The Nature of Lithium Battery Materials under Oxygen Evolution Reaction Conditions

View Author Information
Department of Mechanical Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
§ Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Cite this: J. Am. Chem. Soc. 2012, 134, 41, 16959–16962
Publication Date (Web):October 3, 2012
https://doi.org/10.1021/ja307814j
Copyright © 2012 American Chemical Society
Article Views
7346
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Transition-metal oxide and phosphate materials, commonly used for lithium battery devices, are active as oxygen evolution reaction (OER) catalysts under alkaline and neutral solution conditions. Electrodes composed of LiCoO2 and LiCoPO4 exhibit progressive deactivation and activation for OER catalysis, respectively, upon potential cycling at neutral pH. The deactivation of LiCoO2 and activation of LiCoPO4 are coincident with changes in surface morphology and composition giving rise to spinel-like and amorphous surface structures, respectively. The amorphous surface structure of the activated LiCoPO4 is compositionally similar to that obtained from the electrodeposition of cobalt oxide materials from phosphate-buffered electrolyte solutions. These results highlight the importance of a combined structural and electrochemical analysis of the materials surface when assessing the true nature of the OER catalyst.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental methods and Figures S1–S14. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 232 publications.

  1. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
  2. Chinnasamy Murugesan, Mufeeda Musthafa, Shubham Lochab, Prabeer Barpanda. Cobalt Metaphosphates as Economic Bifunctional Electrocatalysts for Hybrid Sodium–Air Batteries. Inorganic Chemistry 2021, 60 (16) , 11974-11983. https://doi.org/10.1021/acs.inorgchem.1c01009
  3. Gennady Cherkashinin, Jona Schuch, Bernhard Kaiser, Lambert Alff, Wolfram Jaegermann. High Voltage Electrodes for Li-Ion Batteries and Efficient Water Electrolysis: An Oxymoron?. The Journal of Physical Chemistry Letters 2020, 11 (10) , 3754-3760. https://doi.org/10.1021/acs.jpclett.0c00778
  4. Xiaochao Wu, Yangming Lin, Yu Ji, Daojin Zhou, Zigeng Liu, Xiaoming Sun. Insights into the Enhanced Catalytic Activity of Fe-Doped LiCoPO4 for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (3) , 2959-2965. https://doi.org/10.1021/acsaem.0c00036
  5. Peter L. Clement, Joshua E. Kuether, Jaya R. Borgatta, Joseph T. Buchman, Meghan S. Cahill, Tian A. Qiu, Robert J. Hamers, Z. Vivian Feng, Christy L. Haynes. Cobalt Release from a Nanoscale Multiphase Lithiated Cobalt Phosphate Dominates Interaction with Shewanella oneidensis MR-1 and Bacillus subtilis SB491. Chemical Research in Toxicology 2020, 33 (3) , 806-816. https://doi.org/10.1021/acs.chemrestox.9b00465
  6. Zhirong Zhang, Chunxiao Liu, Chen Feng, Pengfei Gao, Yulin Liu, Fangning Ren, Yifeng Zhu, Cong Cao, Wensheng Yan, Rui Si, Shiming Zhou, Jie Zeng. Breaking the Local Symmetry of LiCoO2 via Atomic Doping for Efficient Oxygen Evolution. Nano Letters 2019, 19 (12) , 8774-8779. https://doi.org/10.1021/acs.nanolett.9b03523
  7. Léonard Jean Moriau, Marjan Bele, Alen Vižintin, Francisco Ruiz-Zepeda, Urša Petek, Primož Jovanovič, Martin Šala, Miran Gaberšček, Nejc Hodnik. Synthesis and Advanced Electrochemical Characterization of Multifunctional Electrocatalytic Composite for Unitized Regenerative Fuel Cell. ACS Catalysis 2019, 9 (12) , 11468-11483. https://doi.org/10.1021/acscatal.9b03385
