Nucleation, Growth, and Repair of a Cobalt-Based Oxygen Evolving Catalyst

View Author Information
Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 14, 6326–6336
Publication Date (Web):March 6, 2012
Copyright © 2012 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (1)»


The mechanism of nucleation, steady-state growth, and repair is investigated for an oxygen evolving catalyst prepared by electrodeposition from Co2+ solutions in weakly basic electrolytes (Co-OEC). Potential step chronoamperometry and atomic force microscopy reveal that nucleation of Co-OEC is progressive and reaches a saturation surface coverage of ca. 70% on highly oriented pyrolytic graphite substrates. Steady-state electrodeposition of Co-OEC exhibits a Tafel slope approximately equal to 2.3 × RT/F. The electrochemical rate law exhibits a first order dependence on Co2+ and inverse orders on proton (third order) and proton acceptor, methylphosphonate (first order for 1.8 mM ≤ [MePi] ≤ 18 mM and second order dependence for 32 mM ≤ [MePi] ≤ 180 mM). These electrokinetic studies, combined with recent XAS studies of catalyst structure, suggest a mechanism for steady state growth at intermediate MePi concentration (1.8–18 mM) involving a rapid solution equilibrium between aquo Co(II) and Co(III) hydroxo species accompanied with a rapid surface equilibrium involving electrolyte dissociation and deprotonation of surface bound water. These equilibria are followed by a chemical rate-limiting step for incorporation of Co(III) into the growing cobaltate clusters comprising Co-OEC. At higher concentrations of MePi ([MePi] ≥ 32 mM), MePO32– equilibrium binding to Co(II) in solution is suggested by the kinetic data. Consistent with the disparate pH profiles for oxygen evolution electrocatalysis and catalyst formation, NMR-based quantification of catalyst dissolution as a function of pH demonstrates functional stability and repair at pH values >6 whereas catalyst corrosion prevails at lower pH values. These kinetic insights provide a basis for developing and operating functional water oxidation (photo)anodes under benign pH conditions.

Supporting Information

Jump To

Full experimental details, additional nucleated growth traces, AFM images, Tafel plots, Koutecký–Levich plots, and NMR line broadening calibration curves. This material is available free of charge via the Internet at

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

Cited By

This article is cited by 191 publications.

