Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with “Co–Pi”-Coated Hematite Electrodes

View Author Information
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
Photovoltaics and Optoelectronic Devices Group, Departament de Física, Universitat Jaume I, 12071 Castelló, Spain
Cite this: J. Am. Chem. Soc. 2012, 134, 40, 16693–16700
Publication Date (Web):September 5, 2012
https://doi.org/10.1021/ja306427f
Copyright © 2012 American Chemical Society
Article Views
8687
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Uniform thin films of hematite (α-Fe2O3) deposited by atomic layer deposition (ALD) coated with varying amounts of the cobalt phosphate catalyst, “Co–Pi,” were investigated with steady-state and transient photoelectrochemical measurements and impedance spectroscopy. Systematic studies as a function of Co–Pi thickness were performed in order to clarify the mechanism by which Co–Pi enhances the water-splitting performance of hematite electrodes. It was found that under illumination, the Co–Pi catalyst can efficiently collect and store photogenerated holes from the hematite electrode. This charge separation reduces surface state recombination which results in increased water oxidation efficiency. It was also found that thicker Co–Pi films produced increased water oxidation efficiencies which is attributed to a combination of superior charge separation and increased surface area of the porous catalytic film. These combined results provide important new understanding of the enhancement and limitations of the Co–Pi catalyst coupled with semiconductor electrodes for water-splitting applications.

Supporting Information

ARTICLE SECTIONS
Jump To

Plots of steady-state photocurrent measurements, oxygen evolution measurements, cathodic current transients, chopped-light J–V curves, total resistances derived from IS and J–V curves and Mott–Schottky plots. Results of PEC and IS response to variations in light intensity. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 507 publications.

  1. Zili Ma, Ziying Wen, Cuiping Gu, Yanjun Yin. Doping of Nonmetal Se in Fe2O3 Nanowire Array-Based Photoanodes for Water Oxidation. ACS Applied Nano Materials 2021, Article ASAP.
  2. Pengpeng Wang, Ping Fu, Jiangping Ma, Yuying Gao, Zheng Li, Hong Wang, Fengtao Fan, Jingying Shi, Can Li. Ultrathin Cobalt Oxide Interlayer Facilitated Hole Storage for Sustained Water Oxidation over Composited Tantalum Nitride Photoanodes. ACS Catalysis 2021, 11 (20) , 12736-12744. https://doi.org/10.1021/acscatal.1c03298
  3. Suryansh Singh, Hanna Lyle, Luca D’Amario, Elena Magnano, Ilya Vinogradov, Tanja Cuk. Coherent Acoustic Interferometry during the Photodriven Oxygen Evolution Reaction Associates Strain Fields with the Reactive Oxygen Intermediate (Ti–OH*). Journal of the American Chemical Society 2021, 143 (39) , 15984-15997. https://doi.org/10.1021/jacs.1c04976
  4. Ahmed S. M. Ismail, Ivan Garcia-Torregrosa, Jeroen C. Vollenbroek, Laura Folkertsma, Johan G. Bomer, Ties Haarman, Mahnaz Ghiasi, Meike Schellhorn, Maarten Nachtegaal, Mathieu Odijk, Albert van den Berg, Bert M. Weckhuysen, Frank M. F. de Groot. Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. ACS Catalysis 2021, 11 (19) , 12324-12335. https://doi.org/10.1021/acscatal.1c02566
  5. Zehui Yu, Qikang Huang, Xingxing Jiang, Xiaowei Lv, Xin Xiao, Mingkui Wang, Yan Shen, Gunther Wittstock. Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy. Analytical Chemistry 2021, 93 (36) , 12221-12229. https://doi.org/10.1021/acs.analchem.1c01235
  6. Zohreh Masoumi, Meysam Tayebi, Morteza Kolaei, Ahmad Tayyebi, Hongsun Ryu, Joon I. Jang, Byeong-Kyu Lee. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe2O3/MoS2 Photoanode: A Collaborative Approach of MoS2 as a Heterojunction and W as a Metal Dopant. ACS Applied Materials & Interfaces 2021, 13 (33) , 39215-39229. https://doi.org/10.1021/acsami.1c08139