  8. Jae-Hyun Shim, Hyosik Kang, Young-Min Kim, Sanghun Lee. In Situ Observation of the Effect of Accelerating Voltage on Electron Beam Damage of Layered Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (47) , 44293-44299. https://doi.org/10.1021/acsami.9b15608
  9. Yelena Gershinsky, Melina Zysler, Victor Shokhen, Yakov Stone, David Zitoun. Dual Alkaline Ion Route to Chemical De-insertion in Oxygen Evolution Olivine Electrocatalysts. ACS Catalysis 2019, 9 (9) , 8355-8363. https://doi.org/10.1021/acscatal.9b02532
  10. Allison M. Rice, Gabrielle A. Leith, Otega A. Ejegbavwo, Ekaterina A. Dolgopolova, Natalia B. Shustova. Heterometallic Metal–Organic Frameworks (MOFs): The Advent of Improving the Energy Landscape. ACS Energy Letters 2019, 4 (8) , 1938-1946. https://doi.org/10.1021/acsenergylett.9b00874
  11. Shuo Zhang, Songqi Gu, Yu Wang, Chao Liang, Yi Yu, Ling Han, Shun Zheng, Nian Zhang, Xiaosong Liu, Jing Zhou, Jiong Li. Spontaneous Delithiation under Operando Condition Triggers Formation of an Amorphous Active Layer in Spinel Cobalt Oxides Electrocatalyst toward Oxygen Evolution. ACS Catalysis 2019, 9 (8) , 7389-7397. https://doi.org/10.1021/acscatal.9b00928
  12. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  13. Shanfu Sun, Chade Lv, Weizhao Hong, Xin Zhou, Fugui Wu, Gang Chen. Dual Tuning of Composition and Nanostructure of Hierarchical Hollow Nanopolyhedra Assembled by NiCo-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials 2019, 2 (1) , 312-319. https://doi.org/10.1021/acsaem.8b01318
  14. Yelena Gershinsky, David Zitoun. Direct Chemical Synthesis of Lithium Sub-Stochiometric Olivine Li0.7Co0.75Fe0.25PO4 Coated with Reduced Graphene Oxide as Oxygen Evolution Reaction Electrocatalyst. ACS Catalysis 2018, 8 (9) , 8715-8725. https://doi.org/10.1021/acscatal.8b00119
  15. Xi Cao, Yu Hong, Ning Zhang, Qingzhi Chen, Jahangir Masud, Mohsen Asle Zaeem, Manashi Nath. Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis 2018, 8 (9) , 8273-8289. https://doi.org/10.1021/acscatal.8b01977
  16. Gihan Kwon, Hoyoung Jang, Jun-Sik Lee, Anil Mane, David J. Mandia, Sarah R. Soltau, Lisa M. Utschig, Alex B. F. Martinson, David M. Tiede, Hacksung Kim, Jungho Kim. Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts. Journal of the American Chemical Society 2018, 140 (34) , 10710-10720. https://doi.org/10.1021/jacs.8b02719
  17. Hao Wan, Renzhi Ma, Xiaohe Liu, Jiangling Pan, Haidong Wang, Shuquan Liang, Guanzhou Qiu, Takayoshi Sasaki. Rare Cobalt-Based Phosphate Nanoribbons with Unique 5-Coordination for Electrocatalytic Water Oxidation. ACS Energy Letters 2018, 3 (6) , 1254-1260. https://doi.org/10.1021/acsenergylett.8b00621
  18. Qian Zhou, Yaping Chen, Guoqiang Zhao, Yue Lin, Zhenwei Yu, Xun Xu, Xiaolin Wang, Hua Kun Liu, Wenping Sun, Shi Xue Dou. Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (6) , 5382-5390. https://doi.org/10.1021/acscatal.8b01332
  19. HyukSu Han, Kang Min Kim, Heechae Choi, Ghulam Ali, Kyung Yoon Chung, Yu-Rim Hong, Junghyun Choi, Jiseok Kwon, Seung Woo Lee, Jae Woong Lee, Jeong Ho Ryu, Taeseup Song, Sungwook Mhin. Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide–Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis 2018, 8 (5) , 4091-4102. https://doi.org/10.1021/acscatal.8b00017
  20. Shichuan Chen, Zhixiong Kang, Xiaodong Zhang, Junfeng Xie, Hui Wang, Wei Shao, XuSheng Zheng, Wensheng Yan, Bicai Pan, and Yi Xie . Highly Active Fe Sites in Ultrathin Pyrrhotite Fe7S8 Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution. ACS Central Science 2017, 3 (11) , 1221-1227. https://doi.org/10.1021/acscentsci.7b00424
  21. Jaemin Kim, Xuxia Chen, Pei-Chieh Shih, and Hong Yang . Porous Perovskite-Type Lanthanum Cobaltite as Electrocatalysts toward Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10910-10917. https://doi.org/10.1021/acssuschemeng.7b02815
