Li, Shulan Ma, Peter Zapol, Mercouri G. Kanatzidis. Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range. Journal of the American Chemical Society 2019, 141 (26) , 10417-10430. https://doi.org/10.1021/jacs.9b04492
  23. Waqas Qamar Zaman, Wei Sun, Zhen-hua Zhou, Yiyi Wu, Limei Cao, Ji Yang. Anchoring of IrO2 on One-Dimensional Co3O4 Nanorods for Robust Electrocatalytic Water Splitting in an Acidic Environment. ACS Applied Energy Materials 2018, 1 (11) , 6374-6380. https://doi.org/10.1021/acsaem.8b01349
  24. Garold Murdachaew, Kari Laasonen. Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene. The Journal of Physical Chemistry C 2018, 122 (45) , 25882-25892. https://doi.org/10.1021/acs.jpcc.8b08519
  25. Kaiyue Li, Dong Guo, Jianyu Kang, Bo Wei, Xitian Zhang, Yujin Chen. Hierarchical Hollow Spheres Assembled with Ultrathin CoMn Double Hydroxide Nanosheets as Trifunctional Electrocatalyst for Overall Water Splitting and Zn Air Battery. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 14641-14651. https://doi.org/10.1021/acssuschemeng.8b03232
  26. Xiaozhi Su, Yu Wang, Jing Zhou, Songqi Gu, Jiong Li, Shuo Zhang. Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society 2018, 140 (36) , 11286-11292. https://doi.org/10.1021/jacs.8b05294
  27. Pei-Chieh Shih, Jaemin Kim, Cheng-Jun Sun, Hong Yang. Single-Phase Pyrochlore Y2Ir2O7 Electrocatalyst on the Activity of Oxygen Evolution Reaction. ACS Applied Energy Materials 2018, 1 (8) , 3992-3998. https://doi.org/10.1021/acsaem.8b00691
  28. Dandan Zhao, Yecan Pi, Qi Shao, Yonggang Feng, Ying Zhang, Xiaoqing Huang. Enhancing Oxygen Evolution Electrocatalysis via the Intimate Hydroxide–Oxide Interface. ACS Nano 2018, 12 (6) , 6245-6251. https://doi.org/10.1021/acsnano.8b03141
  29. Kamran Akbar, Jae Ho Jeon, Minsoo Kim, Junkyeong Jeong, Yeonjin Yi, Seung-Hyun Chun. Bifunctional Electrodeposited 3D NiCoSe2/Nickle Foam Electrocatalysts for Its Applications in Enhanced Oxygen Evolution Reaction and for Hydrazine Oxidation. ACS Sustainable Chemistry & Engineering 2018, 6 (6) , 7735-7742. https://doi.org/10.1021/acssuschemeng.8b00644
  30. Zhiwei Fang, Lele Peng, Yumin Qian, Xiao Zhang, Yujun Xie, Judy J. Cha, Guihua Yu. Dual Tuning of Ni–Co–A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution. Journal of the American Chemical Society 2018, 140 (15) , 5241-5247. https://doi.org/10.1021/jacs.8b01548
  31. Xiaotao Yuan, Junwen Yin, Zichao Liu, Xin Wang, Chenlong Dong, Wujie Dong, Muhammad Sohail Riaz, Zhe Zhang, Ming-Yang Chen, Fuqiang Huang. Charge-Transfer-Promoted High Oxygen Evolution Activity of [email protected] Core–Shell Nanochains. ACS Applied Materials & Interfaces 2018, 10 (14) , 11565-11571. https://doi.org/10.1021/acsami.7b15890
  32. Jingfang Zhang, Jieyu Liu, Lifei Xi, Yifu Yu, Ning Chen, Shuhui Sun, Weichao Wang, Kathrin M. Lange, Bin Zhang. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Journal of the American Chemical Society 2018, 140 (11) , 3876-3879. https://doi.org/10.1021/jacs.8b00752
  33. Guangxing Zhang, Han Wang, Jinlong Yang, Qinghe Zhao, Luyi Yang, Hanting Tang, Chaokun Liu, Haibiao Chen, Yuan Lin, Feng Pan. Temperature Effect on Co-Based Catalysts in Oxygen Evolution Reaction. Inorganic Chemistry 2018, 57 (5) , 2766-2772. https://doi.org/10.1021/acs.inorgchem.7b03168
  34. Fangfang Zhang, Yuancai Ge, Hang Chu, Pei Dong, Robert Baines, Yu Pei, Mingxin Ye, and Jianfeng Shen . Dual-Functional Starfish-like P-Doped Co–Ni–S Nanosheets Supported on Nickel Foams with Enhanced Electrochemical Performance and Excellent Stability for Overall Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (8) , 7087-7095. https://doi.org/10.1021/acsami.7b18403
