Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst

View Author Information
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
§ Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
Cite this: J. Am. Chem. Soc. 2013, 135, 17, 6403–6406
Publication Date (Web):April 2, 2013
https://doi.org/10.1021/ja401276f
Copyright © 2013 American Chemical Society
Article Views
4675
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (769 KB)
Supporting Info (1)»

Abstract

Continual improvements in solar-to-fuels catalysis require a genuine understanding of catalyst structure–function relationships, not only with respect to local order, but also intermediate-range structure. We report the X-ray pair distribution function analysis of the nanoscale order of an oxidic cobalt-based water-splitting catalyst and uncover an electrolyte dependence in the intermediate-range structure of catalyst films. Whereas catalyst films formed in borate electrolyte (CoBi) exhibit coherent domains consisting of 3–4 nm cobaltate clusters with up to three layers, films deposited in phosphate electrolyte (CoPi) comprise significantly smaller clusters that are not coherently stacked. These structural insights are correlated with marked differences in activity between CoPi and CoBi films.

Supporting Information

ARTICLE SECTIONS
Jump To

Full experimental details, additional PDF data, and fitting plots. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 129 publications.

  1. Maxwell W. Terban, Simon J. L. Billinge. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews 2021, Article ASAP.
  2. Ruoyu Zhang, Gerben van Straaten, Valerio di Palma, Georgios Zafeiropoulos, Mauritius C.M. van de Sanden, Wilhelmus M.M. Kessels, Mihalis N. Tsampas, Mariadriana Creatore. Electrochemical Activation of Atomic Layer-Deposited Cobalt Phosphate Electrocatalysts for Water Oxidation. ACS Catalysis 2021, 11 (5) , 2774-2785. https://doi.org/10.1021/acscatal.0c04933
  3. Cyrille Costentin. Proton-Coupled Electron Transfer Catalyst: Heterogeneous Catalysis. Application to an Oxygen Evolution Catalyst. ACS Catalysis 2020, 10 (14) , 7958-7967. https://doi.org/10.1021/acscatal.0c02532
  4. Cyrille Costentin, Thomas R. Porter, Jean-Michel Savéant. Nature of Electronic Conduction in “Pseudocapacitive” Films: Transition from the Insulator State to Band-Conduction. ACS Applied Materials & Interfaces 2019, 11 (32) , 28769-28773. https://doi.org/10.1021/acsami.9b05240
  5. Kang-Gyu Lee, Mani Balamurugan, Sunghak Park, Heonjin Ha, Kyoungsuk Jin, Hongmin Seo, Ki Tae Nam. Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis. ACS Energy Letters 2019, 4 (8) , 1918-1929. https://doi.org/10.1021/acsenergylett.9b00541
  6. Thomas P. Keane, Casey N. Brodsky, Daniel G. Nocera. Oxidative Degradation of Multi-Carbon Substrates by an Oxidic Cobalt Phosphate Catalyst. Organometallics 2019, 38 (6) , 1200-1203. https://doi.org/10.1021/acs.organomet.8b00337
  7. Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Petko Chernev, Mohammad Reza Mohammadi, Leonardo Guidoni, Rodney D. L. Smith, Holger Dau. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society 2019, 141 (7) , 2938-2948. https://doi.org/10.1021/jacs.8b10002
  8. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  9. Cyrille Costentin, Daniel G. Nocera. Dual-Phase Molecular-like Charge Transport in Nanoporous Transition Metal Oxides. The Journal of Physical Chemistry C 2019, 123 (3) , 1966-1973. https://doi.org/10.1021/acs.jpcc.8b10948
  10. Gihan Kwon, Hoyoung Jang, Jun-Sik Lee, Anil Mane, David J. Mandia, Sarah R. Soltau, Lisa M. Utschig, Alex B. F. Martinson, David M. Tiede, Hacksung Kim, Jungho Kim. Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts. Journal of the American Chemical Society 2018, 140 (34) , 10710-10720. https://doi.org/10.1021/jacs.8b02719