  22. Soumen Dutta, Chaiti Ray, Yuichi Negishi, and Tarasankar Pal . Facile Synthesis of Unique Hexagonal Nanoplates of Zn/Co Hydroxy Sulfate for Efficient Electrocatalytic Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (9) , 8134-8141. https://doi.org/10.1021/acsami.7b00030
  23. Jianghao Wang, Liping Li, Haiquan Tian, Yuelan Zhang, Xiangli Che, and Guangshe Li . Ultrathin LiCoO2 Nanosheets: An Efficient Water-Oxidation Catalyst. ACS Applied Materials & Interfaces 2017, 9 (8) , 7100-7107. https://doi.org/10.1021/acsami.6b14896
  24. Jing Jiang, Lan Huang, Xiaomin Liu, and Lunhong Ai . Bioinspired Cobalt–Citrate Metal–Organic Framework as an Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (8) , 7193-7201. https://doi.org/10.1021/acsami.6b16534
  25. Kyoungsuk Jin, Hongmin Seo, Toru Hayashi, Mani Balamurugan, Donghyuk Jeong, Yoo Kyung Go, Jung Sug Hong, Kang Hee Cho, Hirotaka Kakizaki, Nadège Bonnet-Mercier, Min Gyu Kim, Sun Hee Kim, Ryuhei Nakamura, and Ki Tae Nam . Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. Journal of the American Chemical Society 2017, 139 (6) , 2277-2285. https://doi.org/10.1021/jacs.6b10657
  26. Zheye Zhang, Shasha Liu, Fei Xiao, and Shuai Wang . Facile Synthesis of Heterostructured Nickel/Nickel Oxide Wrapped Carbon Fiber: Flexible Bifunctional Gas-Evolving Electrode for Highly Efficient Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2017, 5 (1) , 529-536. https://doi.org/10.1021/acssuschemeng.6b01879
  27. Yingxue Chang, Nai-En Shi, Shulin Zhao, Dongdong Xu, Chunyan Liu, Yu-Jia Tang, Zhihui Dai, Ya-Qian Lan, Min Han, and Jianchun Bao . Coralloid Co2P2O7 Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (34) , 22534-22544. https://doi.org/10.1021/acsami.6b07209
  28. Qun Li, Zhicai Xing, Dewen Wang, Xuping Sun, and Xiurong Yang . In Situ Electrochemically Activated [email protected]/CC Nanosheets Array for Enhanced Hydrogen Evolution. ACS Catalysis 2016, 6 (5) , 2797-2801. https://doi.org/10.1021/acscatal.6b00014
  29. Andrew M. Ullman, Casey N. Brodsky, Nancy Li, Shao-Liang Zheng, and Daniel G. Nocera . Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. Journal of the American Chemical Society 2016, 138 (12) , 4229-4236. https://doi.org/10.1021/jacs.6b00762
  30. Zonghua Pu, Yonglan Luo, Abdullah M. Asiri, and Xuping Sun . Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film. ACS Applied Materials & Interfaces 2016, 8 (7) , 4718-4723. https://doi.org/10.1021/acsami.5b12143
  31. Hongfei Liu, René Moré, Henrik Grundmann, Chunhua Cui, Rolf Erni, and Greta R. Patzke . Promoting Photochemical Water Oxidation with Metallic Band Structures. Journal of the American Chemical Society 2016, 138 (5) , 1527-1535. https://doi.org/10.1021/jacs.5b10215
  32. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  33. Jinzhen Zhu, Fan Wang, Beizhou Wang, Youwei Wang, Jianjun Liu, Wenqing Zhang, and Zhaoyin Wen . Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery. Journal of the American Chemical Society 2015, 137 (42) , 13572-13579. https://doi.org/10.1021/jacs.5b07792
  34. Dengjie Chen, Chi Chen, Zarah Medina Baiyee, Zongping Shao, and Francesco Ciucci . Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews 2015, 115 (18) , 9869-9921. https://doi.org/10.1021/acs.chemrev.5b00073
  35. Chao Su, Wei Wang, Yubo Chen, Guangming Yang, Xiaomin Xu, Moses O. Tadé, and Zongping Shao . SrCo0.9Ti0.1O3−δ As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. ACS Applied Materials & Interfaces 2015, 7 (32) , 17663-17670. https://doi.org/10.1021/acsami.5b02810
