Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst

View Author Information
Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 15, 6801–6809
Publication Date (Web):March 14, 2012
https://doi.org/10.1021/ja301018q
Copyright © 2012 American Chemical Society
Article Views
9886
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

An oxygen evolution catalyst that forms as a thin film from Ni(aq)2+ solutions containing borate electrolyte (Ni–Bi) has been studied by in situ X-ray absorption spectroscopy. A dramatic increase in catalytic rate, induced by anodic activation of the electrodeposited films, is accompanied by structure and oxidation state changes. Coulometric measurements correlated with X-ray absorption near-edge structure spectra of the active catalyst show that the nickel centers in activated films possess an average oxidation state of +3.6, indicating that a substantial proportion of nickel centers exist in a formal oxidation state of Ni(IV). In contrast, nickel centers in nonactivated films exist predominantly as Ni(III). Extended X-ray absorption fine structure reveals that activated catalyst films comprise bis-oxo/hydroxo-bridged nickel centers organized into sheets of edge-sharing NiO6 octahedra. Diminished long-range ordering in catalyst films is due to their ostensibly amorphous nature. Nonactivated films display a similar oxidic nature but exhibit a distortion in the local coordination geometry about nickel centers, characteristic of Jahn–Teller distorted Ni(III) centers. Our findings indicate that the increase in catalytic activity of films is accompanied by changes in oxidation state and structure that are reminiscent of those observed for conversion of β-NiOOH to γ-NiOOH and consequently challenge the long-held notion that the β-NiOOH phase is a more efficient oxygen-evolving catalyst.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional text, seven figures, and three tables with details on EXAFS curve fitting, estimation of film thickness, additional electrochemical traces, supplementary EXAFS spectra, structural models, and EXAFS fitting tables. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 500 publications.

  1. Yang Liu, Avik Halder, Soenke Seifert, Nicholas Marcella, Stefan Vajda, Anatoly I. Frenkel. Probing Active Sites in CuxPdy Cluster Catalysts by Machine-Learning-Assisted X-ray Absorption Spectroscopy. ACS Applied Materials & Interfaces 2021, 13 (45) , 53363-53374. https://doi.org/10.1021/acsami.1c06714
  2. Kentaro Suzuki, Xiaowei Li, Takahiro Toda, Fumika Nagasawa, Kei Murakoshi. Plasmon-Accelerated Water Oxidation at Ni-Modified Au Nanodimers on TiO2 Single Crystals. ACS Energy Letters 2021, Article ASAP.
  3. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
  4. Chunguang Kuai, Cong Xi, Anyang Hu, Yan Zhang, Zhengrui Xu, Dennis Nordlund, Cheng-Jun Sun, Christopher A. Cadigan, Ryan M. Richards, Luxi Li, Cun-Ku Dong, Xi-Wen Du, Feng Lin. Revealing the Dynamics and Roles of Iron Incorporation in Nickel Hydroxide Water Oxidation Catalysts. Journal of the American Chemical Society 2021, 143 (44) , 18519-18526. https://doi.org/10.1021/jacs.1c07975
  5. Sang-Yeon Lee, Sung-Jun Kim, Won Jun Lee, Yong-Kul Lee. Boosting Activity and Durability of an Electrodeposited Ni(OH)2 Catalyst Using Carbon Nanotube-Grafted Substrates for the Alkaline Oxygen Evolution Reaction. ACS Applied Nano Materials 2021, 4 (10) , 10267-10274. https://doi.org/10.1021/acsanm.1c01766
  6. Ahmed S. M. Ismail, Ivan Garcia-Torregrosa, Jeroen C. Vollenbroek, Laura Folkertsma, Johan G. Bomer, Ties Haarman, Mahnaz Ghiasi, Meike Schellhorn, Maarten Nachtegaal, Mathieu Odijk, Albert van den Berg, Bert M. Weckhuysen, Frank M. F. de Groot. Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. ACS Catalysis 2021, 11 (19) , 12324-12335. https://doi.org/10.1021/acscatal.1c02566
