Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139−4307
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902
Cite this: J. Am. Chem. Soc. 2013, 135, 9, 3662–3674
Publication Date (Web):January 29, 2013
https://doi.org/10.1021/ja3126432
Copyright © 2013 American Chemical Society
Article Views
9110
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

A critical determinant of solar-driven water splitting efficiency is the kinetic profile of the O2 evolving catalyst (OEC). We now report the kinetic profiles of water splitting by a self-assembled nickel–borate (NiBi) OEC. Mechanistic studies of anodized films of NiBi exhibit the low Tafel slope of 2.3 × RT/2F (30 mV/decade at 25 °C). This Tafel slope together with an inverse third order rate dependence on H+ activity establishes NiBi as an ideal catalyst to be used in the construction of photoelectrochemical devices for water splitting. In contrast, nonanodized NiBi films display significantly poorer activity relative to their anodized congeners that we attribute to a more sluggish electron transfer from the catalyst resting state. Borate is shown to play two ostensibly antagonistic roles in OEC activity: as a promulgator of catalyst activity by enabling proton-coupled electron transfer (PCET) and as an inhibitor in its role as an adsorbate of active sites. By defining the nature of the PCET pre-equilibrium that occurs during turnover, trends in catalyst activity may be completely reversed at intermediate pH as compared to those at pH extremes. These results highlight the critical role of PCET pre-equilibria in catalyst self-assembly and turnover, and accordingly suggest a reassessment in how OEC activities of different catalysts are compared and rationalized.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional Tafel plots and representative K–L plots. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 344 publications.

  1. Kentaro Suzuki, Xiaowei Li, Takahiro Toda, Fumika Nagasawa, Kei Murakoshi. Plasmon-Accelerated Water Oxidation at Ni-Modified Au Nanodimers on TiO2 Single Crystals. ACS Energy Letters 2021, Article ASAP.
  2. Nishad G. Deshpande, Dong Su Kim, Cheol Hyoun Ahn, Sung Hyeon Jung, Young Been Kim, Ho Seong Lee, Hyung Koun Cho. β-like FeOOH Nanoswords Activated by Ni Foam and Encapsulated by rGO toward High Current Densities, Durability, and Efficient Oxygen Evolution. ACS Applied Materials & Interfaces 2021, 13 (16) , 18772-18783. https://doi.org/10.1021/acsami.1c01428
  3. Li-Ming Cao, Qing-Cai Cao, Jia Zhang, Xuan-Yi Zhu, Rong-Zhi Sun, Zi-Yi Du, Chun-Ting He. Electrochemically Controlled Synthesis of Ultrathin Nickel Hydroxide Nanosheets for Electrocatalytic Oxygen Evolution. Inorganic Chemistry 2021, 60 (5) , 3365-3374. https://doi.org/10.1021/acs.inorgchem.0c03771
  4. Yaming Hao, Yefei Li, Jianxiang Wu, Lingshen Meng, Jinling Wang, Chenglin Jia, Tao Liu, Xuejing Yang, Zhi-Pan Liu, Ming Gong. Recognition of Surface Oxygen Intermediates on NiFe Oxyhydroxide Oxygen-Evolving Catalysts by Homogeneous Oxidation Reactivity. Journal of the American Chemical Society 2021, 143 (3) , 1493-1502. https://doi.org/10.1021/jacs.0c11307
  5. Robin Tyburski, Tianfei Liu, Starla D. Glover, Leif Hammarström. Proton-Coupled Electron Transfer Guidelines, Fair and Square. Journal of the American Chemical Society 2021, 143 (2) , 560-576. https://doi.org/10.1021/jacs.0c09106