  36. Jaeyune Ryu, Namgee Jung, Jong Hyun Jang, Hyoung-Juhn Kim, and Sung Jong Yoo . In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis 2015, 5 (7) , 4066-4074. https://doi.org/10.1021/acscatal.5b00349
  37. Hongfei Liu, Ying Zhou, René Moré, Rafael Müller, Thomas Fox, and Greta R. Patzke . Correlations among Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on Lithium Cobalt Oxides. ACS Catalysis 2015, 5 (6) , 3791-3800. https://doi.org/10.1021/acscatal.5b00078
  38. Binghong Han, Danna Qian, Marcel Risch, Hailong Chen, Miaofang Chi, Ying Shirley Meng, and Yang Shao-Horn . Role of LiCoO2 Surface Terminations in Oxygen Reduction and Evolution Kinetics. The Journal of Physical Chemistry Letters 2015, 6 (8) , 1357-1362. https://doi.org/10.1021/acs.jpclett.5b00332
  39. Li An, Panpan Zhou, Jie Yin, He Liu, Fengjuan Chen, Hongyan Liu, Yaping Du, and Pinxian Xi . Phase Transformation Fabrication of a Cu2S Nanoplate as an Efficient Catalyst for Water Oxidation with Glycine. Inorganic Chemistry 2015, 54 (7) , 3281-3289. https://doi.org/10.1021/ic502920r
  40. Prashanth W. Menezes, Arindam Indra, Diego González-Flores, Nastaran Ranjbar Sahraie, Ivelina Zaharieva, Michael Schwarze, Peter Strasser, Holger Dau, and Matthias Driess . High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity. ACS Catalysis 2015, 5 (4) , 2017-2027. https://doi.org/10.1021/cs501724v
  41. Nora Colligan, Veronica Augustyn, and Arumugam Manthiram . Evidence of Localized Lithium Removal in Layered and Lithiated Spinel Li1–xCoO2 (0 ≤ x ≤ 0.9) under Oxygen Evolution Reaction Conditions. The Journal of Physical Chemistry C 2015, 119 (5) , 2335-2340. https://doi.org/10.1021/jp511176j
  42. Daniel Friebel, Mary W. Louie, Michal Bajdich, Kai E. Sanwald, Yun Cai, Anna M. Wise, Mu-Jeng Cheng, Dimosthenis Sokaras, Tsu-Chien Weng, Roberto Alonso-Mori, Ryan C. Davis, John R. Bargar, Jens K. Nørskov, Anders Nilsson, and Alexis T. Bell . Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society 2015, 137 (3) , 1305-1313. https://doi.org/10.1021/ja511559d
  43. Santosh K. Singh, Vishal M. Dhavale, and Sreekumar Kurungot . Low Surface Energy Plane Exposed Co3O4 Nanocubes Supported on Nitrogen-Doped Graphene as an Electrocatalyst for Efficient Water Oxidation. ACS Applied Materials & Interfaces 2015, 7 (1) , 442-451. https://doi.org/10.1021/am506450c
  44. Arindam Indra, Prashanth W. Menezes, Nastaran Ranjbar Sahraie, Arno Bergmann, Chittaranjan Das, Massimo Tallarida, Dieter Schmeißer, Peter Strasser, and Matthias Driess . Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. Journal of the American Chemical Society 2014, 136 (50) , 17530-17536. https://doi.org/10.1021/ja509348t
  45. Fang Song and Xile Hu . Ultrathin Cobalt–Manganese Layered Double Hydroxide Is an Efficient Oxygen Evolution Catalyst. Journal of the American Chemical Society 2014, 136 (47) , 16481-16484. https://doi.org/10.1021/ja5096733
  46. Dahyun Oh, Jifa Qi, Binghong Han, Geran Zhang, Thomas J. Carney, Jacqueline Ohmura, Yong Zhang, Yang Shao-Horn, and Angela M. Belcher . M13 Virus-Directed Synthesis of Nanostructured Metal Oxides for Lithium–Oxygen Batteries. Nano Letters 2014, 14 (8) , 4837-4845. https://doi.org/10.1021/nl502078m
  47. Kyoungsuk Jin, Jimin Park, Joohee Lee, Ki Dong Yang, Gajendra Kumar Pradhan, Uk Sim, Donghyuk Jeong, Hae Lin Jang, Sangbaek Park, Donghun Kim, Nark-Eon Sung, Sun Hee Kim, Seungwu Han, and Ki Tae Nam . Hydrated Manganese(II) Phosphate (Mn3(PO4)2·3H2O) as a Water Oxidation Catalyst. Journal of the American Chemical Society 2014, 136 (20) , 7435-7443. https://doi.org/10.1021/ja5026529