  11. Vitor Brasiliense, Jan Clausmeyer, Pascal Berto, Gilles Tessier, Catherine Combellas, Wolfgang Schuhmann, Frédéric Kanoufi. Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy. Analytical Chemistry 2018, 90 (12) , 7341-7348. https://doi.org/10.1021/acs.analchem.8b00649
  12. Lisa Olshansky, Raúl Huerta-Lavorie, Andy I. Nguyen, Jaicy Vallapurackal, Ariel Furst, T. Don Tilley, and A. S. Borovik . Artificial Metalloproteins Containing Co4O4 Cubane Active Sites. Journal of the American Chemical Society 2018, 140 (8) , 2739-2742. https://doi.org/10.1021/jacs.7b13052
  13. Adam S. Batchellor, Gihan Kwon, Forrest A. L. Laskowski, David M. Tiede, and Shannon W. Boettcher . Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. The Journal of Physical Chemistry C 2017, 121 (45) , 25421-25429. https://doi.org/10.1021/acs.jpcc.7b10306
  14. Sengeni Anantharaj, Murugadoss Venkatesh, Ashish S. Salunke, Tangella V. S. V. Simha, Vijayakumar Prabu, and Subrata Kundu . High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr Removal. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10072-10083. https://doi.org/10.1021/acssuschemeng.7b02090
  15. Xinzhi Ma, Jing Wen, Shen Zhang, Haoran Yuan, Kaiyue Li, Feng Yan, Xitian Zhang, and Yujin Chen . Crystal CoxB (x = 1–3) Synthesized by a Ball-Milling Method as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10266-10274. https://doi.org/10.1021/acssuschemeng.7b02281
  16. Tianhua Zhou, Yonghua Du, Danping Wang, Shengming Yin, Wenguang Tu, Zhong Chen, Armando Borgna, and Rong Xu . Phosphonate-Based Metal–Organic Framework Derived Co–P–C Hybrid as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (9) , 6000-6007. https://doi.org/10.1021/acscatal.7b00937
  17. Elena Willinger, Cyriac Massué, Robert Schlögl, and Marc Georg Willinger . Identifying Key Structural Features of IrOx Water Splitting Catalysts. Journal of the American Chemical Society 2017, 139 (34) , 12093-12101. https://doi.org/10.1021/jacs.7b07079
  18. Maxwell W. Terban, Chenyang Shi, Rita Silbernagel, Abraham Clearfield, and Simon J. L. Billinge . Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate–Phosphate Ion Exchange Materials. Inorganic Chemistry 2017, 56 (15) , 8837-8846. https://doi.org/10.1021/acs.inorgchem.7b00666
  19. Marco Favaro, Jinhui Yang, Silvia Nappini, Elena Magnano, Francesca M. Toma, Ethan J. Crumlin, Junko Yano, and Ian D. Sharp . Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 2017, 139 (26) , 8960-8970. https://doi.org/10.1021/jacs.7b03211
  20. Jumpei Kamimura, Peter Bogdanoff, Fatwa F. Abdi, Jonas Lähnemann, Roel van de Krol, Henning Riechert, and Lutz Geelhaar . Photoelectrochemical Properties of GaN Photoanodes with Cobalt Phosphate Catalyst for Solar Water Splitting in Neutral Electrolyte. The Journal of Physical Chemistry C 2017, 121 (23) , 12540-12545. https://doi.org/10.1021/acs.jpcc.7b02253
  21. Cyrille Costentin, Thomas R. Porter, and Jean-Michel Savéant . How Do Pseudocapacitors Store Energy? Theoretical Analysis and Experimental Illustration. ACS Applied Materials & Interfaces 2017, 9 (10) , 8649-8658. https://doi.org/10.1021/acsami.6b14100
  22. Sengeni Anantharaj, Pula Nagesh Reddy, and Subrata Kundu . Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst. Inorganic Chemistry 2017, 56 (3) , 1742-1756. https://doi.org/10.1021/acs.inorgchem.6b02929
  23. Shannon A. Bonke, Alan M. Bond, Leone Spiccia, and Alexandr N. Simonov . Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society 2016, 138 (49) , 16095-16104. https://doi.org/10.1021/jacs.6b10304
  24. Sengeni Anantharaj, Sivasankara Rao Ede, Kuppan Sakthikumar, Kannimuthu Karthick, Soumyaranjan Mishra, and Subrata Kundu . Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis 2016, 6 (12) , 8069-8097. https://doi.org/10.1021/acscatal.6b02479
  25. Shasha Duan, Guosheng Han, Yongheng Su, Xiaoyu Zhang, Yanyan Liu, Xianli Wu, and Baojun Li . Magnetic [email protected] Core–Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation. Langmuir 2016, 32 (25) , 6272-6281. https://doi.org/10.1021/acs.langmuir.6b01248
