Water Oxidation Catalyzed by Cobalt(II) Adsorbed on Silica Nanoparticles

View Author Information
Chemistry Department and Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
§ Chemistry Department, New York University, New York, New York 10003, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 35, 14275–14278
Publication Date (Web):August 22, 2012
https://doi.org/10.1021/ja304030y
Copyright © 2012 American Chemical Society
Article Views
4009
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

A novel, highly efficient, and stable water oxidation catalyst was prepared by a pH-controlled adsorption of Co(II) on ∼10 nm diameter silica nanoparticles. A lower limit of ∼300 s–1 per cobalt atom for the catalyst turnover frequency in oxygen evolution was estimated, which attests to a very high catalytic activity. Electron microscopy revealed that cobalt is adsorbed on the SiO2 nanoparticle surfaces as small (1–2 nm) clusters of Co(OH)2. This catalyst is optically transparent over the entire UV–vis range and is thus suitable for mechanistic investigations by time-resolved spectroscopic techniques.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental procedures and catalyst characterization data, including photographs, tables, and UV–vis spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 61 publications.

  1. Shigeru Sakamoto, Masashi Yoshikawa, Kota Ozawa, Yoshiyuki Kuroda, Atsushi Shimojima, and Kazuyuki Kuroda . Formation of Single-Digit Nanometer Scale Silica Nanoparticles by Evaporation-Induced Self-Assembly. Langmuir 2018, 34 (4) , 1711-1717. https://doi.org/10.1021/acs.langmuir.7b04042
  2. Lidong Wang, Dariusz Mitoraj, Stuart Turner, Oleksiy V. Khavryuchenko, Timo Jacob, Rosalie K. Hocking, and Radim Beranek . Ultrasmall CoO(OH)x Nanoparticles As a Highly Efficient “True” Cocatalyst in Porous Photoanodes for Water Splitting. ACS Catalysis 2017, 7 (7) , 4759-4767. https://doi.org/10.1021/acscatal.7b01466
  3. Huayang Zhang, Wenjie Tian, Xiaochen Guo, Li Zhou, Hongqi Sun, Moses O. Tadé, and Shaobin Wang . Flower-like Cobalt Hydroxide/Oxide on Graphitic Carbon Nitride for Visible-Light-Driven Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (51) , 35203-35212. https://doi.org/10.1021/acsami.6b10918
  4. Jia-Wei Wang, Pathik Sahoo, and Tong-Bu Lu . Reinvestigation of Water Oxidation Catalyzed by a Dinuclear Cobalt Polypyridine Complex: Identification of CoOx as a Real Heterogeneous Catalyst. ACS Catalysis 2016, 6 (8) , 5062-5068. https://doi.org/10.1021/acscatal.6b00798
  5. Shengrong Ye, Ian E. Stewart, Zuofeng Chen, Bo Li, Aaron R. Rathmell, and Benjamin J. Wiley . How Copper Nanowires Grow and How To Control Their Properties. Accounts of Chemical Research 2016, 49 (3) , 442-451. https://doi.org/10.1021/acs.accounts.5b00506
  6. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
  7. Hongfei Liu, Mauro Schilling, Maxim Yulikov, Sandra Luber, and Greta R. Patzke . Homogeneous Photochemical Water Oxidation with Cobalt Chloride in Acidic Media. ACS Catalysis 2015, 5 (9) , 4994-4999. https://doi.org/10.1021/acscatal.5b01101
  8. Hongfei Liu, Ying Zhou, René Moré, Rafael Müller, Thomas Fox, and Greta R. Patzke . Correlations among Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on Lithium Cobalt Oxides. ACS Catalysis 2015, 5 (6) , 3791-3800. https://doi.org/10.1021/acscatal.5b00078
  9. Gregory S. Hutchings, Yan Zhang, Jian Li, Bryan T. Yonemoto, Xinggui Zhou, Kake Zhu, and Feng Jiao . In Situ Formation of Cobalt Oxide Nanocubanes as Efficient Oxygen Evolution Catalysts. Journal of the American Chemical Society 2015, 137 (12) , 4223-4229. https://doi.org/10.1021/jacs.5b01006