  48. Minrui Gao, Wenchao Sheng, Zhongbin Zhuang, Qianrong Fang, Shuang Gu, Jun Jiang, and Yushan Yan . Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society 2014, 136 (19) , 7077-7084. https://doi.org/10.1021/ja502128j
  49. Michael Huynh, D. Kwabena Bediako, and Daniel G. Nocera . A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society 2014, 136 (16) , 6002-6010. https://doi.org/10.1021/ja413147e
  50. Caixia Zhang, Zhenlian Chen, Yongzhi Zeng, Zhifeng Zhang, and Jun Li . Insights into Changes of Lattice and Electronic Structure Associated with Electrochemistry of Li2CoSiO4 Polymorphs. The Journal of Physical Chemistry C 2014, 118 (14) , 7351-7356. https://doi.org/10.1021/jp500905u
  51. Jimin Park, Hyunah Kim, Kyoungsuk Jin, Byung Ju Lee, Yong-Sun Park, Hyungsub Kim, Inchul Park, Ki Dong Yang, Hui-Yun Jeong, Jongsoon Kim, Koo Tak Hong, Ho Won Jang, Kisuk Kang, and Ki Tae Nam . A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency. Journal of the American Chemical Society 2014, 136 (11) , 4201-4211. https://doi.org/10.1021/ja410223j
  52. Thandavarayan Maiyalagan, Katharine R. Chemelewski, and Arumugam Manthiram . Role of the Morphology and Surface Planes on the Catalytic Activity of Spinel LiMn1.5Ni0.5O4 for Oxygen Evolution Reaction. ACS Catalysis 2014, 4 (2) , 421-425. https://doi.org/10.1021/cs400981d
  53. Sunny Hy, Felix Felix, John Rick, Wei-Nien Su, and Bing Joe Hwang . Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤0.5). Journal of the American Chemical Society 2014, 136 (3) , 999-1007. https://doi.org/10.1021/ja410137s
  54. Alexis Grimaud, Christopher E. Carlton, Marcel Risch, Wesley T. Hong, Kevin J. May, and Yang Shao-Horn . Oxygen Evolution Activity and Stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The Influence of Transition Metal Coordination. The Journal of Physical Chemistry C 2013, 117 (49) , 25926-25932. https://doi.org/10.1021/jp408585z
  55. Wonyoung Lee, Jeong Woo Han, Yan Chen, Zhuhua Cai, and Bilge Yildiz . Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites. Journal of the American Chemical Society 2013, 135 (21) , 7909-7925. https://doi.org/10.1021/ja3125349
  56. Marcel Risch, Alexis Grimaud, Kevin J. May, Kelsey A. Stoerzinger, Tina J. Chen, Azzam N. Mansour, and Yang Shao-Horn . Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS. The Journal of Physical Chemistry C 2013, 117 (17) , 8628-8635. https://doi.org/10.1021/jp3126768
  57. Christopher L. Farrow, D. Kwabena Bediako, Yogesh Surendranath, Daniel G. Nocera, and Simon J. L. Billinge . Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst. Journal of the American Chemical Society 2013, 135 (17) , 6403-6406. https://doi.org/10.1021/ja401276f
  58. Jonathan Rosen, Gregory S. Hutchings, and Feng Jiao . Ordered Mesoporous Cobalt Oxide as Highly Efficient Oxygen Evolution Catalyst. Journal of the American Chemical Society 2013, 135 (11) , 4516-4521. https://doi.org/10.1021/ja400555q
  59. D. Kwabena Bediako, Yogesh Surendranath, and Daniel G. Nocera . Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. Journal of the American Chemical Society 2013, 135 (9) , 3662-3674. https://doi.org/10.1021/ja3126432
  60. Pitchiah Esakki Karthik, Hashikaa Rajan, Vasanth Rajendiran Jothi, Byoung-In Sang, Sung Chul Yi. Electronic wastes: A near inexhaustible and an unimaginably wealthy resource for water splitting electrocatalysts. Journal of Hazardous Materials 2022, 421 , 126687. https://doi.org/10.1016/j.jhazmat.2021.126687
  61. Changmin Hou, Zhao Cui, Sai Zhang, Wenlong Yang, Hongtao Gao, Xiliang Luo. Rapid large-scale synthesis of ultrathin NiFe-layered double hydroxide nanosheets with tunable structures as robust oxygen evolution electrocatalysts. RSC Advances 2021, 11 (59) , 37624-37630. https://doi.org/10.1039/D1RA05045A