  6. Ke-Hsuan Wang, Hayato Ikeuchi, Masaaki Yoshida, Takafumi Miura, I-Ping Liu, Genta Watanabe, Siyang Cui, Takeshi Kawai. Nanometer-Thick Nickel Oxide Films Prepared from Alanine-Chelated Coordination Complexes for Electrochromic Smart Windows. ACS Applied Nano Materials 2020, 3 (9) , 9528-9537. https://doi.org/10.1021/acsanm.0c02390
  7. Baghendra Singh, Om Prakash, Pralay Maiti, Arindam Indra. Electrochemical Transformation of Metal Organic Framework into Ultrathin Metal Hydroxide-(oxy)hydroxide Nanosheets for Alkaline Water Oxidation. ACS Applied Nano Materials 2020, 3 (7) , 6693-6701. https://doi.org/10.1021/acsanm.0c01137
  8. Mohammad Reza Mohammadi, Stefan Loos, Petko Chernev, Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Paul Kubella, Katharina Klingan, Rodney D. L. Smith, Holger Dau. Exploring the Limits of Self-Repair in Cobalt Oxide Films for Electrocatalytic Water Oxidation. ACS Catalysis 2020, 10 (14) , 7990-7999. https://doi.org/10.1021/acscatal.0c01944
  9. Mahesh Datt Bhatt, Jin Yong Lee. Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels 2020, 34 (6) , 6634-6695. https://doi.org/10.1021/acs.energyfuels.0c00953
  10. Rongmei Zhu, Jiawei Ding, Jinpeng Yang, Huan Pang, Qiang Xu, Daliang Zhang, Pierre Braunstein. Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination. ACS Applied Materials & Interfaces 2020, 12 (22) , 25037-25041. https://doi.org/10.1021/acsami.0c05450
  11. Umesh P. Suryawanshi, Mahesh P. Suryawanshi, Uma V. Ghorpade, Mingrui He, Dongmin Lee, Seung Wook Shin, Jin Hyeok Kim. Self-Standing 3D Core–Shell Nanohybrids Based on Amorphous Co–Fe–Bi Nanosheets Grafted on NiCo2O4 Nanowires for Efficient and Durable Water Oxidation. ACS Applied Energy Materials 2020, 3 (5) , 4338-4347. https://doi.org/10.1021/acsaem.0c00040
  12. Chao Feng, M. Bilal Faheem, Jie Fu, Yequan Xiao, Changli Li, Yanbo Li. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis 2020, 10 (7) , 4019-4047. https://doi.org/10.1021/acscatal.9b05445
  13. Li-Fen Li, Ye-Fei Li, Zhi-Pan Liu. Oxygen Evolution Activity on NiOOH Catalysts: Four-Coordinated Ni Cation as the Active Site and the Hydroperoxide Mechanism. ACS Catalysis 2020, 10 (4) , 2581-2590. https://doi.org/10.1021/acscatal.9b04975
  14. Miao Gao, Lei He, Zhi-Yan Guo, Yan-Ru Yuan, Wen-Wei Li. Sulfate-Functionalized Nickel Hydroxide Nanobelts for Sustained Oxygen Evolution. ACS Applied Materials & Interfaces 2020, 12 (1) , 443-450. https://doi.org/10.1021/acsami.9b14216
  15. Rida Farhat, Jihan Dhainy, Lara I. Halaoui. OER Catalysis at Activated and Codeposited NiFe-Oxo/Hydroxide Thin Films Is Due to Postdeposition Surface-Fe and Is Not Sustainable without Fe in Solution. ACS Catalysis 2020, 10 (1) , 20-35. https://doi.org/10.1021/acscatal.9b02580
  16. Jihye Lee, Jules Tshishimbi Muya, Hoeil Chung, Jinho Chang. Unraveling V(V)-V(IV)-V(III)-V(II) Redox Electrochemistry in Highly Concentrated Mixed Acidic Media for a Vanadium Redox Flow Battery: Origin of the Parasitic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (45) , 42066-42077. https://doi.org/10.1021/acsami.9b12676
  17. Yunpeng Zuo, Dewei Rao, Sainan Ma, Tingting Li, Yuen Hong Tsang, Stepan Kment, Yang Chai. Valence Engineering via Dual-Cation and Boron Doping in Pyrite Selenide for Highly Efficient Oxygen Evolution. ACS Nano 2019, 13 (10) , 11469-11476. https://doi.org/10.1021/acsnano.9b04956
  18. Ranjith Bose, K. Karuppasamy, Hashikaa Rajan, Dhinesh Babu Velusamy, Hyun-Seok Kim, Akram Alfantazi. Electrodeposition of Unary Oxide on a Bimetallic Hydroxide as a Highly Active and Stable Catalyst for Water Oxidation. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16392-16400. https://doi.org/10.1021/acssuschemeng.9b03496