  7. Soressa Abera Chala, Meng-Che Tsai, Bizualem Wakuma Olbasa, Keseven Lakshmanan, Wei-Hsiang Huang, Wei-Nien Su, Yen-Fa Liao, Jyh-Fu Lee, Hongjie Dai, Bing Joe Hwang. Tuning Dynamically Formed Active Phases and Catalytic Mechanisms of In Situ Electrochemically Activated Layered Double Hydroxide for Oxygen Evolution Reaction. ACS Nano 2021, 15 (9) , 14996-15006. https://doi.org/10.1021/acsnano.1c05250
  8. Robin N. Dürr, Pierfrancesco Maltoni, Haining Tian, Bruno Jousselme, Leif Hammarström, Tomas Edvinsson. From NiMoO4 to γ-NiOOH: Detecting the Active Catalyst Phase by Time Resolved in Situ and Operando Raman Spectroscopy. ACS Nano 2021, 15 (8) , 13504-13515. https://doi.org/10.1021/acsnano.1c04126
  9. Mehran Nozari-Asbemarz, Mandana Amiri, Ali Khodayari, Abolfazl Bezaatpour, Sima Nouhi, Pouya Hosseini, Michael Wark, Rabah Boukherroub, Sabine Szunerits. In Situ Synthesis of Co3O4/CoFe2O4 Derived from a Metal–Organic Framework on Nickel Foam: High-Performance Electrocatalyst for Water Oxidation. ACS Applied Energy Materials 2021, 4 (3) , 2951-2959. https://doi.org/10.1021/acsaem.1c00429
  10. Janis Timoshenko, Beatriz Roldan Cuenya. In Situ/Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chemical Reviews 2021, 121 (2) , 882-961. https://doi.org/10.1021/acs.chemrev.0c00396
  11. Pengxia Ji, Xu Luo, Ding Chen, Huihui Jin, Zonghua Pu, Weihao Zeng, Jianwei He, Huawei Bai, Yucong Liao, Shichun Mu. Significantly Improved Water Oxidation of CoP Catalysts by Electrochemical Activation. ACS Sustainable Chemistry & Engineering 2020, 8 (48) , 17851-17859. https://doi.org/10.1021/acssuschemeng.0c07169
  12. Dongze Li, Hui Liu, Ligang Feng. A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction. Energy & Fuels 2020, 34 (11) , 13491-13522. https://doi.org/10.1021/acs.energyfuels.0c03084
  13. Shun Tsunekawa, Futaba Yamamoto, Ke-Hsuan Wang, Masanari Nagasaka, Hayato Yuzawa, Satoru Takakusagi, Hiroshi Kondoh, Kiyotaka Asakura, Takeshi Kawai, Masaaki Yoshida. Operando Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2020, 124 (43) , 23611-23618. https://doi.org/10.1021/acs.jpcc.0c05571
  14. Jie Yin, Jing Jin, Min Lu, Bolong Huang, Hong Zhang, Yong Peng, Pinxian Xi, Chun-Hua Yan. Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. Journal of the American Chemical Society 2020, 142 (43) , 18378-18386. https://doi.org/10.1021/jacs.0c05050
  15. Anton Tsyganok, Paolo Ghigna, Alessandro Minguzzi, Alberto Naldoni, Vadim Murzin, Wolfgang Caliebe, Avner Rothschild, David S. Ellis. Operando X-ray Absorption Spectroscopy (XAS) Observation of Photoinduced Oxidation in FeNi (Oxy)hydroxide Overlayers on Hematite (α-Fe2O3) Photoanodes for Solar Water Splitting. Langmuir 2020, 36 (39) , 11564-11572. https://doi.org/10.1021/acs.langmuir.0c02065
  16. Ke-Hsuan Wang, Hayato Ikeuchi, Masaaki Yoshida, Takafumi Miura, I-Ping Liu, Genta Watanabe, Siyang Cui, Takeshi Kawai. Nanometer-Thick Nickel Oxide Films Prepared from Alanine-Chelated Coordination Complexes for Electrochromic Smart Windows. ACS Applied Nano Materials 2020, 3 (9) , 9528-9537. https://doi.org/10.1021/acsanm.0c02390
  17. Francesco Malara, Martina Fracchia, Hana Kmentová, Rinaldo Psaro, Alberto Vertova, Danilo Oliveira de Souza, Giuliana Aquilanti, Luca Olivi, Paolo Ghigna, Alessandro Minguzzi, Alberto Naldoni. Direct Observation of Photoinduced Higher Oxidation States at a Semiconductor/Electrocatalyst Junction. ACS Catalysis 2020, 10 (18) , 10476-10487. https://doi.org/10.1021/acscatal.0c02789
  18. Peikun Zhang, Wei Wang, Hui Wang, Yanbo Li, Chunhua Cui. Tuning Hole Accumulation of Metal Oxides Promotes the Oxygen Evolution Rate. ACS Catalysis 2020, 10 (18) , 10427-10435. https://doi.org/10.1021/acscatal.0c02882