  62. Chinnasamy Murugesan, Sathiya Priya Panjalingam, Shubham Lochab, Rajeev Kumar Rai, XiaoFeng Zhao, Deobrat Singh, Rajeev Ahuja, Prabeer Barpanda. Cobalt tetraphosphate as an efficient bifunctional electrocatalyst for hybrid sodium-air batteries. Nano Energy 2021, 89 , 106485. https://doi.org/10.1016/j.nanoen.2021.106485
  63. Chong-Chong Yan, Si-Fu Tang. Defective two-dimensional layered heterometallic phosphonates as highly efficient oxygen evolution electrocatalysts. Inorganic Chemistry Frontiers 2021, 8 (20) , 4448-4457. https://doi.org/10.1039/D1QI00663K
  64. Shi Feng Zai, Yi Tong Zhou, Chun Cheng Yang, Qing Jiang. Al, Fe-codoped CoP nanoparticles anchored on reduced graphene oxide as bifunctional catalysts to enhance overall water splitting. Chemical Engineering Journal 2021, 421 , 127856. https://doi.org/10.1016/j.cej.2020.127856
  65. Shaista Ibrahim, Uzaira Rafique, Mohsin Saleem, Waheed Iqbal, Saghir Abbas, Waqas Ali Shah, Muhammad Imran, Muhammad Arif Nadeem. High performance of homo-metallic tetracyanonickelate based coordination polymer towards water oxidation electrocatalysis. Inorganica Chimica Acta 2021, 526 , 120510. https://doi.org/10.1016/j.ica.2021.120510
  66. Aditya Sood, Andrey D. Poletayev, Daniel A. Cogswell, Peter M. Csernica, J. Tyler Mefford, Dimitrios Fraggedakis, Michael F. Toney, Aaron M. Lindenberg, Martin Z. Bazant, William C. Chueh. Electrochemical ion insertion from the atomic to the device scale. Nature Reviews Materials 2021, 6 (9) , 847-867. https://doi.org/10.1038/s41578-021-00314-y
  67. Juzhe Liu, Lin Guo. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4 (9) , 2850-2873. https://doi.org/10.1016/j.matt.2021.05.025
  68. Yu Li, Gao Chen, Yanping Zhu, Zhiwei Hu, Ting‐Shan Chan, Sixuan She, Jie Dai, Wei Zhou, Zongping Shao. Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation. Advanced Functional Materials 2021, 31 (38) , 2103569. https://doi.org/10.1002/adfm.202103569
  69. Javier Villalobos, Diego González‐Flores, Roberto Urcuyo, Mavis L. Montero, Götz Schuck, Paul Beyer, Marcel Risch. Requirements for Beneficial Electrochemical Restructuring: A Model Study on a Cobalt Oxide in Selected Electrolytes. Advanced Energy Materials 2021, 11 (36) , 2101737. https://doi.org/10.1002/aenm.202101737
  70. Yan Liang, Yifeng Han, Jing-sha Li, Jun Wang, Depei Liu, Qi Fan. Wettability control in electrocatalyst: A mini review. Journal of Energy Chemistry 2021, 60 https://doi.org/10.1016/j.jechem.2021.09.005
  71. Chengying Guo, Yanmei Shi, Siyu Lu, Yifu Yu, Bin Zhang. Amorphous nanomaterials in electrocatalytic water splitting. Chinese Journal of Catalysis 2021, 42 (8) , 1287-1296. https://doi.org/10.1016/S1872-2067(20)63740-8
  72. Xiong Liu, Jiashen Meng, Jiexin Zhu, Meng Huang, Bo Wen, Ruiting Guo, Liqiang Mai. Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. Advanced Materials 2021, 33 (32) , 2007344. https://doi.org/10.1002/adma.202007344
  73. Xiaomin Peng, Jinming Zhang, Tianlun Cen, Zhifeng Ye, Yiyi Liu, Dingsheng Yuan. Co(OH)2-NiCo2O4 hybrid nanosheets coupled with N-doping reduced graphene oxide as efficient electrocatalysts for Zn-air batteries. Journal of Alloys and Compounds 2021, 872 , 159441. https://doi.org/10.1016/j.jallcom.2021.159441
  74. Hui Wen, Shengqi Zhang, Tao Yu, Ziyu Yi, Rui Guo. ZIF-67-based catalysts for oxygen evolution reaction. Nanoscale 2021, 13 (28) , 12058-12087. https://doi.org/10.1039/D1NR01669E
  75. Arslan Hameed, Mariam Batool, Waheed Iqbal, Saghir Abbas, Muhammad Imran, Inayat Ali Khan, Muhammad Arif Nadeem. ZIF-12/Fe-Cu LDH Composite as a High Performance Electrocatalyst for Water Oxidation. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.686968