  19. Nadeem Asghar Khan, Naghmana Rashid, Muhammad Junaid, Muhammad Nadeem Zafar, Muhammad Faheem, Iqbal Ahmad. NiO/NiS Heterostructures: An Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials 2019, 2 (5) , 3587-3594. https://doi.org/10.1021/acsaem.9b00317
  20. Kyoungsuk Jin, Joseph H. Maalouf, Nikifar Lazouski, Nathan Corbin, Dengtao Yang, Karthish Manthiram. Epoxidation of Cyclooctene Using Water as the Oxygen Atom Source at Manganese Oxide Electrocatalysts. Journal of the American Chemical Society 2019, 141 (15) , 6413-6418. https://doi.org/10.1021/jacs.9b02345
  21. Fang Song, Michael M. Busch, Benedikt Lassalle-Kaiser, Chia-Shuo Hsu, Elitsa Petkucheva, Michaël Bensimon, Hao Ming Chen, Clemence Corminboeuf, Xile Hu. An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science 2019, 5 (3) , 558-568. https://doi.org/10.1021/acscentsci.9b00053
  22. Tan Tan, Pengyu Han, Hengjiang Cong, Gongzhen Cheng, Wei Luo. An Amorphous Cobalt Borate Nanosheet-Coated Cobalt Boride Hybrid for Highly Efficient Alkaline Water Oxidation Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (6) , 5620-5625. https://doi.org/10.1021/acssuschemeng.9b00258
  23. Si Liu, Han Cheng, Kun Xu, Hui Ding, Jingyi Zhou, Bojun Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Dual Modulation via Electrochemical Reduction Activiation on Electrocatalysts for Enhanced Oxygen Evolution Reaction. ACS Energy Letters 2019, 4 (2) , 423-429. https://doi.org/10.1021/acsenergylett.8b01974
  24. Wen-Xiu Lu, Bin Wang, Wei-Jun Chen, Jie-Ling Xie, Zhao-Qian Huang, Wei Jin, Jun-Ling Song. Nanosheet-like Co3(OH)2(HPO4)2 as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3083-3091. https://doi.org/10.1021/acssuschemeng.8b04723
  25. Yu Zhang, Tingting Qu, Feifei Bi, Panpan Hao, Muhong Li, Shanyong Chen, Xiangke Guo, Mingjiang Xie, Xuefeng Guo. Trimetallic (Co/Ni/Cu) Hydroxyphosphate Nanosheet Array as Efficient and Durable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16859-16866. https://doi.org/10.1021/acssuschemeng.8b04180
  26. Zemin Sun, Liu Lin, Caiyun Nan, Huifeng Li, Genban Sun, Xiaojing Yang. Amorphous Boron Oxide Coated NiCo Layered Double Hydroxide Nanoarrays for Highly Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 14257-14263. https://doi.org/10.1021/acssuschemeng.8b02893
  27. Yanying Wang, Zhaoyi Zhang, Xin Liu, Fang Ding, Ping Zou, Xianxiang Wang, Qingbiao Zhao, Hanbing Rao. MOF-Derived NiO/NiCo2O4 and NiO/NiCo2O4-rGO as Highly Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 12511-12521. https://doi.org/10.1021/acssuschemeng.8b03221
  28. Dandan Zhao, Yecan Pi, Qi Shao, Yonggang Feng, Ying Zhang, Xiaoqing Huang. Enhancing Oxygen Evolution Electrocatalysis via the Intimate Hydroxide–Oxide Interface. ACS Nano 2018, 12 (6) , 6245-6251. https://doi.org/10.1021/acsnano.8b03141
  29. Chenglong Luan, Guangli Liu, Yujie Liu, Lei Yu, Yao Wang, Yun Xiao, Hongyan Qiao, Xiaoping Dai, Xin Zhang. Structure Effects of 2D Materials on α-Nickel Hydroxide for Oxygen Evolution Reaction. ACS Nano 2018, 12 (4) , 3875-3885. https://doi.org/10.1021/acsnano.8b01296
  30. Ying-Ying Li, Lian-Peng Tong, Rong-Zhen Liao. Mechanism of Water Oxidation Catalyzed by a Mononuclear Iron Complex with a Square Polypyridine Ligand: A DFT Study. Inorganic Chemistry 2018, 57 (8) , 4590-4601. https://doi.org/10.1021/acs.inorgchem.8b00333