  26. Satnam Singh Gujral, Alexandr N. Simonov, Masanobu Higashi, Xi-Ya Fang, Ryu Abe, and Leone Spiccia . Highly Dispersed Cobalt Oxide on TaON as Efficient Photoanodes for Long-Term Solar Water Splitting. ACS Catalysis 2016, 6 (5) , 3404-3417. https://doi.org/10.1021/acscatal.6b00629
  27. Cyrille Costentin, Thomas R. Porter, and Jean-Michel Savéant . Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films. Journal of the American Chemical Society 2016, 138 (17) , 5615-5622. https://doi.org/10.1021/jacs.6b00737
  28. Michael R. Nellist, Forrest A. L. Laskowski, Fuding Lin, Thomas J. Mills, and Shannon W. Boettcher . Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Accounts of Chemical Research 2016, 49 (4) , 733-740. https://doi.org/10.1021/acs.accounts.6b00001
  29. Andrew M. Ullman, Casey N. Brodsky, Nancy Li, Shao-Liang Zheng, and Daniel G. Nocera . Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. Journal of the American Chemical Society 2016, 138 (12) , 4229-4236. https://doi.org/10.1021/jacs.6b00762
  30. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  31. Masaaki Yoshida, Yosuke Mitsutomi, Takehiro Mineo, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Direct Observation of Active Nickel Oxide Cluster in Nickel–Borate Electrocatalyst for Water Oxidation by In Situ O K-Edge X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (33) , 19279-19286. https://doi.org/10.1021/acs.jpcc.5b06102
  32. Joshua A. Kurzman, Kevan E. Dettelbach, Andrew J. Martinolich, Curtis P. Berlinguette, and James R. Neilson . Structural Characteristics and Eutaxy in the Photo-Deposited Amorphous Iron Oxide Oxygen Evolution Catalyst. Chemistry of Materials 2015, 27 (9) , 3462-3470. https://doi.org/10.1021/acs.chemmater.5b00878
  33. Michaela S. Burke, Matthew G. Kast, Lena Trotochaud, Adam M. Smith, and Shannon W. Boettcher . Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society 2015, 137 (10) , 3638-3648. https://doi.org/10.1021/jacs.5b00281
  34. Hyun S. Ahn and Allen J. Bard . Surface Interrogation of CoPi Water Oxidation Catalyst by Scanning Electrochemical Microscopy. Journal of the American Chemical Society 2015, 137 (2) , 612-615. https://doi.org/10.1021/ja511740h
  35. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  36. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
  37. Yi Liu and Daniel G. Nocera . Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17060-17066. https://doi.org/10.1021/jp5008347
  38. Joshua J. Choi, Xiaohao Yang, Zachariah M. Norman, Simon J. L. Billinge, and Jonathan S. Owen . Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells. Nano Letters 2014, 14 (1) , 127-133. https://doi.org/10.1021/nl403514x
  39. Karolina Kwapien, Simone Piccinin, and Stefano Fabris . Energetics of Water Oxidation Catalyzed by Cobalt Oxide Nanoparticles: Assessing the Accuracy of DFT and DFT+U Approaches against Coupled Cluster Methods. The Journal of Physical Chemistry Letters 2013, 4 (24) , 4223-4230. https://doi.org/10.1021/jz402263d
  40. D. Kwabena Bediako, Cyrille Costentin, Evan C. Jones, Daniel G. Nocera, and Jean-Michel Savéant . Proton–Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst. Journal of the American Chemical Society 2013, 135 (28) , 10492-10502. https://doi.org/10.1021/ja403656w
  41. C. Hyun Ryu, Yunwoo Nam, Hyun S. Ahn. Modern applications of scanning electrochemical microscopy in the analysis of electrocatalytic surface reactions. Chinese Journal of Catalysis 2022, 43 (1) , 59-70. https://doi.org/10.1016/S1872-2067(21)63948-7
  42. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  43. Hanna Lyle, Suryansh Singh, Michael Paolino, Ilya Vinogradov, Tanja Cuk. The electron-transfer intermediates of the oxygen evolution reaction (OER) as polarons by in situ spectroscopy. Physical Chemistry Chemical Physics 2021, 23 (44) , 24984-25002. https://doi.org/10.1039/D1CP01760H