  1. Qiang Liu, Fang Zhou, Yuying Bai, Weikang Hu. Evaluating Properties of Carbon-Free Nano-NiCoFe-LDHs with Molybdate as Oxygen Evolution Catalysts and Their Applications in Rechargeable Air Electrodes. Energy & Fuels 2021, Article ASAP.
  2. Bin Zou, Shuilai Qiu, Ziyan Qian, Jingwen Wang, Yifan Zhou, Zhoumei Xu, Wenhao Yang, Weiyi Xing. Phosphorus/Nitrogen-Codoped Molybdenum Disulfide/Cobalt Borate Nanostructures for Flame-Retardant and Tribological Applications. ACS Applied Nano Materials 2021, 4 (10) , 10495-10504.
  3. Mohammad Reza Mohammadi, Stefan Loos, Petko Chernev, Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Paul Kubella, Katharina Klingan, Rodney D. L. Smith, Holger Dau. Exploring the Limits of Self-Repair in Cobalt Oxide Films for Electrocatalytic Water Oxidation. ACS Catalysis 2020, 10 (14) , 7990-7999.
  4. Hannah J. King, Maxime Fournier, Shannon A. Bonke, Enrico Seeman, Manjunath Chatti, Askhat N. Jumabekov, Bernt Johannessen, Peter Kappen, Alexandr N. Simonov, Rosalie K. Hocking. Photon-Induced, Timescale, and Electrode Effects Critical for the in Situ X-ray Spectroscopic Analysis of Electrocatalysts: The Water Oxidation Case. The Journal of Physical Chemistry C 2019, 123 (47) , 28533-28549.
  5. Dilek K. Dogutan, Daniel G. Nocera. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis. Accounts of Chemical Research 2019, 52 (11) , 3143-3148.
  6. J. Tyler Mefford, Andrew R. Akbashev, Liming Zhang, William C. Chueh. Electrochemical Reactivity of Faceted β-Co(OH)2 Single Crystal Platelet Particles in Alkaline Electrolytes. The Journal of Physical Chemistry C 2019, 123 (31) , 18783-18794.
  7. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12.
  8. Scott J. Folkman, Joaquin Soriano-Lopez, José Ramón Galán-Mascarós, Richard G. Finke. Electrochemically Driven Water-Oxidation Catalysis Beginning with Six Exemplary Cobalt Polyoxometalates: Is It Molecular, Homogeneous Catalysis or Electrode-Bound, Heterogeneous CoOx Catalysis?. Journal of the American Chemical Society 2018, 140 (38) , 12040-12055.
  9. Zhe Xu, Wenchao Li, Xiaohui Wang, Bing Wang, Zhan Shi, Cheng Dong, Shicheng Yan, Zhigang Zou. Novel Cobalt Germanium Hydroxide for Electrochemical Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (36) , 30357-30366.
  10. Gihan Kwon, Hoyoung Jang, Jun-Sik Lee, Anil Mane, David J. Mandia, Sarah R. Soltau, Lisa M. Utschig, Alex B. F. Martinson, David M. Tiede, Hacksung Kim, Jungho Kim. Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts. Journal of the American Chemical Society 2018, 140 (34) , 10710-10720.
  11. Rafael Müller, Ilya Kuznetsov, Yunieski Arbelo, Matthias Trottmann, Carmen S. Menoni, Jorge J. Rocca, Greta R. Patzke, Davide Bleiner. Depth-Profiling Microanalysis of CoNCN Water-Oxidation Catalyst Using a λ = 46.9 nm Plasma Laser for Nano-Ionization Mass Spectrometry. Analytical Chemistry 2018, 90 (15) , 9234-9240.
  12. Vitor Brasiliense, Jan Clausmeyer, Pascal Berto, Gilles Tessier, Catherine Combellas, Wolfgang Schuhmann, Frédéric Kanoufi. Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy. Analytical Chemistry 2018, 90 (12) , 7341-7348.
  13. Mahdi Hesari, Xianwen Mao, Peng Chen. Charge Carrier Activity on Single-Particle Photo(electro)catalysts: Toward Function in Solar Energy Conversion. Journal of the American Chemical Society 2018, 140 (22) , 6729-6740.
  14. Lisa Olshansky, Raúl Huerta-Lavorie, Andy I. Nguyen, Jaicy Vallapurackal, Ariel Furst, T. Don Tilley, and A. S. Borovik . Artificial Metalloproteins Containing Co4O4 Cubane Active Sites. Journal of the American Chemical Society 2018, 140 (8) , 2739-2742.
  15. Sengeni Anantharaj, Murugadoss Venkatesh, Ashish S. Salunke, Tangella V. S. V. Simha, Vijayakumar Prabu, and Subrata Kundu . High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr Removal. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10072-10083.
  16. Kartik Maity, Kousik Bhunia, Debabrata Pradhan, and Kumar Biradha . Co(II)-Doped Cd-MOF as an Efficient Water Oxidation Catalyst: Doubly Interpenetrated Boron Nitride Network with the Encapsulation of Free Ligand Containing Pyridine Moieties. ACS Applied Materials & Interfaces 2017, 9 (43) , 37548-37553.
  17. Xinzuo Fang, Long Jiao, Rui Zhang, and Hai-Long Jiang . Porphyrinic Metal–Organic Framework-Templated Fe–Ni–P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2017, 9 (28) , 23852-23858.
  18. Masato M. Maitani, Takuya Yamada, Hisanori Mashiko, Kohei Yoshimatsu, Takayoshi Oshima, Akira Ohtomo, and Yuji Wada . Microwave Effects on Co–Pi Cocatalysts Deposited on α-Fe2O3 for Application to Photocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2017, 9 (12) , 10349-10354.
  19. Sengeni Anantharaj, Pula Nagesh Reddy, and Subrata Kundu . Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst. Inorganic Chemistry 2017, 56 (3) , 1742-1756.
  20. Scott J. Folkman and Richard G. Finke . Electrochemical Water Oxidation Catalysis Beginning with Co(II) Polyoxometalates: The Case of the Precatalyst Co4V2W18O6810–. ACS Catalysis 2017, 7 (1) , 7-16.
  21. Shannon A. Bonke, Alan M. Bond, Leone Spiccia, and Alexandr N. Simonov . Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society 2016, 138 (49) , 16095-16104.
  22. Liheng Wu, Adriana Mendoza-Garcia, Qing Li, and Shouheng Sun . Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chemical Reviews 2016, 116 (18) , 10473-10512.