  31. Ching-Fang Liu, Yi-Jing Lu, and Chi-Chang Hu . Effects of Anions and pH on the Stability of ZnO Nanorods for Photoelectrochemical Water Splitting. ACS Omega 2018, 3 (3) , 3429-3439. https://doi.org/10.1021/acsomega.8b00214
  32. Wei Bian, Yichao Huang, Xiaobin Xu, Muhammad Aizaz Ud Din, Gang Xie, Xun Wang. Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces 2018, 10 (11) , 9407-9414. https://doi.org/10.1021/acsami.7b18875
  33. Zhao Zhang, Tianran Zhang, and Jim Yang Lee . Enhancement Effect of Borate Doping on the Oxygen Evolution Activity of α-Nickel Hydroxide. ACS Applied Nano Materials 2018, 1 (2) , 751-758. https://doi.org/10.1021/acsanm.7b00210
  34. Danielle A. Salvatore, David M. Weekes, Jingfu He, Kevan E. Dettelbach, Yuguang C. Li, Thomas E. Mallouk, Curtis P. Berlinguette. Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Letters 2018, 3 (1) , 149-154. https://doi.org/10.1021/acsenergylett.7b01017
  35. Chun Chang, Lei Zhang, Chan-Wei Hsu, Xui-Fang Chuah, and Shih-Yuan Lu . Mixed NiO/NiCo2O4 Nanocrystals Grown from the Skeleton of a 3D Porous Nickel Network as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces 2018, 10 (1) , 417-426. https://doi.org/10.1021/acsami.7b13127
  36. Shichuan Chen, Zhixiong Kang, Xiaodong Zhang, Junfeng Xie, Hui Wang, Wei Shao, XuSheng Zheng, Wensheng Yan, Bicai Pan, and Yi Xie . Highly Active Fe Sites in Ultrathin Pyrrhotite Fe7S8 Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution. ACS Central Science 2017, 3 (11) , 1221-1227. https://doi.org/10.1021/acscentsci.7b00424
  37. Alexander J. Tkalych, Houlong L. Zhuang, and Emily A. Carter . A Density Functional + U Assessment of Oxygen Evolution Reaction Mechanisms on β-NiOOH. ACS Catalysis 2017, 7 (8) , 5329-5339. https://doi.org/10.1021/acscatal.7b00999
  38. Michael G. Mavros, James J. Shepherd, Takashi Tsuchimochi, Alexandra R. McIsaac, and Troy Van Voorhis . Computational Design Principles of Two-Center First-Row Transition Metal Oxide Oxygen Evolution Catalysts. The Journal of Physical Chemistry C 2017, 121 (29) , 15665-15674. https://doi.org/10.1021/acs.jpcc.7b02424
  39. Fabrizio Sordello, Manuel Ghibaudo, and Claudio Minero . Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst. ACS Applied Materials & Interfaces 2017, 9 (28) , 23800-23809. https://doi.org/10.1021/acsami.7b05901
  40. Lin Yang, Lisi Xie, Ruixiang Ge, Rongmei Kong, Zhiang Liu, Gu Du, Abdullah M. Asiri, Yadong Yao, and Yonglan Luo . Core–Shell [email protected] Nanoarray: In Situ Electrochemical Surface Derivation Preparation toward Efficient Water Oxidation Electrocatalysis in near-Neutral Media. ACS Applied Materials & Interfaces 2017, 9 (23) , 19502-19506. https://doi.org/10.1021/acsami.7b01637
  41. Jinhui Hao, Wenshu Yang, Zhen Peng, Chi Zhang, Zhipeng Huang, and Weidong Shi . A Nitrogen Doping Method for CoS2 Electrocatalysts with Enhanced Water Oxidation Performance. ACS Catalysis 2017, 7 (6) , 4214-4220. https://doi.org/10.1021/acscatal.7b00792
  42. Ruixiang Ge, Hongbin Du, Kai Tao, Qiuju Zhang, and Liang Chen . Cobalt-Borate Nanoarray: An Efficient and Durable Electrocatalyst for Water Oxidation under Benign Conditions. ACS Applied Materials & Interfaces 2017, 9 (18) , 15383-15387. https://doi.org/10.1021/acsami.7b00184
  43. Yi Cheng, Shuo Dou, Jean-Pierre Veder, Shuangyin Wang, Martin Saunders, and San Ping Jiang . Efficient and Durable Bifunctional Oxygen Catalysts Based on [email protected] Core–Shell Structures for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces 2017, 9 (9) , 8121-8133. https://doi.org/10.1021/acsami.6b16180