  35. Jingchao Zhang, Daojun Zhang, Renchun Zhang, Nana Zhang, Cancan Cui, Jingru Zhang, Bei Jiang, Baiqing Yuan, Tanyuan Wang, Huan Xie, and Qing Li . Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials 2018, 1 (2) , 495-502. https://doi.org/10.1021/acsaem.7b00099
  36. Debdyuti Mukherjee, Muthu Austeria P, S. Sampath. Few-Layer Iron Selenophosphate, FePSe3: Efficient Electrocatalyst toward Water Splitting and Oxygen Reduction Reactions. ACS Applied Energy Materials 2018, 1 (1) , 220-231. https://doi.org/10.1021/acsaem.7b00101
  37. Jinman Bai, Tao Meng, Donglei Guo, Shuguang Wang, Baoguang Mao, and Minhua Cao . [email protected] Core–Shell Heterostructures as Trifunctional Electrocatalysts for Overall Water Splitting and Zn–Air Batteries. ACS Applied Materials & Interfaces 2018, 10 (2) , 1678-1689. https://doi.org/10.1021/acsami.7b14997
  38. Lan Hui, Yurui Xue, Dianzeng Jia, Zicheng Zuo, Yongjun Li, Huibiao Liu, Yingjie Zhao, and Yuliang Li . Controlled Synthesis of a Three-Segment Heterostructure for High-Performance Overall Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (2) , 1771-1780. https://doi.org/10.1021/acsami.7b16791
  39. Wei Sun, Zhenhua Zhou, Waqas Qamar Zaman, Li-mei Cao, and Ji Yang . Rational Manipulation of IrO2 Lattice Strain on α-MnO2 Nanorods as a Highly Efficient Water-Splitting Catalyst. ACS Applied Materials & Interfaces 2017, 9 (48) , 41855-41862. https://doi.org/10.1021/acsami.7b12775
  40. Han Xia, Zhipeng Huang, Cuncai Lv, and Chi Zhang . A Self-Supported Porous Hierarchical Core–Shell Nanostructure of Cobalt Oxide for Efficient Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (12) , 8205-8213. https://doi.org/10.1021/acscatal.7b02320
  41. Hui Zhao, Chen-Chen Weng, Zhong-Pan Hu, Li Ge, and Zhong-Yong Yuan . CdS-Polydopamine-Derived N,S-Codoped Hierarchically Porous Carbons as Highly Active Electrocatalyst for Oxygen Reduction. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 9914-9922. https://doi.org/10.1021/acssuschemeng.7b01875
  42. Xinzhi Ma, Jing Wen, Shen Zhang, Haoran Yuan, Kaiyue Li, Feng Yan, Xitian Zhang, and Yujin Chen . Crystal CoxB (x = 1–3) Synthesized by a Ball-Milling Method as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10266-10274. https://doi.org/10.1021/acssuschemeng.7b02281
  43. M. Naeem Iqbal, Ahmed F. Abdel-Magied, Hani Nasser Abdelhamid, Peter Olsén, Andrey Shatskiy, Xiaodong Zou, Björn Åkermark, Markus D. Kärkäs, and Eric V. Johnston . Mesoporous Ruthenium Oxide: A Heterogeneous Catalyst for Water Oxidation. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 9651-9656. https://doi.org/10.1021/acssuschemeng.7b02845
  44. Amol R. Jadhav, John Marc C. Puguan, and Hern Kim . Microwave-Assisted Synthesis of a Stainless Steel Mesh-Supported Co3O4 Microrod Array As a Highly Efficient Catalyst for Electrochemical Water Oxidation. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 11069-11079. https://doi.org/10.1021/acssuschemeng.7b03027
  45. Yanqun Tang, Xiaoyu Fang, Xin Zhang, Gina Fernandes, Yong Yan, Dongpeng Yan, Xu Xiang, and Jing He . Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (42) , 36762-36771. https://doi.org/10.1021/acsami.7b10338
  46. Min-Rui Gao, Ya-Rong Zheng, Jun Jiang, and Shu-Hong Yu . Pyrite-Type Nanomaterials for Advanced Electrocatalysis. Accounts of Chemical Research 2017, 50 (9) , 2194-2204. https://doi.org/10.1021/acs.accounts.7b00187