  7. Jing-Xin Jian, Valdas Jokubavicius, Mikael Syväjärvi, Rositsa Yakimova, Jianwu Sun. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting. ACS Nano 2021, 15 (3) , 5502-5512. https://doi.org/10.1021/acsnano.1c00256
  8. Motoki Osada, Kazunori Nishio, Kyuho Lee, Michael Colletta, Berit H. Goodge, Woo Jin Kim, Lena F. Kourkoutis, Harold Y. Hwang, Yasuyuki Hikita. Highly Efficient Surface Charge Transfer in Fe2TiO5 Epitaxial Thin Film Photoanodes. ACS Applied Energy Materials 2021, 4 (3) , 2098-2106. https://doi.org/10.1021/acsaem.0c02516
  9. Jianhua Han, Zhifeng Liu. Optimization and Modulation Strategies of Zinc Oxide-based Photoanodes for Highly Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2021, 4 (1) , 1004-1013. https://doi.org/10.1021/acsaem.0c02985
  10. Niloufar Afzali, Shahram Tangestaninejad, Reza Keshavarzi, Valiollah Mirkhani, Javad Nematollahi, Majid Moghadam, Iraj Mohammadpoor-Baltork, Max Reimer, Selina Olthof, Axel Klein, Sixto Gimenez. Hierarchical Ti-Based MOF with Embedded RuO2 Nanoparticles: a Highly Efficient Photoelectrode for Visible Light Water Oxidation. ACS Sustainable Chemistry & Engineering 2020, 8 (50) , 18366-18376. https://doi.org/10.1021/acssuschemeng.0c04682
  11. Parisa Shadabipour, Austin L. Raithel, Thomas W. Hamann. Charge-Carrier Dynamics at the CuWO4/Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (45) , 50592-50599. https://doi.org/10.1021/acsami.0c14705
  12. Bruno M. Pires, Franziska S. Hegner, Juliano A. Bonacin, José-Ramón Galán-Mascarós. Ligand Effects of Penta- and Hexacyanidoferrate-Derived Water Oxidation Catalysts on BiVO4 Photoanodes. ACS Applied Energy Materials 2020, 3 (9) , 8448-8456. https://doi.org/10.1021/acsaem.0c01082
  13. Francesco Malara, Martina Fracchia, Hana Kmentová, Rinaldo Psaro, Alberto Vertova, Danilo Oliveira de Souza, Giuliana Aquilanti, Luca Olivi, Paolo Ghigna, Alessandro Minguzzi, Alberto Naldoni. Direct Observation of Photoinduced Higher Oxidation States at a Semiconductor/Electrocatalyst Junction. ACS Catalysis 2020, 10 (18) , 10476-10487. https://doi.org/10.1021/acscatal.0c02789
  14. Shivkanya Shinde, Pavel Majumdar, Sayantan Sil, Markus Löffler, Anamika Banerjee, Bernd Rellinghaus, Sahab Dass, Partha Pratim Ray, Snehangshu Patra. Energy-Inexpensive Galvanic Deposition of BiOI on Electrodes and Its Conversion to 3D Porous BiVO4-Based Photoanode. The Journal of Physical Chemistry C 2020, 124 (35) , 18930-18945. https://doi.org/10.1021/acs.jpcc.0c06059
  15. C. M. Tian, W.-W. Li, Y. M. Lin, Z. Z. Yang, L. Wang, Y. G. Du, H. Y. Xiao, L. Qiao, J. Y. Zhang, L. Chen, Dong-Chen Qi, J. L. MacManus-Driscoll, K. H. L. Zhang. Electronic Structure, Optical Properties, and Photoelectrochemical Activity of Sn-Doped Fe2O3 Thin Films. The Journal of Physical Chemistry C 2020, 124 (23) , 12548-12558. https://doi.org/10.1021/acs.jpcc.0c02875
  16. Fengkai Wu, Jiale Xie, Yue You, Zhengyu Zhao, Liuliu Wang, Xiaoying Chen, Pingping Yang, Yuelong Huang. Cobalt Metal–Organic Framework Ultrathin Cocatalyst Overlayer for Improved Photoelectrochemical Activity of Ti-Doped Hematite. ACS Applied Energy Materials 2020, 3 (5) , 4867-4876. https://doi.org/10.1021/acsaem.0c00465
  17. Juan Wu, Mixiang Qi, Gang Wang, Bin Yu, Chengdong Liu, Wei Hou, Weisheng Liu. Synergistic Effect of Metal–Organic Framework-Derived TiO2 Nanoparticles and an Ultrathin Carbon Layer on Passivation of Hematite Surface States. ACS Sustainable Chemistry & Engineering 2020, 8 (13) , 5200-5208. https://doi.org/10.1021/acssuschemeng.9b07709
  18. Joseph M. Gurrentz, Michael J. Rose. Non-Catalytic Benefits of Ni(II) Binding to an Si(111)-PNP Construct for Photoelectrochemical Hydrogen Evolution Reaction: Metal Ion Induced Flat Band Potential Modulation. Journal of the American Chemical Society 2020, 142 (12) , 5657-5667. https://doi.org/10.1021/jacs.9b12824