  19. Suraj Gupta, Mark Forster, Asha Yadav, Alexander J. Cowan, Nainesh Patel, Maulik Patel. Highly Efficient and Selective Metal Oxy-Boride Electrocatalysts for Oxygen Evolution from Alkali and Saline Solutions. ACS Applied Energy Materials 2020, 3 (8) , 7619-7628. https://doi.org/10.1021/acsaem.0c01040
  20. Baghendra Singh, Om Prakash, Pralay Maiti, Arindam Indra. Electrochemical Transformation of Metal Organic Framework into Ultrathin Metal Hydroxide-(oxy)hydroxide Nanosheets for Alkaline Water Oxidation. ACS Applied Nano Materials 2020, 3 (7) , 6693-6701. https://doi.org/10.1021/acsanm.0c01137
  21. Yecheng Zhou, Núria López. The Role of Fe Species on NiOOH in Oxygen Evolution Reactions. ACS Catalysis 2020, 10 (11) , 6254-6261. https://doi.org/10.1021/acscatal.0c00304
  22. Qianqian Ji, Yuan Kong, Chao Wang, Hao Tan, Hengli Duan, Wei Hu, Guinan Li, Ying Lu, Na Li, Yao Wang, Jie Tian, Zeming Qi, Zhihu Sun, Fengchun Hu, Wensheng Yan. Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction. ACS Catalysis 2020, 10 (10) , 5691-5697. https://doi.org/10.1021/acscatal.0c00989
  23. Chao Feng, M. Bilal Faheem, Jie Fu, Yequan Xiao, Changli Li, Yanbo Li. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis 2020, 10 (7) , 4019-4047. https://doi.org/10.1021/acscatal.9b05445
  24. Soressa Abera Chala, Meng-Che Tsai, Wei-Nien Su, Kassa Belay Ibrahim, Balamurugan Thirumalraj, Ting-Shan Chan, Jyh-Fu Lee, Hongjie Dai, Bing-Joe Hwang. Hierarchical 3D Architectured Ag Nanowires Shelled with NiMn-Layered Double Hydroxide as an Efficient Bifunctional Oxygen Electrocatalyst. ACS Nano 2020, 14 (2) , 1770-1782. https://doi.org/10.1021/acsnano.9b07487
  25. Wang Zhang, Yu Wang, Han Zheng, Rui Li, Yujia Tang, Boyuan Li, Chao Zhu, Liming You, Min-Rui Gao, Zheng Liu, Shu-Hong Yu, Kun Zhou. Embedding Ultrafine Metal Oxide Nanoparticles in Monolayered Metal–Organic Framework Nanosheets Enables Efficient Electrocatalytic Oxygen Evolution. ACS Nano 2020, 14 (2) , 1971-1981. https://doi.org/10.1021/acsnano.9b08458
  26. Li-Fen Li, Ye-Fei Li, Zhi-Pan Liu. Oxygen Evolution Activity on NiOOH Catalysts: Four-Coordinated Ni Cation as the Active Site and the Hydroperoxide Mechanism. ACS Catalysis 2020, 10 (4) , 2581-2590. https://doi.org/10.1021/acscatal.9b04975
  27. Richard I. Sayler, Bryan M. Hunter, Wen Fu, Harry B. Gray, R. David Britt. EPR Spectroscopy of Iron- and Nickel-Doped [ZnAl]-Layered Double Hydroxides: Modeling Active Sites in Heterogeneous Water Oxidation Catalysts. Journal of the American Chemical Society 2020, 142 (4) , 1838-1845. https://doi.org/10.1021/jacs.9b10273
  28. Miao Gao, Lei He, Zhi-Yan Guo, Yan-Ru Yuan, Wen-Wei Li. Sulfate-Functionalized Nickel Hydroxide Nanobelts for Sustained Oxygen Evolution. ACS Applied Materials & Interfaces 2020, 12 (1) , 443-450. https://doi.org/10.1021/acsami.9b14216
  29. Rida Farhat, Jihan Dhainy, Lara I. Halaoui. OER Catalysis at Activated and Codeposited NiFe-Oxo/Hydroxide Thin Films Is Due to Postdeposition Surface-Fe and Is Not Sustainable without Fe in Solution. ACS Catalysis 2020, 10 (1) , 20-35. https://doi.org/10.1021/acscatal.9b02580
  30. Hannah J. King, Maxime Fournier, Shannon A. Bonke, Enrico Seeman, Manjunath Chatti, Askhat N. Jumabekov, Bernt Johannessen, Peter Kappen, Alexandr N. Simonov, Rosalie K. Hocking. Photon-Induced, Timescale, and Electrode Effects Critical for the in Situ X-ray Spectroscopic Analysis of Electrocatalysts: The Water Oxidation Case. The Journal of Physical Chemistry C 2019, 123 (47) , 28533-28549. https://doi.org/10.1021/acs.jpcc.9b06944
  31. Dilek K. Dogutan, Daniel G. Nocera. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis. Accounts of Chemical Research 2019, 52 (11) , 3143-3148. https://doi.org/10.1021/acs.accounts.9b00380