  44. Si-Min Xu, Hong Yan, and Min Wei . Band Structure Engineering of Transition-Metal-Based Layered Double Hydroxides toward Photocatalytic Oxygen Evolution from Water: A Theoretical–Experimental Combination Study. The Journal of Physical Chemistry C 2017, 121 (5) , 2683-2695. https://doi.org/10.1021/acs.jpcc.6b10159
  45. Masaaki Yoshida, Sho Onishi, Yosuke Mitsutomi, Futaba Yamamoto, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Integration of Active Nickel Oxide Clusters by Amino Acids for Water Oxidation. The Journal of Physical Chemistry C 2017, 121 (1) , 255-260. https://doi.org/10.1021/acs.jpcc.6b08796
  46. Chao Wang, Reza B. Moghaddam, Michael J. Brett, and Steven H. Bergens . Simple Aqueous Preparation of High Activity and Stability NiFe Hydrous Oxide Catalysts for Water Oxidation. ACS Sustainable Chemistry & Engineering 2017, 5 (1) , 1106-1112. https://doi.org/10.1021/acssuschemeng.6b02391
  47. Paolo Pirovano, Erik R. Farquhar, Marcel Swart, and Aidan R. McDonald . Tuning the Reactivity of Terminal Nickel(III)–Oxygen Adducts for C–H Bond Activation. Journal of the American Chemical Society 2016, 138 (43) , 14362-14370. https://doi.org/10.1021/jacs.6b08406
  48. Xinyi Chia, Petr Lazar, Zdeněk Sofer, Jan Luxa, and Martin Pumera . Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis. The Journal of Physical Chemistry C 2016, 120 (42) , 24098-24111. https://doi.org/10.1021/acs.jpcc.6b06977
  49. Bo You, Xuan Liu, Nan Jiang, and Yujie Sun . A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. Journal of the American Chemical Society 2016, 138 (41) , 13639-13646. https://doi.org/10.1021/jacs.6b07127
  50. Lara Halaoui . Photoelectrochemical Investigation of the Mechanism of Enhancement of Water Oxidation at the Hematite Nanorod Array Modified with “NiBi”. The Journal of Physical Chemistry C 2016, 120 (40) , 22766-22776. https://doi.org/10.1021/acs.jpcc.6b04430
  51. Jonathan D. Herr and Ryan P. Steele . Ion–Radical Pair Separation in Larger Oxidized Water Clusters, (H2O)+n=6–21. The Journal of Physical Chemistry A 2016, 120 (36) , 7225-7239. https://doi.org/10.1021/acs.jpca.6b07465
  52. Justin J. Talbot, Xiaolu Cheng, Jonathan D. Herr, and Ryan P. Steele . Vibrational Signatures of Electronic Properties in Oxidized Water: Unraveling the Anomalous Spectrum of the Water Dimer Cation. Journal of the American Chemical Society 2016, 138 (36) , 11936-11945. https://doi.org/10.1021/jacs.6b07182
  53. Rodney D. L. Smith, Rebecca S. Sherbo, Kevan E. Dettelbach, and Curtis P. Berlinguette . On How Experimental Conditions Affect the Electrochemical Response of Disordered Nickel Oxyhydroxide Films. Chemistry of Materials 2016, 28 (16) , 5635-5642. https://doi.org/10.1021/acs.chemmater.6b01420
  54. Hieu H. Pham, Mu-Jeng Cheng, Heinz Frei, and Lin-Wang Wang . Surface Proton Hopping and Fast-Kinetics Pathway of Water Oxidation on Co3O4 (001) Surface. ACS Catalysis 2016, 6 (8) , 5610-5617. https://doi.org/10.1021/acscatal.6b00713
  55. Guigao Liu, Peng Li, Guixia Zhao, Xin Wang, Jintao Kong, Huimin Liu, Huabin Zhang, Kun Chang, Xianguang Meng, Tetsuya Kako, and Jinhua Ye . Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society 2016, 138 (29) , 9128-9136. https://doi.org/10.1021/jacs.6b05190
  56. Jonathon W. Moir, Emma V. Sackville, Ulrich Hintermair, and Geoffrey A. Ozin . Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. The Journal of Physical Chemistry C 2016, 120 (24) , 12999-13012. https://doi.org/10.1021/acs.jpcc.6b00735