  10. Chia-Cheng Lin, Yijun Guo, and Javier Vela . Microstructure Effects on the Water Oxidation Activity of Co3O4/Porous Silica Nanocomposites. ACS Catalysis 2015, 5 (2) , 1037-1044. https://doi.org/10.1021/cs501650j
  11. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  12. Hongjin Lv, Jie Song, Yurii V. Geletii, James W. Vickers, Jordan M. Sumliner, Djamaladdin G. Musaev, Paul Kögerler, Petro F. Zhuk, John Bacsa, Guibo Zhu, and Craig L. Hill . An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. Journal of the American Chemical Society 2014, 136 (26) , 9268-9271. https://doi.org/10.1021/ja5045488
  13. Delina Barats-Damatov, Linda J. W. Shimon, Lev Weiner, Roy E. Schreiber, Pablo Jiménez-Lozano, Josep M. Poblet, Coen de Graaf, and Ronny Neumann . Dicobalt-μ-oxo Polyoxometalate Compound, [(α2-P2W17O61Co)2O]14–: A Potent Species for Water Oxidation, C–H Bond Activation, and Oxygen Transfer. Inorganic Chemistry 2014, 53 (3) , 1779-1787. https://doi.org/10.1021/ic402962c
  14. Jordan J. Stracke and Richard G. Finke . Water Oxidation Catalysis Beginning with Co4(H2O)2(PW9O34)210– When Driven by the Chemical Oxidant Ruthenium(III)tris(2,2′-bipyridine): Stoichiometry, Kinetic, and Mechanistic Studies en Route to Identifying the True Catalyst. ACS Catalysis 2014, 4 (1) , 79-89. https://doi.org/10.1021/cs4006925
  15. Joselyn Del Pilar-Albaladejo and Prabir K. Dutta . Topotactic Transformation of Zeolite Supported Cobalt(II) Hydroxide to Oxide and Comparison of Photocatalytic Oxygen Evolution. ACS Catalysis 2014, 4 (1) , 9-15. https://doi.org/10.1021/cs400991v
  16. James D. Blakemore, Harry B. Gray, Jay R. Winkler, and Astrid M. Müller . Co3O4 Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids. ACS Catalysis 2013, 3 (11) , 2497-2500. https://doi.org/10.1021/cs400639b
  17. James W. Vickers, Hongjin Lv, Jordan M. Sumliner, Guibo Zhu, Zhen Luo, Djamaladdin G. Musaev, Yurii V. Geletii, and Craig L. Hill . Differentiating Homogeneous and Heterogeneous Water Oxidation Catalysis: Confirmation that [Co4(H2O)2(α-PW9O34)2]10– Is a Molecular Water Oxidation Catalyst. Journal of the American Chemical Society 2013, 135 (38) , 14110-14118. https://doi.org/10.1021/ja4024868
  18. Caleb A. Kent, Javier J. Concepcion, Christopher J. Dares, Daniel A. Torelli, Adam J. Rieth, Andrew S. Miller, Paul G. Hoertz, and Thomas J. Meyer . Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes. Journal of the American Chemical Society 2013, 135 (23) , 8432-8435. https://doi.org/10.1021/ja400616a
  19. Marco Armandi, Simelys Hernandez, Svetoslava Vankova, Simone Zanarini, Barbara Bonelli, and Edoardo Garrone . Visible-Light Driven Oxidation of Water as Catalyzed by Co-APO-5 in the Presence of Ru Sensitizer. ACS Catalysis 2013, 3 (6) , 1272-1278. https://doi.org/10.1021/cs400067m
  20. Andrey S. Chikunov, Svetlana A. Yashnik, Oxana P. Taran, Anna Y. Kurenkova, Valentin N. Parmon. Cu(II) oxo/hydroxides stabilized by ZSM-5 zeolite as an efficient and robust catalyst for chemical and photochemical water oxidation with Ru(bpy)33+. Catalysis Today 2021, 375 , 458-471. https://doi.org/10.1016/j.cattod.2020.07.009
  21. Deepali Ahluwalia, Sachin Kumar, Sudhir G. Warkar, Anil Kumar. Functionalized Nanomaterials for Catalytic Applications—Silica and Iron Oxide. 2021,,, 169-184. https://doi.org/10.1002/9781119809036.ch6
  22. Le Yang, Rui Ma, Hui Zeng, Zebao Rui, Yongdan Li. MOF-templated core-shell Co(II/III)@ZnO hexagonal prisms for selective oxidation of vanillyl alcohol. Catalysis Today 2020, 355 , 280-285. https://doi.org/10.1016/j.cattod.2019.02.031