  32. Jihye Lee, Jules Tshishimbi Muya, Hoeil Chung, Jinho Chang. Unraveling V(V)-V(IV)-V(III)-V(II) Redox Electrochemistry in Highly Concentrated Mixed Acidic Media for a Vanadium Redox Flow Battery: Origin of the Parasitic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (45) , 42066-42077. https://doi.org/10.1021/acsami.9b12676
  33. Mustafa Al Samarai, Anselm W. Hahn, Abbas Beheshti Askari, Yi-Tao Cui, Kosuke Yamazoe, Jun Miyawaki, Yoshihisa Harada, Olaf Rüdiger, Serena DeBeer. Elucidation of Structure–Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering. ACS Applied Materials & Interfaces 2019, 11 (42) , 38595-38605. https://doi.org/10.1021/acsami.9b06752
  34. Prashant Acharya, Zachary J. Nelson, Mourad Benamara, Ryan H. Manso, Sergio I. Perez Bakovic, Mojtaba Abolhassani, Sungsik Lee, Benjamin Reinhart, Jingyi Chen, Lauren F. Greenlee. Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega 2019, 4 (17) , 17209-17222. https://doi.org/10.1021/acsomega.9b01692
  35. Suraj Gupta, Harshada Jadhav, Sucharita Sinha, Antonio Miotello, Maulik K. Patel, Arindam Sarkar, Nainesh Patel. Cobalt-Boride Nanostructured Thin Films with High Performance and Stability for Alkaline Water Oxidation. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16651-16658. https://doi.org/10.1021/acssuschemeng.9b03995
  36. Elif Pınar Alsaç, Alexander Whittingham, Yutong Liu, Rodney D. L. Smith. Probing the Role of Internalized Geometric Strain on Heterogeneous Electrocatalysis. Chemistry of Materials 2019, 31 (18) , 7522-7530. https://doi.org/10.1021/acs.chemmater.9b02234
  37. Prashant Kumar Gupta, Arihant Bhandari, Sulay Saha, Jishnu Bhattacharya, Raj Ganesh S. Pala. Modulating Oxygen Evolution Reactivity in MnO2 through Polymorphic Engineering. The Journal of Physical Chemistry C 2019, 123 (36) , 22345-22357. https://doi.org/10.1021/acs.jpcc.9b05823
  38. Jose A. Carrasco, Roger Sanchis-Gual, Alvaro Seijas-Da Silva, Gonzalo Abellán, Eugenio Coronado. Influence of the Interlayer Space on the Water Oxidation Performance in a Family of Surfactant-Intercalated NiFe-Layered Double Hydroxides. Chemistry of Materials 2019, 31 (17) , 6798-6807. https://doi.org/10.1021/acs.chemmater.9b01263
  39. M. Hao, V. Charbonneau, N. N. Fomena, J. Gaudet, D. R. Bruce, S. Garbarino, D. A. Harrington, D. Guay. Hydrogen Bubble Templating of Fractal Ni Catalysts for Water Oxidation in Alkaline Media. ACS Applied Energy Materials 2019, 2 (8) , 5734-5743. https://doi.org/10.1021/acsaem.9b00860
  40. Ming Wen, Hongping Wu, Cong Hu, Zhihua Yang, Shilie Pan. Experiment and First-Principles Calculations of A2Mg2TeB2O10 (A = Pb, Ba): Influences of the Cosubstitution on the Structure Transformation and Optical Properties. Inorganic Chemistry 2019, 58 (16) , 11127-11132. https://doi.org/10.1021/acs.inorgchem.9b01693
  41. Thomas P. Keane, Daniel G. Nocera. Selective Production of Oxygen from Seawater by Oxidic Metallate Catalysts. ACS Omega 2019, 4 (7) , 12860-12864. https://doi.org/10.1021/acsomega.9b01751
  42. K. L. Dimuthu M. Weerawardene, Christine M. Aikens. Theoretical Investigation of Water Oxidation Mechanism on Pure Manganese and Ca-Doped Bimetal Oxide Complexes. The Journal of Physical Chemistry A 2019, 123 (29) , 6152-6159. https://doi.org/10.1021/acs.jpca.9b02652
  43. Zhao Zhang, Tianran Zhang, Jim Yang Lee. 110th Anniversary: A Total Water Splitting Electrocatalyst Based on Borate/Fe Co-Doping of Nickel Sulfide. Industrial & Engineering Chemistry Research 2019, 58 (29) , 13053-13063. https://doi.org/10.1021/acs.iecr.9b01976