  57. Charles R. Lhermitte and Bart M. Bartlett . Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation. Accounts of Chemical Research 2016, 49 (6) , 1121-1129. https://doi.org/10.1021/acs.accounts.6b00045
  58. Rodney D. L. Smith and Curtis P. Berlinguette . Accounting for the Dynamic Oxidative Behavior of Nickel Anodes. Journal of the American Chemical Society 2016, 138 (5) , 1561-1567. https://doi.org/10.1021/jacs.5b10728
  59. Cui Lu, Jialei Du, Xiao-Jun Su, Ming-Tian Zhang, Xiaoxiang Xu, Thomas J. Meyer, and Zuofeng Chen . Cu(II) Aliphatic Diamine Complexes for Both Heterogeneous and Homogeneous Water Oxidation Catalysis in Basic and Neutral Solutions. ACS Catalysis 2016, 6 (1) , 77-83. https://doi.org/10.1021/acscatal.5b02173
  60. Bartek J. Trześniewski, Oscar Diaz-Morales, David A. Vermaas, Alessandro Longo, Wim Bras, Marc T.M. Koper, and Wilson A. Smith . In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. Journal of the American Chemical Society 2015, 137 (48) , 15112-15121. https://doi.org/10.1021/jacs.5b06814
  61. Jamie Y. C. Chen, Lianna Dang, Hanfeng Liang, Wenli Bi, James B. Gerken, Song Jin, E. Ercan Alp, and Shannon S. Stahl . Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy. Journal of the American Chemical Society 2015, 137 (48) , 15090-15093. https://doi.org/10.1021/jacs.5b10699
  62. Qiang Gao, Chinmoy Ranjan, Zoran Pavlovic, Raoul Blume, and Robert Schlögl . Enhancement of Stability and Activity of MnOx/Au Electrocatalysts for Oxygen Evolution through Adequate Electrolyte Composition. ACS Catalysis 2015, 5 (12) , 7265-7275. https://doi.org/10.1021/acscatal.5b01632
  63. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  64. Michaela S. Burke, Lisa J. Enman, Adam S. Batchellor, Shihui Zou, and Shannon W. Boettcher . Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chemistry of Materials 2015, 27 (22) , 7549-7558. https://doi.org/10.1021/acs.chemmater.5b03148
  65. Isolda Roger and Mark D. Symes . Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations. Journal of the American Chemical Society 2015, 137 (43) , 13980-13988. https://doi.org/10.1021/jacs.5b08139
  66. Alexander J. Tkalych, Kuang Yu, and Emily A. Carter . Structural and Electronic Features of β-Ni(OH)2 and β-NiOOH from First Principles. The Journal of Physical Chemistry C 2015, 119 (43) , 24315-24322. https://doi.org/10.1021/acs.jpcc.5b08481
  67. Raúl Hernández Sánchez, Shao-Liang Zheng, and Theodore A. Betley . Ligand Field Strength Mediates Electron Delocalization in Octahedral [(HL)2Fe6(L′)m]n+ Clusters. Journal of the American Chemical Society 2015, 137 (34) , 11126-11143. https://doi.org/10.1021/jacs.5b06453
  68. Masaaki Yoshida, Yosuke Mitsutomi, Takehiro Mineo, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Direct Observation of Active Nickel Oxide Cluster in Nickel–Borate Electrocatalyst for Water Oxidation by In Situ O K-Edge X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (33) , 19279-19286. https://doi.org/10.1021/acs.jpcc.5b06102
  69. John D. Michael, Ethan L. Demeter, Steven M. Illes, Qingqi Fan, Jacob R. Boes, and John R. Kitchin . Alkaline Electrolyte and Fe Impurity Effects on the Performance and Active-Phase Structure of NiOOH Thin Films for OER Catalysis Applications. The Journal of Physical Chemistry C 2015, 119 (21) , 11475-11481. https://doi.org/10.1021/acs.jpcc.5b02458
  70. Shima Haghighat and Jahan M. Dawlaty . Continuous Representation of the Proton and Electron Kinetic Parameters in the pH–Potential Space for Water Oxidation on Hematite. The Journal of Physical Chemistry C 2015, 119 (12) , 6619-6625. https://doi.org/10.1021/acs.jpcc.5b00053