  19. Jiujun Deng, Qingzhe Zhang, Xiaoxin Lv, Duo Zhang, Hui Xu, Dongling Ma, Jun Zhong. Understanding Photoelectrochemical Water Oxidation with X-ray Absorption Spectroscopy. ACS Energy Letters 2020, 5 (3) , 975-993. https://doi.org/10.1021/acsenergylett.9b02757
  20. Wanwan Mei, Xiaogang Yang, Lei Li, Yuping Tong, Yan Lei, Pinjiang Li, Zhi Zheng. Rational Electrochemical Recycling of Spent LiFePO4 and LiCoO2 Batteries to Fe2O3/CoPi Photoanodes for Water Oxidation. ACS Sustainable Chemistry & Engineering 2020, 8 (9) , 3606-3616. https://doi.org/10.1021/acssuschemeng.9b06175
  21. Gabriele Panzeri, Elisavet Tatsi, Gianmarco Griffini, Luca Magagnin. Luminescent Solar Concentrators for Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2020, 3 (2) , 1665-1671. https://doi.org/10.1021/acsaem.9b02163
  22. Alexandria R. C. Bredar, Amanda L. Chown, Andricus R. Burton, Byron H. Farnum. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials 2020, 3 (1) , 66-98. https://doi.org/10.1021/acsaem.9b01965
  23. Sheng Chang, Chun Hu, Ahmad Beyhaqi, Mingqi Wang, Qingyi Zeng. Highly Efficient Hydrogen and Electricity Production Combined with Degradation of Organics Based on a Novel Solar Water-Energy Nexus System. ACS Applied Materials & Interfaces 2020, 12 (2) , 2505-2515. https://doi.org/10.1021/acsami.9b18989
  24. Zhaohui Zhou, Run Long, Oleg V. Prezhdo. Why Silicon Doping Accelerates Electron Polaron Diffusion in Hematite. Journal of the American Chemical Society 2019, 141 (51) , 20222-20233. https://doi.org/10.1021/jacs.9b10109
  25. Yawen Dai, Ping Cheng, Guancai Xie, Chengcheng Li, Muhammad Zain Akram, Beidou Guo, Rajender Boddula, Xinghua Shi, Jinlong Gong, Jian Ru Gong. Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts. The Journal of Physical Chemistry C 2019, 123 (47) , 28753-28762. https://doi.org/10.1021/acs.jpcc.9b08343
  26. Sacha Corby, Ernest Pastor, Yifan Dong, Xijia Zheng, Laia Francàs, Michael Sachs, Shababa Selim, Andreas Kafizas, Artem A. Bakulin, James R. Durrant. Charge Separation, Band-Bending, and Recombination in WO3 Photoanodes. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5395-5401. https://doi.org/10.1021/acs.jpclett.9b01935
  27. Jingguo Li, Wenchao Wan, C. A. Triana, Zbynek Novotny, Jürg Osterwalder, Rolf Erni, Greta R. Patzke. Dynamic Role of Cluster Cocatalysts on Molecular Photoanodes for Water Oxidation. Journal of the American Chemical Society 2019, 141 (32) , 12839-12848. https://doi.org/10.1021/jacs.9b06100
  28. Yanting Li, Zhifeng Liu, Zhengang Guo, Mengnan Ruan, Xifei Li, Yilin Liu. Efficient WO3 Photoanode Modified by Pt Layer and Plasmonic Ag for Enhanced Charge Separation and Transfer To Promote Photoelectrochemical Performances. ACS Sustainable Chemistry & Engineering 2019, 7 (14) , 12582-12590. https://doi.org/10.1021/acssuschemeng.9b02450
  29. Lei Wang, Jie Zhu, Xianhu Liu. Oxygen-Vacancy-Dominated Cocatalyst/Hematite Interface for Boosting Solar Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (25) , 22272-22277. https://doi.org/10.1021/acsami.9b03789
  30. Sanghyun Bae, Hyunwoo Kim, Dasom Jeon, Jungki Ryu. Catalytic Multilayers for Efficient Solar Water Oxidation through Catalyst Loading and Surface-State Passivation of BiVO4 Photoanodes. ACS Applied Materials & Interfaces 2019, 11 (8) , 7990-7999. https://doi.org/10.1021/acsami.8b20785
  31. Yong Zuo, Yongpeng Liu, Junshan Li, Ruifeng Du, Xiaoting Yu, Congcong Xing, Ting Zhang, Liang Yao, Jordi Arbiol, Jordi Llorca, Kevin Sivula, Néstor Guijarro, Andreu Cabot. Solution-Processed Ultrathin SnS2–Pt Nanoplates for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2019, 11 (7) , 6918-6926. https://doi.org/10.1021/acsami.8b17622