  23. Min Wang, Jia‐Qi Wang, Cong Xi, Chuan‐Qi Cheng, Cheng‐Qin Zou, Rui Zhang, Ya‐Meng Xie, Zhong‐Lu Guo, Cheng‐Chun Tang, Cun‐Ku Dong, Yong‐Jun Chen, Xi‐Wen Du. A Hydrogen‐Deficient Nickel–Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting. Angewandte Chemie 2020, 132 (28) , 11607-11612. https://doi.org/10.1002/ange.202002650
  24. Min Wang, Jia‐Qi Wang, Cong Xi, Chuan‐Qi Cheng, Cheng‐Qin Zou, Rui Zhang, Ya‐Meng Xie, Zhong‐Lu Guo, Cheng‐Chun Tang, Cun‐Ku Dong, Yong‐Jun Chen, Xi‐Wen Du. A Hydrogen‐Deficient Nickel–Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting. Angewandte Chemie International Edition 2020, 59 (28) , 11510-11515. https://doi.org/10.1002/anie.202002650
  25. Ritwik Modak, Biswajit Mondal, Yeasin Sikdar, Jayisha Banerjee, Enrique Colacio, Itziar Oyarzabal, Joan Cano, Sanchita Goswami. Slow magnetic relaxation and water oxidation activity of dinuclear Co II Co III and unique triangular Co II Co II Co III mixed-valence complexes. Dalton Transactions 2020, 49 (19) , 6328-6340. https://doi.org/10.1039/D0DT00036A
  26. Harshitha Barike Aiyappa, Patrick Wilde, Thomas Quast, Justus Masa, Corina Andronescu, Yen‐Ting Chen, Martin Muhler, Roland A. Fischer, Wolfgang Schuhmann. Sauerstoffevolutionselektrokatalyse eines einzelnen MOF‐basierten Kompositnanopartikels an der Spitze einer Nanoelektrode. Angewandte Chemie 2019, 131 (26) , 9021-9026. https://doi.org/10.1002/ange.201903283
  27. Harshitha Barike Aiyappa, Patrick Wilde, Thomas Quast, Justus Masa, Corina Andronescu, Yen‐Ting Chen, Martin Muhler, Roland A. Fischer, Wolfgang Schuhmann. Oxygen Evolution Electrocatalysis of a Single MOF‐Derived Composite Nanoparticle on the Tip of a Nanoelectrode. Angewandte Chemie International Edition 2019, 58 (26) , 8927-8931. https://doi.org/10.1002/anie.201903283
  28. Svetlana A. Yashnik, Andrey S. Chikunov, Oxana P. Taran, Anton V. Salnikov, Valentin N. Parmon. Co(II, III) Hydroxides Supported on Zeolite Acting as an Efficient and Robust Catalyst for Catalytic Water Oxidation with Ru(bpy)33+. Topics in Catalysis 2019, 62 (5-6) , 439-455. https://doi.org/10.1007/s11244-019-01158-1
  29. Andrei S. Chikunov, Oxana P. Taran, Inna A. Pyshnaya, Valentin N. Parmon. Colloidal Fe III , Mn III , Co III , and Cu II Hydroxides Stabilized by Starch as Catalysts of Water Oxidation Reaction with One Electron Oxidant Ru(bpy) 3 3+. ChemPhysChem 2019, 20 (3) , 410-421. https://doi.org/10.1002/cphc.201800957
  30. Carminna Ottone, Simelys Hernández, Marco Armandi, Barbara Bonelli. Sacrificial Oxidants as a Means to Study the Catalytic Activity of Water Oxidation Catalysts. 2019,,, 29-47. https://doi.org/10.1007/978-3-030-12712-1_3
  31. Junqi Lin, Qing Han, Yong Ding. Catalysts Based on Earth‐Abundant Metals for Visible Light‐Driven Water Oxidation Reaction. The Chemical Record 2018, 18 (11) , 1531-1547. https://doi.org/10.1002/tcr.201800029
  32. Ibram Ganesh. Li 2 O–ZnO–Co 3 O 4 –TiO 2 composite thin-film electrocatalyst for efficient water oxidation catalysis. Materials and Manufacturing Processes 2017, 32 (4) , 431-441. https://doi.org/10.1080/10426914.2016.1257857
  33. Samir Bensaid, Carminna Ottone Melis, Simelys Hernández, Marco Armandi, Serena Esposito, Guido Saracco, Barbara Bonelli. A simple model for a complex system: Kinetics of water oxidation with the [Ru(bpy) 3 ] 2+ /S 2 O 8 2− photosystem as catalyzed by Mn 2 O 3 under different illumination conditions. Chemical Engineering Journal 2017, 311 , 143-152. https://doi.org/10.1016/j.cej.2016.11.087