  71. Katie L. Pickrahn, Aaron Garg, and Stacey F. Bent . ALD of Ultrathin Ternary Oxide Electrocatalysts for Water Splitting. ACS Catalysis 2015, 5 (3) , 1609-1616. https://doi.org/10.1021/cs501532b
  72. Fengshou Yu, Fei Li, Biaobiao Zhang, Hua Li, and Licheng Sun . Efficient Electrocatalytic Water Oxidation by a Copper Oxide Thin Film in Borate Buffer. ACS Catalysis 2015, 5 (2) , 627-630. https://doi.org/10.1021/cs501510e
  73. Jonathan D. Herr, Justin Talbot, and Ryan P. Steele . Structural Progression in Clusters of Ionized Water, (H2O)n=1–5+. The Journal of Physical Chemistry A 2015, 119 (4) , 752-766. https://doi.org/10.1021/jp509698y
  74. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  75. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
  76. Ya-Hui Fang and Zhi-Pan Liu . Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles. ACS Catalysis 2014, 4 (12) , 4364-4376. https://doi.org/10.1021/cs501312v
  77. Yang Yang, Huilong Fei, Gedeng Ruan, Changsheng Xiang, and James M. Tour . Efficient Electrocatalytic Oxygen Evolution on Amorphous Nickel–Cobalt Binary Oxide Nanoporous Layers. ACS Nano 2014, 8 (9) , 9518-9523. https://doi.org/10.1021/nn503760c
  78. Yi Liu and Daniel G. Nocera . Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17060-17066. https://doi.org/10.1021/jp5008347
  79. Matthias M. Waegele, Xihan Chen, David M. Herlihy, and Tanja Cuk . How Surface Potential Determines the Kinetics of the First Hole Transfer of Photocatalytic Water Oxidation. Journal of the American Chemical Society 2014, 136 (30) , 10632-10639. https://doi.org/10.1021/ja503603k
  80. Dong Wang, Giovanna Ghirlanda, and James P. Allen . Water Oxidation by a Nickel-Glycine Catalyst. Journal of the American Chemical Society 2014, 136 (29) , 10198-10201. https://doi.org/10.1021/ja504282w
  81. Yi Cheng, Chang Liu, Hui-Ming Cheng, and San Ping Jiang . One-Pot Synthesis of Metal–Carbon Nanotubes Network Hybrids as Highly Efficient Catalysts for Oxygen Evolution Reaction of Water Splitting. ACS Applied Materials & Interfaces 2014, 6 (13) , 10089-10098. https://doi.org/10.1021/am500988p
  82. Michael G. Mavros, Takashi Tsuchimochi, Tim Kowalczyk, Alexandra McIsaac, Lee-Ping Wang, and Troy Van Voorhis . What Can Density Functional Theory Tell Us about Artificial Catalytic Water Splitting?. Inorganic Chemistry 2014, 53 (13) , 6386-6397. https://doi.org/10.1021/ic5002557
  83. Minrui Gao, Wenchao Sheng, Zhongbin Zhuang, Qianrong Fang, Shuang Gu, Jun Jiang, and Yushan Yan . Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society 2014, 136 (19) , 7077-7084. https://doi.org/10.1021/ja502128j
  84. Lena Trotochaud, Samantha L. Young, James K. Ranney, and Shannon W. Boettcher . Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society 2014, 136 (18) , 6744-6753. https://doi.org/10.1021/ja502379c
  85. Michael Huynh, D. Kwabena Bediako, and Daniel G. Nocera . A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society 2014, 136 (16) , 6002-6010. https://doi.org/10.1021/ja413147e
  86. William D. Chemelewski, Heung-Chan Lee, Jung-Fu Lin, Allen J. Bard, and C. Buddie Mullins . Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting. Journal of the American Chemical Society 2014, 136 (7) , 2843-2850. https://doi.org/10.1021/ja411835a
  87. Byungju Lee, Dong-Hwa Seo, Hee-Dae Lim, Inchul Park, Kyu-Young Park, Jinsoo Kim, and Kisuk Kang . First-Principles Study of the Reaction Mechanism in Sodium–Oxygen Batteries. Chemistry of Materials 2014, 26 (2) , 1048-1055. https://doi.org/10.1021/cm403163c