  32. Xueliang Zhang, Xin Wang, Defa Wang, Jinhua Ye. Conformal BiVO4-Layer/WO3-Nanoplate-Array Heterojunction Photoanode Modified with Cobalt Phosphate Cocatalyst for Significantly Enhanced Photoelectrochemical Performances. ACS Applied Materials & Interfaces 2019, 11 (6) , 5623-5631. https://doi.org/10.1021/acsami.8b05477
  33. Zhongyuan Zhou, Shaolong Wu, Liujing Li, Liang Li, Xiaofeng Li. Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al2O3 Intermediate Layer for Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (6) , 5978-5988. https://doi.org/10.1021/acsami.8b18681
  34. Forrest A. L. Laskowski, Michael R. Nellist, Jingjing Qiu, Shannon W. Boettcher. Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water-Splitting Photoanodes. Journal of the American Chemical Society 2019, 141 (4) , 1394-1405. https://doi.org/10.1021/jacs.8b09449
  35. Jinyan Du, Xiaohui Zhong, Huichao He, Ji Huang, Minji Yang, Gaili Ke, Jun Wang, Yong Zhou, Faqin Dong, Qin Ren, Liang Bian. Enhanced Photoelectrochemical Water Oxidation Performance on BiVO4 by Coupling of CoMoO4 as a Hole-Transfer and Conversion Cocatalyst. ACS Applied Materials & Interfaces 2018, 10 (49) , 42207-42216. https://doi.org/10.1021/acsami.8b13130
  36. Jingfu He, Aoxue Huang, Noah J. J. Johnson, Kevan E. Dettelbach, David M. Weekes, Yang Cao, Curtis P. Berlinguette. Stabilizing Copper for CO2 Reduction in Low-Grade Electrolyte. Inorganic Chemistry 2018, 57 (23) , 14624-14631. https://doi.org/10.1021/acs.inorgchem.8b02311
  37. Dongqi Xue, Miao Kan, Xufang Qian, Yixin Zhao. A Tandem Water Splitting Cell Based on Nanoporous BiVO4 Photoanode Cocatalyzed by Ultrasmall Cobalt Borate Sandwiched with Conformal TiO2 Layers. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16228-16234. https://doi.org/10.1021/acssuschemeng.8b03078
  38. Lan Zhou, Aniketa Shinde, Santosh K. Suram, Helge S. Stein, Sage R. Bauers, Andriy Zakutayev, Joseph S. DuChene, Guiji Liu, Elizabeth A. Peterson, Jeffrey B. Neaton, John M. Gregoire. Bi-Containing n-FeWO4 Thin Films Provide the Largest Photovoltage and Highest Stability for a Sub-2 eV Band Gap Photoanode. ACS Energy Letters 2018, 3 (11) , 2769-2774. https://doi.org/10.1021/acsenergylett.8b01514
  39. Lan Zhou, Aniketa Shinde, Dan Guevarra, Francesca M. Toma, Helge S. Stein, John M. Gregoire, Joel A. Haber. Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe–Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials 2018, 1 (10) , 5766-5771. https://doi.org/10.1021/acsaem.8b01377
  40. Xiaokang Wan, Lu Wang, Chung-Li Dong, Gabriel Menendez Rodriguez, Yu-Cheng Huang, Alceo Macchioni, Shaohua Shen. Activating Kläui-Type Organometallic Precursors at Metal Oxide Surfaces for Enhanced Solar Water Oxidation. ACS Energy Letters 2018, 3 (7) , 1613-1619. https://doi.org/10.1021/acsenergylett.8b00847
  41. Yanmei Shi, Yifu Yu, Yu Yu, Yi Huang, Bohang Zhao, Bin Zhang. Boosting Photoelectrochemical Water Oxidation Activity and Stability of Mo-Doped BiVO4 through the Uniform Assembly Coating of NiFe–Phenolic Networks. ACS Energy Letters 2018, 3 (7) , 1648-1654. https://doi.org/10.1021/acsenergylett.8b00855
  42. Jingjing Qiu, Hamed Hajibabaei, Michael R. Nellist, Forrest A. L. Laskowski, Sebastian Z. Oener, Thomas W. Hamann, Shannon W. Boettcher. Catalyst Deposition on Photoanodes: The Roles of Intrinsic Catalytic Activity, Catalyst Electrical Conductivity, and Semiconductor Morphology. ACS Energy Letters 2018, 3 (4) , 961-969. https://doi.org/10.1021/acsenergylett.8b00336
  43. Dino Klotz, Daniel A. Grave, Hen Dotan, Avner Rothschild. Empirical Analysis of the Photoelectrochemical Impedance Response of Hematite Photoanodes for Water Photo-oxidation. The Journal of Physical Chemistry Letters 2018, 9 (6) , 1466-1472. https://doi.org/10.1021/acs.jpclett.8b00096