  47. Meenakshi Chauhan, Kasala Prabhakar Reddy, Chinnakonda S. Gopinath, and Sasanka Deka . Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (9) , 5871-5879. https://doi.org/10.1021/acscatal.7b01831
  48. Xun Xu, Hanfeng Liang, Fangwang Ming, Zhengbing Qi, Yaqiang Xie, and Zhoucheng Wang . Prussian Blue Analogues Derived Penroseite (Ni,Co)Se2 Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting. ACS Catalysis 2017, 7 (9) , 6394-6399. https://doi.org/10.1021/acscatal.7b02079
  49. Jaemin Kim, Pei-Chieh Shih, Kai-Chieh Tsao, Yung-Tin Pan, Xi Yin, Cheng-Jun Sun, and Hong Yang . High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media. Journal of the American Chemical Society 2017, 139 (34) , 12076-12083. https://doi.org/10.1021/jacs.7b06808
  50. Qing Zhao, Zhenhua Yan, Chengcheng Chen, and Jun Chen . Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews 2017, 117 (15) , 10121-10211. https://doi.org/10.1021/acs.chemrev.7b00051
  51. Samuel J. Rowley-Neale, Graham C. Smith, and Craig E. Banks . Mass-Producible 2D-MoS2-Impregnated Screen-Printed Electrodes That Demonstrate Efficient Electrocatalysis toward the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2017, 9 (27) , 22539-22548. https://doi.org/10.1021/acsami.7b05104
  52. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan . Co3O4−δ Quantum Dots As a Highly Efficient Oxygen Evolution Reaction Catalyst for Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (19) , 16159-16167. https://doi.org/10.1021/acsami.7b01591
  53. Dengrong Sun, Lin Ye, Fangxiang Sun, Hermenegildo García, and Zhaohui Li . From Mixed-Metal MOFs to Carbon-Coated Core–Shell Metal [email protected] Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to CoxNi1–[email protected][email protected] for the Oxygen Evolution Reaction. Inorganic Chemistry 2017, 56 (9) , 5203-5209. https://doi.org/10.1021/acs.inorgchem.7b00333
  54. Jianghao Wang, Liping Li, Haiquan Tian, Yuelan Zhang, Xiangli Che, and Guangshe Li . Ultrathin LiCoO2 Nanosheets: An Efficient Water-Oxidation Catalyst. ACS Applied Materials & Interfaces 2017, 9 (8) , 7100-7107. https://doi.org/10.1021/acsami.6b14896
  55. Jing Jiang, Lan Huang, Xiaomin Liu, and Lunhong Ai . Bioinspired Cobalt–Citrate Metal–Organic Framework as an Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (8) , 7193-7201. https://doi.org/10.1021/acsami.6b16534
  56. Ali Han, Hanyu Zhang, Ruihan Yuan, Hengxing Ji, and Pingwu Du . Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (3) , 2240-2248. https://doi.org/10.1021/acsami.6b10983
  57. Ran Miao, Junkai He, Sanjubala Sahoo, Zhu Luo, Wei Zhong, Sheng-Yu Chen, Curtis Guild, Tahereh Jafari, Biswanath Dutta, Shaylin A. Cetegen, Mingchao Wang, S. Pamir Alpay, and Steven L. Suib . Reduced Graphene Oxide Supported Nickel–Manganese–Cobalt Spinel Ternary Oxide Nanocomposites and Their Chemically Converted Sulfide Nanocomposites as Efficient Electrocatalysts for Alkaline Water Splitting. ACS Catalysis 2017, 7 (1) , 819-832. https://doi.org/10.1021/acscatal.6b02650
  58. Wei Chen, Yayuan Liu, Yuzhang Li, Jie Sun, Yongcai Qiu, Chong Liu, Guangmin Zhou, and Yi Cui . In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts. Nano Letters 2016, 16 (12) , 7588-7596. https://doi.org/10.1021/acs.nanolett.6b03458
  59. Ian G. McKendry, Akila C. Thenuwara, Jianwei Sun, Haowei Peng, John P. Perdew, Daniel R. Strongin, and Michael J. Zdilla . Water Oxidation Catalyzed by Cobalt Oxide Supported on the Mattagamite Phase of CoTe2. ACS Catalysis 2016, 6 (11) , 7393-7397. https://doi.org/10.1021/acscatal.6b01878