  34. Santu Das, Soumyajit Roy. Photochemical Water Oxidation Using {[email protected]} n Based Soft Oxometalate. Journal of Molecular and Engineering Materials 2017, 05 (01) , 1750001. https://doi.org/10.1142/S2251237317500010
  35. Dong Wang, Didier Astruc. The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chemical Society Reviews 2017, 46 (3) , 816-854. https://doi.org/10.1039/C6CS00629A
  36. Zhi-Jun Li, Xiang-Bing Fan, Xu-Bing Li, Jia-Xin Li, Fei Zhan, Ye Tao, Xiaoyi Zhang, Qing-Yu Kong, Ning-Jiu Zhao, Jian-Ping Zhang, Chen Ye, Yu-Ji Gao, Xu-Zhe Wang, Qing-Yuan Meng, Ke Feng, Bin Chen, Chen-Ho Tung, Li-Zhu Wu. Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. Journal of Materials Chemistry A 2017, 5 (21) , 10365-10373. https://doi.org/10.1039/C7TA01670K
  37. Xiao Liu, Shinji Inagaki, Jinlong Gong. Heterogene molekulare Systeme für eine photokatalytische CO 2 -Reduktion mit Wasseroxidation. Angewandte Chemie 2016, 128 (48) , 15146-15174. https://doi.org/10.1002/ange.201600395
  38. Xiao Liu, Shinji Inagaki, Jinlong Gong. Heterogeneous Molecular Systems for Photocatalytic CO 2 Reduction with Water Oxidation. Angewandte Chemie International Edition 2016, 55 (48) , 14924-14950. https://doi.org/10.1002/anie.201600395
  39. Michael J. Pellin, Shannon C. Riha, Eric C. Tyo, Gihan Kwon, Joseph A. Libera, Jeffrey W. Elam, Soenke. Seifert, Sungsik Lee, Stefan Vajda. Water Oxidation by Size-Selected Co 27 Clusters Supported on Fe 2 O 3. ChemSusChem 2016, 9 (20) , 3005-3011. https://doi.org/10.1002/cssc.201600982
  40. Kazuhiko Maeda, Koki Ishimaki, Yuki Tokunaga, Daling Lu, Miharu Eguchi. Modification of Wide-Band-Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visible-Light Water Oxidation. Angewandte Chemie 2016, 128 (29) , 8449-8453. https://doi.org/10.1002/ange.201602764
  41. Kazuhiko Maeda, Koki Ishimaki, Yuki Tokunaga, Daling Lu, Miharu Eguchi. Modification of Wide-Band-Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visible-Light Water Oxidation. Angewandte Chemie International Edition 2016, 55 (29) , 8309-8313. https://doi.org/10.1002/anie.201602764
  42. Zheng Chen, Shu Miao, Jingqi Guan, Fuxiang Zhang, Can Li. Sub-2 nm cobalt oxide cluster catalyst supported on alumina for efficient water oxidation. Applied Catalysis A: General 2016, 521 , 154-159. https://doi.org/10.1016/j.apcata.2015.11.039
  43. Jian Dou, Shengming Yin, Jeng Yi Chong, Bowei Zhang, Jianyu Han, Yizhong Huang, Rong Xu. Carbon spheres anchored Co3O4 nanoclusters as an efficient catalyst for dye degradation. Applied Catalysis A: General 2016, 513 , 106-115. https://doi.org/10.1016/j.apcata.2015.12.028
  44. Anthony Vasileff, Sheng Chen, Shi Zhang Qiao. Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horizons 2016, 1 (1) , 41-44. https://doi.org/10.1039/C5NH00002E
  45. Santu Das, Archismita Misra, Soumyajit Roy. Enhancement of photochemical heterogeneous water oxidation by a manganese based soft oxometalate immobilized on a graphene oxide matrix. New Journal of Chemistry 2016, 40 (2) , 994-1003. https://doi.org/10.1039/C5NJ01099C
  46. Joselyn Del-Pilar, Bo Wang, Prabir K. Dutta. Anchoring of cobalt hydroxide catalysts on nanozeolite crystals for photocatalytic water oxidation. Microporous and Mesoporous Materials 2015, 217 , 125-132. https://doi.org/10.1016/j.micromeso.2015.06.014
  47. Feifei Han, Yuhan Yang, Jiaying Han, Jin Ouyang, Na Na. Room-temperature cataluminescence from CO oxidation in a non-thermal plasma-assisted catalysis system. Journal of Hazardous Materials 2015, 293 , 1-6. https://doi.org/10.1016/j.jhazmat.2015.03.029