  23. Andrew M. Ullman, Casey N. Brodsky, Nancy Li, Shao-Liang Zheng, and Daniel G. Nocera . Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. Journal of the American Chemical Society 2016, 138 (12) , 4229-4236.
  24. Alexander Schnegg, Joscha Nehrkorn, Archana Singh, Irati Alonso Calafell, Shannon A. Bonke, Rosalie K. Hocking, Klaus Lips, and Leone Spiccia . Probing the Fate of Mn Complexes in Nafion: A Combined Multifrequency EPR and XAS Study. The Journal of Physical Chemistry C 2016, 120 (2) , 853-861.
  25. Hyun S. Ahn and Allen J. Bard . Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques. Analytical Chemistry 2015, 87 (24) , 12276-12280.
  26. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904.
  27. Shi He, Yuanyuan Huang, Junheng Huang, Wei Liu, Tao Yao, Shan Jiang, Fumin Tang, Jinkun Liu, Fengchun Hu, Zhiyun Pan, and Qinghua Liu . Ultrathin CoOOH Oxides Nanosheets Realizing Efficient Photocatalytic Hydrogen Evolution. The Journal of Physical Chemistry C 2015, 119 (47) , 26362-26366.
  28. YuPing Liu, Si-Xuan Guo, Liang Ding, C. André Ohlin, Alan M. Bond, and Jie Zhang . Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts. ACS Applied Materials & Interfaces 2015, 7 (30) , 16632-16644.
  29. Liheng Wu, Qing Li, Cheng Hao Wu, Huiyuan Zhu, Adriana Mendoza-Garcia, Bo Shen, Jinghua Guo, and Shouheng Sun . Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society 2015, 137 (22) , 7071-7074.
  30. Mohammad Mahdi Najafpour, Monika Fekete, Davood Jafarian Sedigh, Eva-Mari Aro, Robert Carpentier, Julian J. Eaton-Rye, Hiroshi Nishihara, Jian-Ren Shen, Suleyman I. Allakhverdiev, and Leone Spiccia . Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catalysis 2015, 5 (3) , 1499-1512.
  31. Fengshou Yu, Fei Li, Biaobiao Zhang, Hua Li, and Licheng Sun . Efficient Electrocatalytic Water Oxidation by a Copper Oxide Thin Film in Borate Buffer. ACS Catalysis 2015, 5 (2) , 627-630.
  32. Chia-Cheng Lin, Yijun Guo, and Javier Vela . Microstructure Effects on the Water Oxidation Activity of Co3O4/Porous Silica Nanocomposites. ACS Catalysis 2015, 5 (2) , 1037-1044.
  33. Hyun S. Ahn and Allen J. Bard . Surface Interrogation of CoPi Water Oxidation Catalyst by Scanning Electrochemical Microscopy. Journal of the American Chemical Society 2015, 137 (2) , 612-615.
  34. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001.
  35. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688.
  36. Ke Sun, Shaohua Shen, Yongqi Liang, Paul E. Burrows, Samuel S. Mao, and Deli Wang . Enabling Silicon for Solar-Fuel Production. Chemical Reviews 2014, 114 (17) , 8662-8719.
  37. Guohui Zhang, Paul M. Kirkman, Anisha N. Patel, Anatolii S. Cuharuc, Kim McKelvey, and Patrick R. Unwin . Molecular Functionalization of Graphite Surfaces: Basal Plane versus Step Edge Electrochemical Activity. Journal of the American Chemical Society 2014, 136 (32) , 11444-11451.
  38. Pauline Bornoz, Fatwa F. Abdi, S. David Tilley, Bernard Dam, Roel van de Krol, Michael Graetzel, and Kevin Sivula . A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting. The Journal of Physical Chemistry C 2014, 118 (30) , 16959-16966.
  39. Yi Liu and Daniel G. Nocera . Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17060-17066.
  40. Michael Huynh, D. Kwabena Bediako, Yi Liu, and Daniel G. Nocera . Nucleation and Growth Mechanisms of an Electrodeposited Manganese Oxide Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17142-17152.
  41. Sara Goberna-Ferrón, Willinton Y. Hernández, Barbara Rodríguez-García, and José Ramón Galán-Mascarós . Light-Driven Water Oxidation with Metal Hexacyanometallate Heterogeneous Catalysts. ACS Catalysis 2014, 4 (6) , 1637-1641.
  42. Michael Huynh, D. Kwabena Bediako, and Daniel G. Nocera . A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society 2014, 136 (16) , 6002-6010.
  43. Chengyu He, Xinglong Wu, and Zhiqiang He . Amorphous Nickel-Based Thin Film As a Janus Electrocatalyst for Water Splitting. The Journal of Physical Chemistry C 2014, 118 (9) , 4578-4584.
  44. Leanne G. Bloor, Pedro I. Molina, Mark D. Symes, and Leroy Cronin . Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ. Journal of the American Chemical Society 2014, 136 (8) , 3304-3311.
  45. Delina Barats-Damatov, Linda J. W. Shimon, Lev Weiner, Roy E. Schreiber, Pablo Jiménez-Lozano, Josep M. Poblet, Coen de Graaf, and Ronny Neumann . Dicobalt-μ-oxo Polyoxometalate Compound, [(α2-P2W17O61Co)2O]14–: A Potent Species for Water Oxidation, C–H Bond Activation, and Oxygen Transfer. Inorganic Chemistry 2014, 53 (3) , 1779-1787.
  46. Karolina Kwapien, Simone Piccinin, and Stefano Fabris . Energetics of Water Oxidation Catalyzed by Cobalt Oxide Nanoparticles: Assessing the Accuracy of DFT and DFT+U Approaches against Coupled Cluster Methods. The Journal of Physical Chemistry Letters 2013, 4 (24) , 4223-4230.
  47. Thomas J. Kempa, Sun-Kyung Kim, Robert W. Day, Hong-Gyu Park, Daniel G. Nocera, and Charles M. Lieber . Facet-Selective Growth on Nanowires Yields Multi-Component Nanostructures and Photonic Devices. Journal of the American Chemical Society 2013, 135 (49) , 18354-18357.
  48. Andrew M. Ullman and Daniel G. Nocera . Mechanism of Cobalt Self-Exchange Electron Transfer. Journal of the American Chemical Society 2013, 135 (40) , 15053-15061.