  60. Wenqiao Song, Zheng Ren, Sheng-Yu Chen, Yongtao Meng, Sourav Biswas, Partha Nandi, Heather A Elsen, Pu-Xian Gao, and Steven L. Suib . Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (32) , 20802-20813. https://doi.org/10.1021/acsami.6b06103
  61. An-Liang Wang, Han Xu, and Gao-Ren Li . NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting. ACS Energy Letters 2016, 1 (2) , 445-453. https://doi.org/10.1021/acsenergylett.6b00219
  62. Guigao Liu, Peng Li, Guixia Zhao, Xin Wang, Jintao Kong, Huimin Liu, Huabin Zhang, Kun Chang, Xianguang Meng, Tetsuya Kako, and Jinhua Ye . Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society 2016, 138 (29) , 9128-9136. https://doi.org/10.1021/jacs.6b05190
  63. Jahangir Masud, Abdurazag T. Swesi, Wipula P. R. Liyanage, and Manashi Nath . Cobalt Selenide Nanostructures: An Efficient Bifunctional Catalyst with High Current Density at Low Coverage. ACS Applied Materials & Interfaces 2016, 8 (27) , 17292-17302. https://doi.org/10.1021/acsami.6b04862
  64. Yangyang Feng, Huijuan Zhang, Ling Fang, Yanping Mu, and Yu Wang . Uniquely Monodispersing NiFe Alloyed Nanoparticles in Three-Dimensional Strongly Linked Sandwiched Graphitized Carbon Sheets for High-Efficiency Oxygen Evolution Reaction. ACS Catalysis 2016, 6 (7) , 4477-4485. https://doi.org/10.1021/acscatal.6b00481
  65. Yang Hou, Zhenhai Wen, Shumao Cui, Xinliang Feng, and Junhong Chen . Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation. Nano Letters 2016, 16 (4) , 2268-2277. https://doi.org/10.1021/acs.nanolett.5b04496
  66. Michelle P. Browne, Hugo Nolan, Georg S. Duesberg, Paula E. Colavita, and Michael E. G. Lyons . Low-Overpotential High-Activity Mixed Manganese and Ruthenium Oxide Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ACS Catalysis 2016, 6 (4) , 2408-2415. https://doi.org/10.1021/acscatal.5b02069
  67. Ahilan Vignesh, Moni Prabu, and Sangaraju Shanmugam . Porous LaCo1–xNixO3−δ Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc–Air Battery. ACS Applied Materials & Interfaces 2016, 8 (9) , 6019-6031. https://doi.org/10.1021/acsami.5b11840
  68. In Hye Kwak, Hyung Soon Im, Dong Myung Jang, Young Woon Kim, Kidong Park, Young Rok Lim, Eun Hee Cha, and Jeunghee Park . CoSe2 and NiSe2 Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2016, 8 (8) , 5327-5334. https://doi.org/10.1021/acsami.5b12093
  69. Bo You, Nan Jiang, Meili Sheng, Margaret Winona Bhushan, and Yujie Sun . Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis 2016, 6 (2) , 714-721. https://doi.org/10.1021/acscatal.5b02193
  70. Guigang Zhang, Shaohong Zang, Lihua Lin, Zhi-An Lan, Guosheng Li, and Xinchen Wang . Ultrafine Cobalt Catalysts on Covalent Carbon Nitride Frameworks for Oxygenic Photosynthesis. ACS Applied Materials & Interfaces 2016, 8 (3) , 2287-2296. https://doi.org/10.1021/acsami.5b11167
  71. Chun-Chao Hou, Shuang Cao, Wen-Fu Fu, and Yong Chen . Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media. ACS Applied Materials & Interfaces 2015, 7 (51) , 28412-28419. https://doi.org/10.1021/acsami.5b09207
  72. Qiang Gao, Chinmoy Ranjan, Zoran Pavlovic, Raoul Blume, and Robert Schlögl . Enhancement of Stability and Activity of MnOx/Au Electrocatalysts for Oxygen Evolution through Adequate Electrolyte Composition. ACS Catalysis 2015, 5 (12) , 7265-7275. https://doi.org/10.1021/acscatal.5b01632