  44. Lifei Xi, Martin Schellenberger, Raphael Francesco Praeg, Daowei Gao, Dorian Drevon, Paul Plate, Peter Bogdanoff, Roel van de Krol, Kathrin M. Lange. Structural Monitoring of NiBi Modified BiVO4 Photoanodes Using in Situ Soft and Hard X-ray Absorption Spectroscopies. ACS Applied Energy Materials 2019, 2 (6) , 4126-4134. https://doi.org/10.1021/acsaem.9b00304
  45. Fang Song, Michael M. Busch, Benedikt Lassalle-Kaiser, Chia-Shuo Hsu, Elitsa Petkucheva, Michaël Bensimon, Hao Ming Chen, Clemence Corminboeuf, Xile Hu. An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science 2019, 5 (3) , 558-568. https://doi.org/10.1021/acscentsci.9b00053
  46. Jian-Gang Li, Huachuan Sun, Lin Lv, Zhishan Li, Xiang Ao, Chenhui Xu, Yi Li, Chundong Wang. Metal–Organic Framework-Derived Hierarchical (Co,Ni)[email protected] LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Applied Materials & Interfaces 2019, 11 (8) , 8106-8114. https://doi.org/10.1021/acsami.8b22133
  47. Wen-Xiu Lu, Bin Wang, Wei-Jun Chen, Jie-Ling Xie, Zhao-Qian Huang, Wei Jin, Jun-Ling Song. Nanosheet-like Co3(OH)2(HPO4)2 as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3083-3091. https://doi.org/10.1021/acssuschemeng.8b04723
  48. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  49. Yu Zhang, Tingting Qu, Feifei Bi, Panpan Hao, Muhong Li, Shanyong Chen, Xiangke Guo, Mingjiang Xie, Xuefeng Guo. Trimetallic (Co/Ni/Cu) Hydroxyphosphate Nanosheet Array as Efficient and Durable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16859-16866. https://doi.org/10.1021/acssuschemeng.8b04180
  50. Woo-Sung Choi, Myeong Je Jang, Yoo Sei Park, Kyu Hwan Lee, Joo Yul Lee, Min-Ho Seo, Sung Mook Choi. Three-Dimensional Honeycomb-Like Cu0.81Co2.19O4 Nanosheet Arrays Supported by Ni Foam and Their High Efficiency as Oxygen Evolution Electrodes. ACS Applied Materials & Interfaces 2018, 10 (45) , 38663-38668. https://doi.org/10.1021/acsami.8b12478
  51. Chenglong Luan, Guangli Liu, Yujie Liu, Lei Yu, Yao Wang, Yun Xiao, Hongyan Qiao, Xiaoping Dai, Xin Zhang. Structure Effects of 2D Materials on α-Nickel Hydroxide for Oxygen Evolution Reaction. ACS Nano 2018, 12 (4) , 3875-3885. https://doi.org/10.1021/acsnano.8b01296
  52. Zhiwei Fang, Lele Peng, Yumin Qian, Xiao Zhang, Yujun Xie, Judy J. Cha, Guihua Yu. Dual Tuning of Ni–Co–A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution. Journal of the American Chemical Society 2018, 140 (15) , 5241-5247. https://doi.org/10.1021/jacs.8b01548
  53. Byeongyoon Kim, Aram Oh, Mrinal Kanti Kabiraz, Youngmin Hong, Jinwhan Joo, Hionsuck Baik, Sang-Il Choi, Kwangyeol Lee. NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte. ACS Applied Materials & Interfaces 2018, 10 (12) , 10115-10122. https://doi.org/10.1021/acsami.7b19457
  54. Wei Bian, Yichao Huang, Xiaobin Xu, Muhammad Aizaz Ud Din, Gang Xie, Xun Wang. Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces 2018, 10 (11) , 9407-9414. https://doi.org/10.1021/acsami.7b18875
  55. Yuhai Dou, Lei Zhang, Jiantie Xu, Chun-Ting He, Xun Xu, Ziqi Sun, Ting Liao, Balázs Nagy, Porun Liu, and Shi Xue Dou . Manipulating the Architecture of Atomically Thin Transition Metal (Hydr)oxides for Enhanced Oxygen Evolution Catalysis. ACS Nano 2018, 12 (2) , 1878-1886. https://doi.org/10.1021/acsnano.7b08691
  56. Jingchao Zhang, Daojun Zhang, Renchun Zhang, Nana Zhang, Cancan Cui, Jingru Zhang, Bei Jiang, Baiqing Yuan, Tanyuan Wang, Huan Xie, and Qing Li . Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials 2018, 1 (2) , 495-502. https://doi.org/10.1021/acsaem.7b00099
  57. Zhao Zhang, Tianran Zhang, and Jim Yang Lee . Enhancement Effect of Borate Doping on the Oxygen Evolution Activity of α-Nickel Hydroxide. ACS Applied Nano Materials 2018, 1 (2) , 751-758. https://doi.org/10.1021/acsanm.7b00210
  58. Vladimir Tripkovic, Heine Anton Hansen, and Tejs Vegge . From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity. ACS Catalysis 2017, 7 (12) , 8558-8571. https://doi.org/10.1021/acscatal.7b02712