  44. Xiaoqiang An, Chengzhi Hu, Huachun Lan, Huijuan Liu, and Jiuhui Qu . Strongly Coupled Metal Oxide/Reassembled Carbon Nitride/Co–Pi Heterostructures for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (7) , 6424-6432. https://doi.org/10.1021/acsami.8b01070
  45. Zhe Xu, Haoyu Wang, Yunzhou Wen, Wenchao Li, Chuyu Sun, Yuting He, Zhan Shi, Lang Pei, Yongda Chen, Shicheng Yan, and Zhigang Zou . Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (4) , 3624-3633. https://doi.org/10.1021/acsami.7b17348
  46. Asif Iqbal and Kirk H. Bevan . Simultaneously Solving the Photovoltage and Photocurrent at Semiconductor–Liquid Interfaces. The Journal of Physical Chemistry C 2018, 122 (1) , 30-43. https://doi.org/10.1021/acs.jpcc.7b08517
  47. Dasom Jeon, Hyunwoo Kim, Cheolmin Lee, Yujin Han, Minsu Gu, Byeong-Su Kim, and Jungki Ryu . Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices. ACS Applied Materials & Interfaces 2017, 9 (46) , 40151-40161. https://doi.org/10.1021/acsami.7b09416
  48. Tao He, Haihua Wang, Libo Wang, Yuhua Zhao, Dong Han, Peiqing Zhang, Feng Luan, Jiazhu Li, and Jie Liu . What’s the Key Factor to Ensure the Photoactivity Enhancement of Fe2O3 Films with Ni(OH)2 Loading: Clues from a Structural Modification with Flagella Nanowires. The Journal of Physical Chemistry C 2017, 121 (45) , 25364-25371. https://doi.org/10.1021/acs.jpcc.7b09167
  49. Nicholas C. Anderson, Gerard M. Carroll, Ryan T. Pekarek, Steven T. Christensen, Jao van de Lagemaat, and Nathan R. Neale . Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy. The Journal of Physical Chemistry Letters 2017, 8 (21) , 5253-5258. https://doi.org/10.1021/acs.jpclett.7b01311
  50. Franziska Simone Hegner, Isaac Herraiz-Cardona, Drialys Cardenas-Morcoso, Núria López, José-Ramón Galán-Mascarós, and Sixto Gimenez . Cobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (43) , 37671-37681. https://doi.org/10.1021/acsami.7b09449
  51. Hamed Hajibabaei and Thomas W. Hamann . Selective Electrodeposition of Tantalum(V) Oxide Electrodes. Langmuir 2017, 33 (41) , 10800-10806. https://doi.org/10.1021/acs.langmuir.7b02414
  52. Jingjing Qiu, Hamed Hajibabaei, Michael R. Nellist, Forrest A. L. Laskowski, Thomas W. Hamann, and Shannon W. Boettcher . Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite. ACS Central Science 2017, 3 (9) , 1015-1025. https://doi.org/10.1021/acscentsci.7b00310
  53. Hyungseob Lim, Jae Young Kim, Edward J. Evans, Amritesh Rai, Jun-Hyuk Kim, Bryan R. Wygant, and C. Buddie Mullins . Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (36) , 30654-30661. https://doi.org/10.1021/acsami.7b08239
  54. Hamed Hajibabaei, Abraham R. Schon, and Thomas W. Hamann . Interface Control of Photoelectrochemical Water Oxidation Performance with Ni1–xFexOy Modified Hematite Photoanodes. Chemistry of Materials 2017, 29 (16) , 6674-6683. https://doi.org/10.1021/acs.chemmater.7b01149
  55. Weitao Qiu, Yongchao Huang, Songtao Tang, Hongbing Ji, and Yexiang Tong . Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO4 Photoanode for Solar-Assisted Water Electrolysis. The Journal of Physical Chemistry C 2017, 121 (32) , 17150-17159. https://doi.org/10.1021/acs.jpcc.7b06407
  56. Fumin Tang, Weiren Cheng, Yuanyuan Huang, Hui Su, Tao Yao, Qinghua Liu, Jinkun Liu, Fengchun Hu, Yong Jiang, Zhihu Sun, and Shiqiang Wei . Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (32) , 26867-26873. https://doi.org/10.1021/acsami.7b07088
  57. Lidong Wang, Dariusz Mitoraj, Stuart Turner, Oleksiy V. Khavryuchenko, Timo Jacob, Rosalie K. Hocking, and Radim Beranek . Ultrasmall CoO(OH)x Nanoparticles As a Highly Efficient “True” Cocatalyst in Porous Photoanodes for Water Splitting. ACS Catalysis 2017, 7 (7) , 4759-4767. https://doi.org/10.1021/acscatal.7b01466
  58. Masato M. Maitani, Takuya Yamada, Hisanori Mashiko, Kohei Yoshimatsu, Takayoshi Oshima, Akira Ohtomo, and Yuji Wada . Microwave Effects on Co–Pi Cocatalysts Deposited on α-Fe2O3 for Application to Photocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2017, 9 (12) , 10349-10354. https://doi.org/10.1021/acsami.6b16319