  76. Jindong Ji, Jingjing Xu, Guoli Fan, Tao Guo, Lan Yang, Feng Li. Controlled synthesis of CeOx-NiCo2O4 nanocomposite with 3D umbrella-shaped hierarchical structure: A sharp-tip enhanced electrocatalyst for efficient oxygen evolution reaction over a broad pH region. Electrochimica Acta 2021, 382 , 138345. https://doi.org/10.1016/j.electacta.2021.138345
  77. Abdul Qayoom Mugheri, Aijaz Ali Otho, Maqsood Ahmed Abro, Awais Ali, Shaista Khan. Versatile noble-metal-free electrocatalyst synergistically accelerating for the highly comprehensive understanding evidence for Electrochemical Water Splitting: Future Achievements & Perspectives. Surfaces and Interfaces 2021, 24 , 101104. https://doi.org/10.1016/j.surfin.2021.101104
  78. Hyunjeong Oh, Hirona Yamagishi, Toshiaki Ohta, Hye Ryung Byon. Understanding the interfacial reactions of LiCoO 2 positive electrodes in aqueous lithium-ion batteries. Materials Chemistry Frontiers 2021, 5 (9) , 3657-3663. https://doi.org/10.1039/D1QM00125F
  79. Abdul Qayoom Mugheri, Aijaz Ali Otho. Recent Progress in Cost-effective and Stable AuAg/Cu-nanostructured Catalyst for Electrochemical Water Splitting. Applied Science and Convergence Technology 2021, 30 (2) , 65-69. https://doi.org/10.5757/ASCT.2021.30.2.65
  80. Fangming Liu, Le Zhang, Lei Wang, Fangyi Cheng. The Electrochemical Tuning of Transition Metal-Based Materials for Electrocatalysis. Electrochemical Energy Reviews 2021, 4 (1) , 146-168. https://doi.org/10.1007/s41918-020-00089-w
  81. Jian Wang, Se-Jun Kim, Jiapeng Liu, Yang Gao, Subin Choi, Jeongwoo Han, Hyeyoung Shin, Sugeun Jo, Juwon Kim, Francesco Ciucci, Hwiho Kim, Qingtian Li, Wanli Yang, Xia Long, Shihe Yang, Sung-Pyo Cho, Keun Hwa Chae, Min Gyu Kim, Hyungjun Kim, Jongwoo Lim. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis 2021, 4 (3) , 212-222. https://doi.org/10.1038/s41929-021-00578-1
  82. J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews 2021, 50 (4) , 2444-2485. https://doi.org/10.1039/D0CS00978D
  83. Rong Wang, Chizhong Wang, Sihan Yin, Yue Peng, Jianjun Chen, Yanxi Deng, Junhua Li. Hierarchically devising NiFeO H catalyst with surface Fe active sites for efficient oxygen evolution reaction. Catalysis Today 2021, 364 , 140-147. https://doi.org/10.1016/j.cattod.2020.04.013
  84. Rui Guo, Hui Wen, Shengqi Zhang, Tao Yu, Yan He, Zhiyuan Ni, Junhua You. Anionic sulfur-modified FeNi-LDH at various Fe/Ni molar ratios for high-performance OER electrocatalysis. Materials Letters 2021, 285 , 129132. https://doi.org/10.1016/j.matlet.2020.129132
  85. Hui Zhao, Zhong‐Yong Yuan. Design Strategies of Transition‐Metal Phosphate and Phosphonate Electrocatalysts for Energy‐Related Reactions. ChemSusChem 2021, 14 (1) , 130-149. https://doi.org/10.1002/cssc.202002103
  86. Yan Dong, Sridhar Komarneni. Strategies to Develop Earth‐Abundant Heterogeneous Oxygen Evolution Reaction Catalysts for pH‐Neutral or pH‐Near‐Neutral Electrolytes. Small Methods 2021, 5 (1) , 2000719. https://doi.org/10.1002/smtd.202000719
  87. C. B. Njoku, B. P. Doyle, E. Carleschi, R. J. Kriek. Ce 0.8 Sr 0.2 Co x Fe 1‐x O 3‐δ (x=0.2, 0.5, 0.8) – A Perovskite‐type Nanocomposite for Application in the Oxygen Evolution Reaction in Alkaline Media. Electroanalysis 2020, 32 (12) , 3131-3144. https://doi.org/10.1002/elan.202060370
  88. Shanshan Yan, Yejian Xue, Guangjie Shao, Zhaoping Liu. Activity-structure relationship of electrocatalysts derived from lithium cobalt oxides for metal-air batteries. Journal of Power Sources 2020, 478 , 228773. https://doi.org/10.1016/j.jpowsour.2020.228773