  59. Adam S. Batchellor, Gihan Kwon, Forrest A. L. Laskowski, David M. Tiede, and Shannon W. Boettcher . Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. The Journal of Physical Chemistry C 2017, 121 (45) , 25421-25429. https://doi.org/10.1021/acs.jpcc.7b10306
  60. Yanmei Xin, Xiang Kan, Li-Yong Gan, and Zhonghai Zhang . Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting. ACS Nano 2017, 11 (10) , 10303-10312. https://doi.org/10.1021/acsnano.7b05020
  61. Varun Vij, Siraj Sultan, Ahmad M. Harzandi, Abhishek Meena, Jitendra N. Tiwari, Wang-Geun Lee, Taeseung Yoon, and Kwang S. Kim . Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis 2017, 7 (10) , 7196-7225. https://doi.org/10.1021/acscatal.7b01800
  62. Zhiwei Fang, Lele Peng, Haifeng Lv, Yue Zhu, Chunshuang Yan, Shengqi Wang, Pranav Kalyani, Xiaojun Wu, and Guihua Yu . Metallic Transition Metal Selenide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis. ACS Nano 2017, 11 (9) , 9550-9557. https://doi.org/10.1021/acsnano.7b05481
  63. Hyungseob Lim, Jae Young Kim, Edward J. Evans, Amritesh Rai, Jun-Hyuk Kim, Bryan R. Wygant, and C. Buddie Mullins . Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (36) , 30654-30661. https://doi.org/10.1021/acsami.7b08239
  64. Carlito S. Ponseca, Jr., Pavel Chábera, Jens Uhlig, Petter Persson, and Villy Sundström . Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews 2017, 117 (16) , 10940-11024. https://doi.org/10.1021/acs.chemrev.6b00807
  65. Alexander J. Tkalych, Houlong L. Zhuang, and Emily A. Carter . A Density Functional + U Assessment of Oxygen Evolution Reaction Mechanisms on β-NiOOH. ACS Catalysis 2017, 7 (8) , 5329-5339. https://doi.org/10.1021/acscatal.7b00999
  66. Xinzuo Fang, Long Jiao, Rui Zhang, and Hai-Long Jiang . Porphyrinic Metal–Organic Framework-Templated Fe–Ni–P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2017, 9 (28) , 23852-23858. https://doi.org/10.1021/acsami.7b07142
  67. Ruixiang Ge, Hongbin Du, Kai Tao, Qiuju Zhang, and Liang Chen . Cobalt-Borate Nanoarray: An Efficient and Durable Electrocatalyst for Water Oxidation under Benign Conditions. ACS Applied Materials & Interfaces 2017, 9 (18) , 15383-15387. https://doi.org/10.1021/acsami.7b00184
  68. Rui Zhang, Patrícia A. Russo, Michael Feist, Patrick Amsalem, Norbert Koch, and Nicola Pinna . Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. ACS Applied Materials & Interfaces 2017, 9 (16) , 14013-14022. https://doi.org/10.1021/acsami.7b01178
  69. Natascha Weidler, Jona Schuch, Florian Knaus, Patrick Stenner, Sascha Hoch, Artjom Maljusch, Rolf Schäfer, Bernhard Kaiser, and Wolfram Jaegermann . X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2017, 121 (12) , 6455-6463. https://doi.org/10.1021/acs.jpcc.6b12652
  70. Daniel G. Nocera . Solar Fuels and Solar Chemicals Industry. Accounts of Chemical Research 2017, 50 (3) , 616-619. https://doi.org/10.1021/acs.accounts.6b00615
  71. Weiyi Wang, Danni Liu, Shuai Hao, Fengli Qu, Yongjun Ma, Gu Du, Abdullah M. Asiri, Yadong Yao, and Xuping Sun . High-Efficiency and Durable Water Oxidation under Mild pH Conditions: An Iron Phosphate–Borate Nanosheet Array as a Non-Noble-Metal Catalyst Electrode. Inorganic Chemistry 2017, 56 (6) , 3131-3135. https://doi.org/10.1021/acs.inorgchem.6b03171
  72. Jie Yin, Yuxuan Li, Fan Lv, Qiaohui Fan, Yong-Qing Zhao, Qiaolan Zhang, Wei Wang, Fangyi Cheng, Pinxian Xi, and Shaojun Guo . NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn–Air Batteries. ACS Nano 2017, 11 (2) , 2275-2283. https://doi.org/10.1021/acsnano.7b00417