  59. Kanchan Ulman, Manh-Thuong Nguyen, Nicola Seriani, Simone Piccinin, and Ralph Gebauer . A Unified Picture of Water Oxidation on Bare and Gallium Oxide-Covered Hematite from Density Functional Theory. ACS Catalysis 2017, 7 (3) , 1793-1804. https://doi.org/10.1021/acscatal.6b03162
  60. Chunmei Ding, Jingying Shi, Zhiliang Wang, and Can Li . Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis 2017, 7 (1) , 675-688. https://doi.org/10.1021/acscatal.6b03107
  61. Luca Bertoluzzi and Juan Bisquert . Investigating the Consistency of Models for Water Splitting Systems by Light and Voltage Modulated Techniques. The Journal of Physical Chemistry Letters 2017, 8 (1) , 172-180. https://doi.org/10.1021/acs.jpclett.6b02714
  62. Lara Halaoui . Photoelectrochemical Investigation of the Mechanism of Enhancement of Water Oxidation at the Hematite Nanorod Array Modified with “NiBi”. The Journal of Physical Chemistry C 2016, 120 (40) , 22766-22776. https://doi.org/10.1021/acs.jpcc.6b04430
  63. Dawei Ding, Bitao Dong, Jin Liang, Han Zhou, Yuanchao Pang, and Shujiang Ding . Solvothermal-Etching Process Induced Ti-Doped Fe2O3 Thin Film with Low Turn-On Voltage for Water Splitting. ACS Applied Materials & Interfaces 2016, 8 (37) , 24573-24578. https://doi.org/10.1021/acsami.6b06795
  64. Michele Orlandi, Nicola Dalle Carbonare, Stefano Caramori, Carlo A. Bignozzi, Serena Berardi, Alberto Mazzi, Zakaria El Koura, Nicola Bazzanella, Nainesh Patel, and Antonio Miotello . Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization. ACS Applied Materials & Interfaces 2016, 8 (31) , 20003-20011. https://doi.org/10.1021/acsami.6b05135
  65. Jonathon W. Moir, Emma V. Sackville, Ulrich Hintermair, and Geoffrey A. Ozin . Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. The Journal of Physical Chemistry C 2016, 120 (24) , 12999-13012. https://doi.org/10.1021/acs.jpcc.6b00735
  66. Zhe Xu, Shi-cheng Yan, Zhan Shi, Ying-fang Yao, Peng Zhou, Hao-yu Wang, and Zhi-gang Zou . Adjusting the Crystallinity of Mesoporous Spinel CoGa2O4 for Efficient Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (20) , 12887-12893. https://doi.org/10.1021/acsami.6b03890
  67. Fengren Cao, Jie Xiong, Fangli Wu, Qiong Liu, Zhiwei Shi, Yanhao Yu, Xudong Wang, and Liang Li . Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. ACS Applied Materials & Interfaces 2016, 8 (19) , 12239-12245. https://doi.org/10.1021/acsami.6b03842
  68. Michael R. Nellist, Forrest A. L. Laskowski, Fuding Lin, Thomas J. Mills, and Shannon W. Boettcher . Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Accounts of Chemical Research 2016, 49 (4) , 733-740. https://doi.org/10.1021/acs.accounts.6b00001
  69. Yuchao Zhang, Hongna Zhang, Hongwei Ji, Wanhong Ma, Chuncheng Chen, and Jincai Zhao . Pivotal Role and Regulation of Proton Transfer in Water Oxidation on Hematite Photoanodes. Journal of the American Chemical Society 2016, 138 (8) , 2705-2711. https://doi.org/10.1021/jacs.5b12069
  70. Omid Zandi, Abraham R. Schon, Hamed Hajibabaei, and Thomas W. Hamann . Enhanced Charge Separation and Collection in High-Performance Electrodeposited Hematite Films. Chemistry of Materials 2016, 28 (3) , 765-771. https://doi.org/10.1021/acs.chemmater.5b03707
  71. Bingyan Zhang, Xiaofan Zhang, Xin Xiao, and Yan Shen . Photoelectrochemical Water Splitting System—A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces 2016, 8 (3) , 1606-1614. https://doi.org/10.1021/acsami.5b07180
  72. Chong Wu Wang, Shuang Yang, Wen Qi Fang, Porun Liu, Huijun Zhao, and Hua Gui Yang . Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. Nano Letters 2016, 16 (1) , 427-433. https://doi.org/10.1021/acs.nanolett.5b04059