  73. Xiaoli Zhang, Jinbao Zhang, and Kai Wang . Codoping-Induced, Rhombus-Shaped Co3O4 Nanosheets as an Active Electrode Material for Oxygen Evolution. ACS Applied Materials & Interfaces 2015, 7 (39) , 21745-21750. https://doi.org/10.1021/acsami.5b05149
  74. Zhichao Shan, Panikar Sathyaseelan Archana, Gang Shen, Arunava Gupta, Martin G. Bakker, and Shanlin Pan . NanoCOT: Low-Cost Nanostructured Electrode Containing Carbon, Oxygen, and Titanium for Efficient Oxygen Evolution Reaction. Journal of the American Chemical Society 2015, 137 (37) , 11996-12005. https://doi.org/10.1021/jacs.5b05367
  75. Wei Chen, Haotian Wang, Yuzhang Li, Yayuan Liu, Jie Sun, Sanghan Lee, Jang-Soo Lee, and Yi Cui . In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation. ACS Central Science 2015, 1 (5) , 244-251. https://doi.org/10.1021/acscentsci.5b00227
  76. Hongxing Jia, Zijun Sun, Daochuan Jiang, and Pingwu Du . Covalent Cobalt Porphyrin Framework on Multiwalled Carbon Nanotubes for Efficient Water Oxidation at Low Overpotential. Chemistry of Materials 2015, 27 (13) , 4586-4593. https://doi.org/10.1021/acs.chemmater.5b00882
  77. Jaeyune Ryu, Namgee Jung, Jong Hyun Jang, Hyoung-Juhn Kim, and Sung Jong Yoo . In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis 2015, 5 (7) , 4066-4074. https://doi.org/10.1021/acscatal.5b00349
  78. Yi Zhan, Guojun Du, Shiliu Yang, Chaohe Xu, Meihua Lu, Zhaolin Liu, and Jim Yang Lee . Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ACS Applied Materials & Interfaces 2015, 7 (23) , 12930-12936. https://doi.org/10.1021/acsami.5b02670
  79. Liheng Wu, Qing Li, Cheng Hao Wu, Huiyuan Zhu, Adriana Mendoza-Garcia, Bo Shen, Jinghua Guo, and Shouheng Sun . Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society 2015, 137 (22) , 7071-7074. https://doi.org/10.1021/jacs.5b04142
  80. Yangyang Feng, Huijuan Zhang, Yan Zhang, Xiao Li, and Yu Wang . Ultrathin Two-Dimensional Free-Standing Sandwiched NiFe/C for High-Efficiency Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2015, 7 (17) , 9203-9210. https://doi.org/10.1021/acsami.5b01467
  81. Li An, Panpan Zhou, Jie Yin, He Liu, Fengjuan Chen, Hongyan Liu, Yaping Du, and Pinxian Xi . Phase Transformation Fabrication of a Cu2S Nanoplate as an Efficient Catalyst for Water Oxidation with Glycine. Inorganic Chemistry 2015, 54 (7) , 3281-3289. https://doi.org/10.1021/ic502920r
  82. Shuangqiang Chen, Yufei Zhao, Bing Sun, Zhimin Ao, Xiuqiang Xie, Yiying Wei, and Guoxiu Wang . Microwave-assisted Synthesis of Mesoporous Co3O4 Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces 2015, 7 (5) , 3306-3313. https://doi.org/10.1021/am508136k
  83. Guigang Zhang, Shaohong Zang, and Xinchen Wang . Layered Co(OH)2 Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation. ACS Catalysis 2015, 5 (2) , 941-947. https://doi.org/10.1021/cs502002u
  84. Yong Zhao, Kazuhide Kamiya, Kazuhito Hashimoto, and Shuji Nakanishi . Efficient Bifunctional Fe/C/N Electrocatalysts for Oxygen Reduction and Evolution Reaction. The Journal of Physical Chemistry C 2015, 119 (5) , 2583-2588. https://doi.org/10.1021/jp511515q
  85. Dong Myung Jang, In Hye Kwak, El Lim Kwon, Chan Su Jung, Hyung Soon Im, Kidong Park, and Jeunghee Park . Transition-Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution. The Journal of Physical Chemistry C 2015, 119 (4) , 1921-1927. https://doi.org/10.1021/jp511561k
  86. Mengxia Shen, Changping Ruan, Yan Chen, Chunhuan Jiang, Kelong Ai, and Lehui Lu . Covalent Entrapment of Cobalt–Iron Sulfides in N-Doped Mesoporous Carbon: Extraordinary Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces 2015, 7 (2) , 1207-1218. https://doi.org/10.1021/am507033x