  73. Sung Ki Cho and Jinho Chang . Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni2+ and Its Combination with Photoelectrode. ACS Omega 2017, 2 (2) , 432-442. https://doi.org/10.1021/acsomega.6b00448
  74. Kyoungsuk Jin, Hongmin Seo, Toru Hayashi, Mani Balamurugan, Donghyuk Jeong, Yoo Kyung Go, Jung Sug Hong, Kang Hee Cho, Hirotaka Kakizaki, Nadège Bonnet-Mercier, Min Gyu Kim, Sun Hee Kim, Ryuhei Nakamura, and Ki Tae Nam . Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. Journal of the American Chemical Society 2017, 139 (6) , 2277-2285. https://doi.org/10.1021/jacs.6b10657
  75. Masaaki Yoshida, Sho Onishi, Yosuke Mitsutomi, Futaba Yamamoto, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Integration of Active Nickel Oxide Clusters by Amino Acids for Water Oxidation. The Journal of Physical Chemistry C 2017, 121 (1) , 255-260. https://doi.org/10.1021/acs.jpcc.6b08796
  76. Michaela Burke Stevens, Lisa J. Enman, Adam S. Batchellor, Monty R. Cosby, Ashlee E. Vise, Christina D. M. Trang, and Shannon W. Boettcher . Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chemistry of Materials 2017, 29 (1) , 120-140. https://doi.org/10.1021/acs.chemmater.6b02796
  77. Chao Wang, Reza B. Moghaddam, Michael J. Brett, and Steven H. Bergens . Simple Aqueous Preparation of High Activity and Stability NiFe Hydrous Oxide Catalysts for Water Oxidation. ACS Sustainable Chemistry & Engineering 2017, 5 (1) , 1106-1112. https://doi.org/10.1021/acssuschemeng.6b02391
  78. Shannon A. Bonke, Alan M. Bond, Leone Spiccia, and Alexandr N. Simonov . Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society 2016, 138 (49) , 16095-16104. https://doi.org/10.1021/jacs.6b10304
  79. Marçal Capdevila-Cortada, Zbigniew Łodziana, and Núria López . Performance of DFT+U Approaches in the Study of Catalytic Materials. ACS Catalysis 2016, 6 (12) , 8370-8379. https://doi.org/10.1021/acscatal.6b01907
  80. Sengeni Anantharaj, Sivasankara Rao Ede, Kuppan Sakthikumar, Kannimuthu Karthick, Soumyaranjan Mishra, and Subrata Kundu . Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis 2016, 6 (12) , 8069-8097. https://doi.org/10.1021/acscatal.6b02479
  81. Zhishan Luo, Sara Martí-Sànchez, Raquel Nafria, Gihan Joshua, Maria de la Mata, Pablo Guardia, Cristina Flox, Carlos Martínez-Boubeta, Konstantinos Simeonidis, Jordi Llorca, Joan Ramon Morante, Jordi Arbiol, Maria Ibáñez, and Andreu Cabot . [email protected] Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte. ACS Applied Materials & Interfaces 2016, 8 (43) , 29461-29469. https://doi.org/10.1021/acsami.6b09888
  82. Bo You, Xuan Liu, Nan Jiang, and Yujie Sun . A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. Journal of the American Chemical Society 2016, 138 (41) , 13639-13646. https://doi.org/10.1021/jacs.6b07127
  83. Lara Halaoui . Photoelectrochemical Investigation of the Mechanism of Enhancement of Water Oxidation at the Hematite Nanorod Array Modified with “NiBi”. The Journal of Physical Chemistry C 2016, 120 (40) , 22766-22776. https://doi.org/10.1021/acs.jpcc.6b04430
  84. José C. Conesa . Electronic Structure of the (Undoped and Fe-Doped) NiOOH O2 Evolution Electrocatalyst. The Journal of Physical Chemistry C 2016, 120 (34) , 18999-19010. https://doi.org/10.1021/acs.jpcc.6b06100
  85. Rodney D. L. Smith, Rebecca S. Sherbo, Kevan E. Dettelbach, and Curtis P. Berlinguette . On How Experimental Conditions Affect the Electrochemical Response of Disordered Nickel Oxyhydroxide Films. Chemistry of Materials 2016, 28 (16) , 5635-5642. https://doi.org/10.1021/acs.chemmater.6b01420
  86. Yibing Li and Chuan Zhao . Iron-Doped Nickel Phosphate as Synergistic Electrocatalyst for Water Oxidation. Chemistry of Materials 2016, 28 (16) , 5659-5666. https://doi.org/10.1021/acs.chemmater.6b01522