  73. Yuanyuan Shi, Carolina Gimbert-Suriñach, Tingting Han, Serena Berardi, Mario Lanza, and Antoni Llobet . CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices. ACS Applied Materials & Interfaces 2016, 8 (1) , 696-702. https://doi.org/10.1021/acsami.5b09816
  74. Ludmilla Steier, Jingshan Luo, Marcel Schreier, Matthew T. Mayer, Timo Sajavaara, and Michael Grätzel . Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting. ACS Nano 2015, 9 (12) , 11775-11783. https://doi.org/10.1021/acsnano.5b03694
  75. Jean-François Boily, Merve Yeşilbaş, Munshi Md. Musleh Uddin, Lu Baiqing, Yulia Trushkina, and Germàn Salazar-Alvarez . Thin Water Films at Multifaceted Hematite Particle Surfaces. Langmuir 2015, 31 (48) , 13127-13137. https://doi.org/10.1021/acs.langmuir.5b03167
  76. Ofer Neufeld, Natav Yatom, and Maytal Caspary Toroker . A First-Principles Study on the Role of an Al2O3 Overlayer on Fe2O3 for Water Splitting. ACS Catalysis 2015, 5 (12) , 7237-7243. https://doi.org/10.1021/acscatal.5b01748
  77. Indrek Jõgi, T. Jesper Jacobsson, Mattis Fondell, Timo Wätjen, Jan-Otto Carlsson, Mats Boman, and Tomas Edvinsson . Phase Formation Behavior in Ultrathin Iron Oxide. Langmuir 2015, 31 (45) , 12372-12381. https://doi.org/10.1021/acs.langmuir.5b03376
  78. Mahmoud G. Ahmed, Imme E. Kretschmer, Tarek A. Kandiel, Amira Y. Ahmed, Farouk A. Rashwan, and Detlef W. Bahnemann . A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (43) , 24053-24062. https://doi.org/10.1021/acsami.5b07065
  79. James E. Thorne, Song Li, Chun Du, Gaowu Qin, and Dunwei Wang . Energetics at the Surface of Photoelectrodes and Its Influence on the Photoelectrochemical Properties. The Journal of Physical Chemistry Letters 2015, 6 (20) , 4083-4088. https://doi.org/10.1021/acs.jpclett.5b01372
  80. Erno Kemppainen, Janne Halme, and Peter Lund . Physical Modeling of Photoelectrochemical Hydrogen Production Devices. The Journal of Physical Chemistry C 2015, 119 (38) , 21747-21766. https://doi.org/10.1021/acs.jpcc.5b04764
  81. Francesco Malara, Alessandro Minguzzi, Marcello Marelli, Sara Morandi, Rinaldo Psaro, Vladimiro Dal Santo, and Alberto Naldoni . α-Fe2O3/NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation. ACS Catalysis 2015, 5 (9) , 5292-5300. https://doi.org/10.1021/acscatal.5b01045
  82. Yuangang Li, Rongrong Wang, Huajing Li, Xiaoliang Wei, Juan Feng, Kaiqiang Liu, Yongqiang Dang, and Anning Zhou . Efficient and Stable Photoelectrochemical Seawater Splitting with [email protected] Nanorod Arrays Decorated by Co-Pi. The Journal of Physical Chemistry C 2015, 119 (35) , 20283-20292. https://doi.org/10.1021/acs.jpcc.5b05427
  83. Carlos G. Morales-Guio, Matthew T. Mayer, Aswani Yella, S. David Tilley, Michael Grätzel, and Xile Hu . An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. Journal of the American Chemical Society 2015, 137 (31) , 9927-9936. https://doi.org/10.1021/jacs.5b05544
  84. Panikar Sathyaseelan Archana, Neha Pachauri, Zhichao Shan, Shanlin Pan, and Arunava Gupta . Plasmonic Enhancement of Photoactivity by Gold Nanoparticles Embedded in Hematite Films. The Journal of Physical Chemistry C 2015, 119 (27) , 15506-15516. https://doi.org/10.1021/acs.jpcc.5b02357
  85. Jae Young Kim, Duck Hyun Youn, Ju Hun Kim, Hyun Gyu Kim, and Jae Sung Lee . Nanostructure-Preserved Hematite Thin Film for Efficient Solar Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (25) , 14123-14129. https://doi.org/10.1021/acsami.5b03409
  86. Gurudayal, Dharani Sabba, Mulmudi Hemant Kumar, Lydia Helena Wong, James Barber, Michael Grätzel, and Nripan Mathews . Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. Nano Letters 2015, 15 (6) , 3833-3839. https://doi.org/10.1021/acs.nanolett.5b00616