  89. Xiaolin Li, Xiao Hu Wang, Rui Zhang, Guo Chen, Yu Zhang, Da Chen, Chi Zhang, Jialing Zhang, Yilan Tan, Bang Lin Li, Hong Qun Luo, Nian Bing Li. Triggering water splitting to hydrogen and oxygen by phase chemistry in nanoscale nickel elctrocatalysts. Journal of Alloys and Compounds 2020, 843 , 156011. https://doi.org/10.1016/j.jallcom.2020.156011
  90. Jan Niklas Hausmann, Stefan Mebs, Konstantin Laun, Ingo Zebger, Holger Dau, Prashanth W. Menezes, Matthias Driess. Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor. Energy & Environmental Science 2020, 13 (10) , 3607-3619. https://doi.org/10.1039/D0EE01912G
  91. Siran Xu, Haitao Zhao, Tingshuai Li, Jie Liang, Siyu Lu, Guang Chen, Shuyan Gao, Abdullah M. Asiri, Qi Wu, Xuping Sun. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry A 2020, 8 (38) , 19729-19745. https://doi.org/10.1039/D0TA05628F
  92. Liangqi Gui, Yuzhou Liu, Jing Zhang, Beibei He, Qing Wang, Ling Zhao. In situ exsolved Co nanoparticles coupled on LiCoO 2 nanofibers to induce oxygen electrocatalysis for rechargeable Zn–air batteries. Journal of Materials Chemistry A 2020, 8 (38) , 19946-19953. https://doi.org/10.1039/D0TA07362H
  93. Shencheng Pan, Xin Mao, Juan Yu, Lin Hao, Aijun Du, Bing Li. Remarkably improved oxygen evolution reaction activity of cobalt oxides by an Fe ion solution immersion process. Inorganic Chemistry Frontiers 2020, 7 (18) , 3327-3339. https://doi.org/10.1039/D0QI00385A
  94. Xiaobo Zheng, Peixin Cui, Yumin Qian, Guoqiang Zhao, Xusheng Zheng, Xun Xu, Zhenxiang Cheng, Yuanyue Liu, Shi Xue Dou, Wenping Sun. Multifunctional Active‐Center‐Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie International Edition 2020, 59 (34) , 14533-14540. https://doi.org/10.1002/anie.202005241
  95. Xiaobo Zheng, Peixin Cui, Yumin Qian, Guoqiang Zhao, Xusheng Zheng, Xun Xu, Zhenxiang Cheng, Yuanyue Liu, Shi Xue Dou, Wenping Sun. Multifunctional Active‐Center‐Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie 2020, 132 (34) , 14641-14648. https://doi.org/10.1002/ange.202005241
  96. Miao Lv, Shengming Jin, Hui Wang, Yumo Chen, Ting Ma, Kuixin Cui, Junzhi Li, Song Wu, Zhan Liu, Yanru Guo, Zhiliang Liu, Xinghua Chang, Xingguo Li. Plasma modified BiOCl/sulfonated graphene microspheres as efficient photo-compensated electrocatalysts for the oxygen evolution reaction. Catalysis Science & Technology 2020, 10 (14) , 4786-4793. https://doi.org/10.1039/D0CY00627K
  97. Quande Che, Xiaobin Xie, Qian Ma, Junpeng Wang, Yuanna Zhu, Ruixia Shi, Ping Yang. Coordination environment evolution of Co( ii ) during dehydration and re-crystallization processes of KCoPO 4 ·H 2 O towards enhanced electrocatalytic oxygen evolution reaction. RSC Advances 2020, 10 (25) , 14972-14978. https://doi.org/10.1039/D0RA01813A
  98. Yandan Ma, Hui Zhang, Ji Xia, Zhaorui Pan, Xiaofeng Wang, Guoxing Zhu, Bo Zheng, Guangxiang Liu, Leiming Lang. Reduced CoFe2O4/graphene composite with rich oxygen vacancies as a high efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy 2020, 45 (19) , 11052-11061. https://doi.org/10.1016/j.ijhydene.2020.02.045
  99. Riccardo Ruixi Chen, Yuanmiao Sun, Samuel Jun Hoong Ong, Shibo Xi, Yonghua Du, Chuntai Liu, Ovadia Lev, Zhichuan J. Xu. Antiferromagnetic Inverse Spinel Oxide LiCoVO 4 with Spin‐Polarized Channels for Water Oxidation. Advanced Materials 2020, 32 (10) , 1907976. https://doi.org/10.1002/adma.201907976
  100. Baopeng Yang, Ning Zhang, Gen Chen, Kang Liu, Junliang Yang, Anqiang Pan, Min Liu, Xiaohe Liu, Renzhi Ma, Tingsheng Qiu. Serpentine CoxNi3-xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Applied Catalysis B: Environmental 2020, 260 , 118184. https://doi.org/10.1016/j.apcatb.2019.118184
Load more citations