  87. Zhaoyang Wang, Jiantao Li, Xiaocong Tian, Xuanpeng Wang, Yang Yu, Kwadwo Asare Owusu, Liang He, and Liqiang Mai . Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (30) , 19386-19392. https://doi.org/10.1021/acsami.6b03392
  88. Guigao Liu, Peng Li, Guixia Zhao, Xin Wang, Jintao Kong, Huimin Liu, Huabin Zhang, Kun Chang, Xianguang Meng, Tetsuya Kako, and Jinhua Ye . Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society 2016, 138 (29) , 9128-9136. https://doi.org/10.1021/jacs.6b05190
  89. Oluwaniyi Mabayoje, Ahmed Shoola, Bryan R. Wygant, and C. Buddie Mullins . The Role of Anions in Metal Chalcogenide Oxygen Evolution Catalysis: Electrodeposited Thin Films of Nickel Sulfide as “Pre-catalysts”. ACS Energy Letters 2016, 1 (1) , 195-201. https://doi.org/10.1021/acsenergylett.6b00084
  90. Zaki N. Zahran, Eman A. Mohamed, and Yoshinori Naruta . Kinetics and Mechanism of Heterogeneous Water Oxidation by α-Mn2O3 Sintered on an FTO Electrode. ACS Catalysis 2016, 6 (7) , 4470-4476. https://doi.org/10.1021/acscatal.6b00413
  91. Valeria Butera and Maytal Caspary Toroker . Electronic Properties of Pure and Fe-Doped β-Ni(OH)2: New Insights Using Density Functional Theory with a Cluster Approach. The Journal of Physical Chemistry C 2016, 120 (23) , 12344-12350. https://doi.org/10.1021/acs.jpcc.6b01501
  92. Shengsheng Cui, Xiang Liu, Zijun Sun, and Pingwu Du . Noble Metal-Free Copper Hydroxide as an Active and Robust Electrocatalyst for Water Oxidation at Weakly Basic pH. ACS Sustainable Chemistry & Engineering 2016, 4 (5) , 2593-2600. https://doi.org/10.1021/acssuschemeng.6b00067
  93. Amendra Fernando, Tyler Haddock, and Christine M. Aikens . Theoretical Investigation of Water Oxidation on Fully Saturated Mn2O3 and Mn2O4 Complexes. The Journal of Physical Chemistry A 2016, 120 (15) , 2480-2492. https://doi.org/10.1021/acs.jpca.6b02280
  94. Michael R. Nellist, Forrest A. L. Laskowski, Fuding Lin, Thomas J. Mills, and Shannon W. Boettcher . Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Accounts of Chemical Research 2016, 49 (4) , 733-740. https://doi.org/10.1021/acs.accounts.6b00001
  95. Mohammad Mahdi Najafpour, Gernot Renger, Małgorzata Hołyńska, Atefeh Nemati Moghaddam, Eva-Mari Aro, Robert Carpentier, Hiroshi Nishihara, Julian J. Eaton-Rye, Jian-Ren Shen, and Suleyman I. Allakhverdiev . Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews 2016, 116 (5) , 2886-2936. https://doi.org/10.1021/acs.chemrev.5b00340
  96. Rodney D. L. Smith and Curtis P. Berlinguette . Accounting for the Dynamic Oxidative Behavior of Nickel Anodes. Journal of the American Chemical Society 2016, 138 (5) , 1561-1567. https://doi.org/10.1021/jacs.5b10728
  97. Xiang Liu, Shengsheng Cui, Zijun Sun, Yang Ren, Xiaoyi Zhang, and Pingwu Du . Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2016, 120 (2) , 831-840. https://doi.org/10.1021/acs.jpcc.5b09818
  98. Alexander Schnegg, Joscha Nehrkorn, Archana Singh, Irati Alonso Calafell, Shannon A. Bonke, Rosalie K. Hocking, Klaus Lips, and Leone Spiccia . Probing the Fate of Mn Complexes in Nafion: A Combined Multifrequency EPR and XAS Study. The Journal of Physical Chemistry C 2016, 120 (2) , 853-861. https://doi.org/10.1021/acs.jpcc.5b10451
  99. Yingying Feng, Jie Wei, and Yong Ding . Efficient Photochemical, Thermal, and Electrochemical Water Oxidation Catalyzed by a Porous Iron-Based Oxide Derived Metal–Organic Framework. The Journal of Physical Chemistry C 2016, 120 (1) , 517-526. https://doi.org/10.1021/acs.jpcc.5b11533
  100. Hyun S. Ahn and Allen J. Bard . Surface Interrogation Scanning Electrochemical Microscopy of Ni1–xFexOOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the “fast” Iron Sites. Journal of the American Chemical Society 2016, 138 (1) , 313-318. https://doi.org/10.1021/jacs.5b10977
Load more citations