  87. Lei Wang, Fabio Dionigi, Nhat Truong Nguyen, Robin Kirchgeorg, Manuel Gliech, Sabina Grigorescu, Peter Strasser, and Patrik Schmuki . Tantalum Nitride Nanorod Arrays: Introducing Ni–Fe Layered Double Hydroxides as a Cocatalyst Strongly Stabilizing Photoanodes in Water Splitting. Chemistry of Materials 2015, 27 (7) , 2360-2366. https://doi.org/10.1021/cm503887t
  88. Moreno de Respinis, Khurram S. Joya, Huub J. M. De Groot, Francis D’Souza, Wilson A. Smith, Roel van de Krol, and Bernard Dam . Solar Water Splitting Combining a BiVO4 Light Absorber with a Ru-Based Molecular Cocatalyst. The Journal of Physical Chemistry C 2015, 119 (13) , 7275-7281. https://doi.org/10.1021/acs.jpcc.5b00287
  89. Gurudayal, Png Mei Chee, Pablo P. Boix, Hu Ge, Fang Yanan, James Barber, and Lydia Helena Wong . Core–Shell Hematite Nanorods: A Simple Method To Improve the Charge Transfer in the Photoanode for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (12) , 6852-6859. https://doi.org/10.1021/acsami.5b00417
  90. K. Shimizu and J.-F. Boily . Electrochemical Signatures of Crystallographic Orientation and Counterion Binding at the Hematite/Water Interface. The Journal of Physical Chemistry C 2015, 119 (11) , 5988-5994. https://doi.org/10.1021/jp511371c
  91. Pravin S. Shinde, Alagappan Annamalai, Jae Young Kim, Sun Hee Choi, Jae Sung Lee, and Jum Suk Jang . Fine-Tuning Pulse Reverse Electrodeposition for Enhanced Photoelectrochemical Water Oxidation Performance of α-Fe2O3 Photoanodes. The Journal of Physical Chemistry C 2015, 119 (10) , 5281-5292. https://doi.org/10.1021/jp5100186
  92. S. Chatman, P. Zarzycki, and K. M. Rosso . Spontaneous Water Oxidation at Hematite (α-Fe2O3) Crystal Faces. ACS Applied Materials & Interfaces 2015, 7 (3) , 1550-1559. https://doi.org/10.1021/am5067783
  93. Ki-Yong Yoon, Jung-Soo Lee, Kwanghyun Kim, Chang Hong Bak, Sun-I Kim, Jin-Baek Kim, and Ji-Hyun Jang . Hematite-Based Photoelectrochemical Water Splitting Supported by Inverse Opal Structures of Graphene. ACS Applied Materials & Interfaces 2014, 6 (24) , 22634-22639. https://doi.org/10.1021/am506721a
  94. Ming Meng, Xinglong Wu, Xiaobin Zhu, Lun Yang, Zhixing Gan, Xiaoshu Zhu, Lizhe Liu, and Paul K. Chu . Cubic In2O3 Microparticles for Efficient Photoelectrochemical Oxygen Evolution. The Journal of Physical Chemistry Letters 2014, 5 (24) , 4298-4304. https://doi.org/10.1021/jz502316h
  95. Huijie Shi and Guohua Zhao . Water Oxidation on Spinel NiCo2O4 Nanoneedles Anode: Microstructures, Specific Surface Character, and the Enhanced Electrocatalytic Performance. The Journal of Physical Chemistry C 2014, 118 (45) , 25939-25946. https://doi.org/10.1021/jp508977j
  96. Akira Yamakata, Masayuki Kawaguchi, Naoyuki Nishimura, Tsutomu Minegishi, Jun Kubota, and Kazunari Domen . Behavior and Energy States of Photogenerated Charge Carriers on Pt- or CoOx-Loaded LaTiO2N Photocatalysts: Time-Resolved Visible to Mid-Infrared Absorption Study. The Journal of Physical Chemistry C 2014, 118 (41) , 23897-23906. https://doi.org/10.1021/jp508233z
  97. Maytal Caspary Toroker . Theoretical Insights into the Mechanism of Water Oxidation on Nonstoichiometric and Titanium-Doped Fe2O3(0001). The Journal of Physical Chemistry C 2014, 118 (40) , 23162-23167. https://doi.org/10.1021/jp5073654
  98. Xiaohui Deng and Harun Tüysüz . Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges. ACS Catalysis 2014, 4 (10) , 3701-3714. https://doi.org/10.1021/cs500713d
  99. Ke Sun, Shaohua Shen, Yongqi Liang, Paul E. Burrows, Samuel S. Mao, and Deli Wang . Enabling Silicon for Solar-Fuel Production. Chemical Reviews 2014, 114 (17) , 8662-8719. https://doi.org/10.1021/cr300459q
  100. Xiaogang Yang, Rui Liu, Chun Du, Pengcheng Dai, Zhi Zheng, and Dunwei Wang . Improving Hematite-based Photoelectrochemical Water Splitting with Ultrathin TiO2 by Atomic Layer Deposition. ACS Applied Materials & Interfaces 2014, 6 (15) , 12005-12011. https://doi.org/10.1021/am500948t
Load more citations