  87. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  88. Fang Song and Xile Hu . Ultrathin Cobalt–Manganese Layered Double Hydroxide Is an Efficient Oxygen Evolution Catalyst. Journal of the American Chemical Society 2014, 136 (47) , 16481-16484. https://doi.org/10.1021/ja5096733
  89. Huijie Shi and Guohua Zhao . Water Oxidation on Spinel NiCo2O4 Nanoneedles Anode: Microstructures, Specific Surface Character, and the Enhanced Electrocatalytic Performance. The Journal of Physical Chemistry C 2014, 118 (45) , 25939-25946. https://doi.org/10.1021/jp508977j
  90. Youwen Liu, Hao Cheng, Mengjie Lyu, Shaojuan Fan, Qinghua Liu, Wenshuai Zhang, Yuduo Zhi, Chengming Wang, Chong Xiao, Shiqiang Wei, Bangjiao Ye, and Yi Xie . Low Overpotential in Vacancy-Rich Ultrathin CoSe2 Nanosheets for Water Oxidation. Journal of the American Chemical Society 2014, 136 (44) , 15670-15675. https://doi.org/10.1021/ja5085157
  91. Weiwei Zhao, Chao Zhang, Feiyang Geng, Sifei Zhuo, and Bin Zhang . Nanoporous Hollow Transition Metal Chalcogenide Nanosheets Synthesized via the Anion-Exchange Reaction of Metal Hydroxides with Chalcogenide Ions. ACS Nano 2014, 8 (10) , 10909-10919. https://doi.org/10.1021/nn504755x
  92. Tian Yi Ma, Sheng Dai, Mietek Jaroniec, and Shi Zhang Qiao . Metal–Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society 2014, 136 (39) , 13925-13931. https://doi.org/10.1021/ja5082553
  93. Ke Sun, Shaohua Shen, Yongqi Liang, Paul E. Burrows, Samuel S. Mao, and Deli Wang . Enabling Silicon for Solar-Fuel Production. Chemical Reviews 2014, 114 (17) , 8662-8719. https://doi.org/10.1021/cr300459q
  94. Nan Yan, Ziang Zhao, Yan Li, Fang Wang, Hao Zhong, and Qianwang Chen . Synthesis of Novel Two-Phase [email protected] Nanorattles with High Catalytic Activity. Inorganic Chemistry 2014, 53 (17) , 9073-9079. https://doi.org/10.1021/ic501092k
  95. Wei Hu, Huawei Zhong, Wei Liang, and Shengli Chen . Ir-Surface Enriched Porous Ir–Co Oxide Hierarchical Architecture for High Performance Water Oxidation in Acidic Media. ACS Applied Materials & Interfaces 2014, 6 (15) , 12729-12736. https://doi.org/10.1021/am5027192
  96. Lei Wang, Chong Lin, Dekang Huang, Fengxing Zhang, Mingkui Wang, and Jian Jin . A Comparative Study of Composition and Morphology Effect of NixCo1–x(OH)2 on Oxygen Evolution/Reduction Reaction. ACS Applied Materials & Interfaces 2014, 6 (13) , 10172-10180. https://doi.org/10.1021/am5014369
  97. Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han, Hui Huang, Yang Liu, and Zhenhui Kang . Carbon Quantum Dot/NiFe Layered Double-Hydroxide Composite as a Highly Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces 2014, 6 (10) , 7918-7925. https://doi.org/10.1021/am501256x
  98. Minrui Gao, Wenchao Sheng, Zhongbin Zhuang, Qianrong Fang, Shuang Gu, Jun Jiang, and Yushan Yan . Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society 2014, 136 (19) , 7077-7084. https://doi.org/10.1021/ja502128j
  99. Min-Rui Gao, Xuan Cao, Qiang Gao, Yun-Fei Xu, Ya-Rong Zheng, Jun Jiang, and Shu-Hong Yu . Nitrogen-Doped Graphene Supported CoSe2 Nanobelt Composite Catalyst for Efficient Water Oxidation. ACS Nano 2014, 8 (4) , 3970-3978. https://doi.org/10.1021/nn500880v
  100. Xijun Liu, Zheng Chang, Liang Luo, Tianhao Xu, Xiaodong Lei, Junfeng Liu, and Xiaoming Sun . Hierarchical ZnxCo3–xO4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution. Chemistry of Materials 2014, 26 (5) , 1889-1895. https://doi.org/10.1021/cm4040903
Load more citations