  88. Chongyin Yang, Zhou Wang, Tianquan Lin, Hao Yin, Xujie Lü, Dongyun Wan, Tao Xu, Chong Zheng, Jianhua Lin, Fuqiang Huang, Xiaoming Xie, and Mianheng Jiang . Core-Shell Nanostructured “Black” Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping. Journal of the American Chemical Society 2013, 135 (47) , 17831-17838. https://doi.org/10.1021/ja4076748
  89. Xichen Li and Per E. M. Siegbahn . Water Oxidation Mechanism for Synthetic Co–Oxides with Small Nuclearity. Journal of the American Chemical Society 2013, 135 (37) , 13804-13813. https://doi.org/10.1021/ja4053448
  90. D. Kwabena Bediako, Cyrille Costentin, Evan C. Jones, Daniel G. Nocera, and Jean-Michel Savéant . Proton–Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst. Journal of the American Chemical Society 2013, 135 (28) , 10492-10502. https://doi.org/10.1021/ja403656w
  91. Chong-Yong Lee, John P. Bullock, Gordon G. Wallace. Earth-abundant electrocatalysts for sustainable energy conversion. 2022,,, 131-168. https://doi.org/10.1016/B978-0-12-822838-8.00006-5
  92. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  93. Chao Feng, Faze Wang, Zhi Liu, Mamiko Nakabayashi, Yequan Xiao, Qiugui Zeng, Jie Fu, Qianbao Wu, Chunhua Cui, Yifan Han, Naoya Shibata, Kazunari Domen, Ian D. Sharp, Yanbo Li. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26281-0
  94. Ning Wang, Aoni Xu, Pengfei Ou, Sung-Fu Hung, Adnan Ozden, Ying-Rui Lu, Jehad Abed, Ziyun Wang, Yu Yan, Meng-Jia Sun, Yujian Xia, Mei Han, Jingrui Han, Kaili Yao, Feng-Yi Wu, Pei-Hsuan Chen, Alberto Vomiero, Ali Seifitokaldani, Xuhui Sun, David Sinton, Yongchang Liu, Edward H. Sargent, Hongyan Liang. Boride-derived oxygen-evolution catalysts. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26307-7
  95. Lu Liu, Yingqing Ou, Deen Sun. Activity and stability of CoMxOy/Co3O4 (M = Mo, W, V) nano-arrays synthesized by self-templated method for water oxidization. Chemical Engineering Journal 2021, 426 , 130063. https://doi.org/10.1016/j.cej.2021.130063
  96. Saikat Bolar, Subhasis Shit, Naresh Chandra Murmu, Tapas Kuila. Progress in theoretical and experimental investigation on seawater electrolysis: opportunities and challenges. Sustainable Energy & Fuels 2021, 5 (23) , 5915-5945. https://doi.org/10.1039/D1SE01347E
  97. Wenshu Yang, Shuaishuai Wang, Kun Zhao, Yutao Hua, Jiangxiao Qiao, Wei Luo, Longhua Li, Jinhui Hao, Weidong Shi. Phosphorus doped nickel selenide for full device water splitting. Journal of Colloid and Interface Science 2021, 602 , 115-122. https://doi.org/10.1016/j.jcis.2021.06.013
  98. Lichen Bai, Chia-Shuo Hsu, Duncan T. L. Alexander, Hao Ming Chen, Xile Hu. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nature Energy 2021, 6 (11) , 1054-1066. https://doi.org/10.1038/s41560-021-00925-3
  99. Tong Wen, Yunliang Zhao, Xiangke Jiao, Qiwu Zhang, Tingting Zhang, Xian Zhang, Jun Qu, Yan Dong, Shaoxian Song. High-performance nickel/iron catalysts for oxygen evolution in pH-near-neutral borate electrolyte synthesized by mechanochemical approach. Journal of Alloys and Compounds 2021, 7 , 162845. https://doi.org/10.1016/j.jallcom.2021.162845
  100. Gokhan Elmaci, Okan Icten, Demet Ozer, Gokhan Ozgenc, Zeliha Ertekin, Dursun Ali Kose, Kadir Pekmez, Birgul Zumreoglu‐Karan. Manganese Oxoborate‐Based Nanostructures as Novel Oxygen Evolution Catalysts in Neutral Media. ChemNanoMat 2021, 118 https://doi.org/10.1002/cnma.202100256
Load more citations