  48. Oscar Verho, Torbjörn Åkermark, Eric V. Johnston, Karl P. J. Gustafson, Cheuk-W. Tai, Henrik Svengren, Markus D. Kärkäs, Jan-E. Bäckvall, Björn Åkermark. Well-Defined Palladium Nanoparticles Supported on Siliceous Mesocellular Foam as Heterogeneous Catalysts for the Oxidation of Water. Chemistry - A European Journal 2015, 21 (15) , 5909-5915. https://doi.org/10.1002/chem.201406279
  49. Dominic Walsh, Noelia M. Sanchez-Ballester, Katsuhiko Ariga, Akihiro Tanaka, Mark Weller. Chelate stabilized metal oxides for visible light photocatalyzed water oxidations. Green Chemistry 2015, 17 (2) , 982-990. https://doi.org/10.1039/C4GC01604A
  50. R. K. Sharma, Shivani Sharma, Sriparna Dutta, Radek Zboril, Manoj B. Gawande. Silica-nanosphere-based organic–inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chemistry 2015, 17 (6) , 3207-3230. https://doi.org/10.1039/C5GC00381D
  51. Yufei Zhao, Bing Sun, Xiaodan Huang, Hao Liu, Dawei Su, Kening Sun, Guoxiu Wang. Porous graphene wrapped CoO nanoparticles for highly efficient oxygen evolution. Journal of Materials Chemistry A 2015, 3 (10) , 5402-5408. https://doi.org/10.1039/C5TA00158G
  52. Mei Zhang, Ming-Tian Zhang, Cheng Hou, Zhuo-Feng Ke, Tong-Bu Lu. Homogeneous Electrocatalytic Water Oxidation at Neutral pH by a Robust Macrocyclic Nickel(II) Complex. Angewandte Chemie 2014, 126 (48) , 13258-13264. https://doi.org/10.1002/ange.201406983
  53. Mei Zhang, Ming-Tian Zhang, Cheng Hou, Zhuo-Feng Ke, Tong-Bu Lu. Homogeneous Electrocatalytic Water Oxidation at Neutral pH by a Robust Macrocyclic Nickel(II) Complex. Angewandte Chemie International Edition 2014, 53 (48) , 13042-13048. https://doi.org/10.1002/anie.201406983
  54. Marcel Risch, Katharina Klingan, Ivelina Zaharieva, Holger Dau. Water Oxidation by Co-Based Oxides with Molecular Properties. 2014,,, 163-185. https://doi.org/10.1002/9781118698648.ch9
  55. Miao Zhang, Moreno de Respinis, Heinz Frei. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nature Chemistry 2014, 6 (4) , 362-367. https://doi.org/10.1038/nchem.1874
  56. James W. Vickers, Jordan M. Sumliner, Hongjin Lv, Mike Morris, Yurii V. Geletii, Craig L. Hill. Collecting meaningful early-time kinetic data in homogeneous catalytic water oxidation with a sacrificial oxidant. Phys. Chem. Chem. Phys. 2014, 16 (24) , 11942-11949. https://doi.org/10.1039/C3CP55406F
  57. Barbara Bonelli, Marco Armandi, Simelys Hernandez, Svetoslava Vankova, Edvige Celasco, Maura Tomatis, Guido Saracco, Edoardo Garrone. The behaviour of an old catalyst revisited in a wet environment: Co ions in APO-5 split water under mild conditions. Phys. Chem. Chem. Phys. 2014, 16 (15) , 7074-7082. https://doi.org/10.1039/C4CP00320A
  58. Zuofeng Chen, Aaron R. Rathmell, Shengrong Ye, Adria R. Wilson, Benjamin J. Wiley. Optically Transparent Water Oxidation Catalysts Based on Copper Nanowires. Angewandte Chemie 2013, 125 (51) , 13953-13956. https://doi.org/10.1002/ange.201306585
  59. Zuofeng Chen, Aaron R. Rathmell, Shengrong Ye, Adria R. Wilson, Benjamin J. Wiley. Optically Transparent Water Oxidation Catalysts Based on Copper Nanowires. Angewandte Chemie International Edition 2013, 52 (51) , 13708-13711. https://doi.org/10.1002/anie.201306585
  60. Hyun S. Ahn, Junko Yano, T. Don Tilley. Photocatalytic water oxidation by very small cobalt domains on a silica surface. Energy & Environmental Science 2013, 6 (10) , 3080. https://doi.org/10.1039/c3ee42067a
  61. Hongjin Lv, Yurii V. Geletii, Chongchao Zhao, James W. Vickers, Guibo Zhu, Zhen Luo, Jie Song, Tianquan Lian, Djamaladdin G. Musaev, Craig L. Hill. Polyoxometalate water oxidation catalysts and the production of green fuel. Chemical Society Reviews 2012, 41 (22) , 7572. https://doi.org/10.1039/c2cs35292c