  44. Daniela V. Morales, Catalina N. Astudillo, Veronica Anastasoaie, Baptiste Dautreppe, Bruno F. Urbano, Bernabé L. Rivas, Chantal Gondran, Dmitry Aldakov, Benoit Chovelon, Dominique André, Jean-Luc Putaux, Christine Lancelon-Pin, Selim Sirach, Eleonora-Mihaela Ungureanu, Cyrille Costentin, Marie-Noëlle Collomb, Jérôme Fortage. A cobalt oxide–polypyrrole nanocomposite as an efficient and stable electrode material for electrocatalytic water oxidation. Sustainable Energy & Fuels 2021, 5 (18) , 4710-4723. https://doi.org/10.1039/D1SE00363A
  45. KrishnaRao Eswar Neerugatti, Sangeeta Adhikari, Do-Heyoung Kim, Jaeyeong Heo. Eventual loss of phosphate and compensated passivation observed in CoPi thin films for efficient water oxidation in alkaline solutions. Applied Catalysis B: Environmental 2021, 292 , 120192. https://doi.org/10.1016/j.apcatb.2021.120192
  46. Behrooz Eftekharinia, Nader Sobhkhiz Vayghan, Ali Esfandiar, Ali Dabirian. Effect of film morphology on water oxidation enhancement in NiFeCo modified hematite photoanodes. Surface and Coatings Technology 2021, 421 , 127362. https://doi.org/10.1016/j.surfcoat.2021.127362
  47. Agnes E. Thorarinsdottir, Daniel G. Nocera. Energy catalysis needs ligands with high oxidative stability. Chem Catalysis 2021, 1 (1) , 32-43. https://doi.org/10.1016/j.checat.2021.05.012
  48. Sourav Bhowmick, Suhaib Alam, Adit Kumar Shah, Mohammad Qureshi. Bimetallic cyclic redox couple in dimanganese copper oxide supported by nickel borate for boosted alkaline electrocatalytic oxygen evolution reaction. Sustainable Energy & Fuels 2021, 5 (9) , 2517-2527. https://doi.org/10.1039/D1SE00162K
  49. Xochitl-Andrea Hernández-Contreras, Inti Zumeta-Dubé, Geonel Rodríguez Gattorno, Nicolás Cayetano Castro, José Luis Casas Espínola, Edilso Reguera. Unraveling amazing structural features of a highly efficient “oxo-Co/phosphate” catalyst for water oxidation. Applied Catalysis B: Environmental 2021, 282 , 119549. https://doi.org/10.1016/j.apcatb.2020.119549
  50. Simon J.L. Billinge, Sandra H. Skjaervoe, Maxwell W. Terban, Songsheng Tao, Long Yang, Yevgeny Rakita, Benjamin A. Frandsen. Local structure determination using total scattering data. 2021,,https://doi.org/10.1016/B978-0-12-823144-9.00040-6
  51. Chunzhen Yang, Gwenaëlle Rousse, Katrine Louise Svane, Paul E. Pearce, Artem M. Abakumov, Michael Deschamps, Giannantonio Cibin, Alan V. Chadwick, Daniel Alves Dalla Corte, Heine Anton Hansen, Tejs Vegge, Jean-Marie Tarascon, Alexis Grimaud. Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15231-x
  52. Qi Sun, Ting Cheng, Zhirong Liu, Limin Qi. A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Applied Catalysis B: Environmental 2020, 277 , 119189. https://doi.org/10.1016/j.apcatb.2020.119189
  53. Jan Niklas Hausmann, Stefan Mebs, Konstantin Laun, Ingo Zebger, Holger Dau, Prashanth W. Menezes, Matthias Driess. Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor. Energy & Environmental Science 2020, 13 (10) , 3607-3619. https://doi.org/10.1039/D0EE01912G
  54. Nancy Li, Thomas P. Keane, Samuel S. Veroneau, Daniel G. Nocera. Role of electrolyte composition on the acid stability of mixed-metal oxygen evolution catalysts. Chemical Communications 2020, 56 (72) , 10477-10480. https://doi.org/10.1039/D0CC03863F
  55. David M. Tiede, Gihan Kwon, Xiang He, Karen L. Mulfort, Alex B. F. Martinson. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 2020, 12 (25) , 13276-13296. https://doi.org/10.1039/D0NR02350G
  56. Li Fei Xi, Christoph Schwanke, Kathrin M. Lange, Marcel Risch. In Situ ATR Infrared Study of Cobalt-Borate Water Oxidation Catalysts. Materials Science Forum 2020, 998 , 123-133. https://doi.org/10.4028/www.scientific.net/MSF.998.123
  57. Toru Wada, Gentoku Takasao, Alessandro Piovano, Maddalena D'Amore, Ashutosh Thakur, Patchanee Chammingkwan, Paolo Cleto Bruzzese, Minoru Terano, Bartolomeo Civalleri, Silvia Bordiga, Elena Groppo, Toshiaki Taniike. Revisiting the identity of δ-MgCl2: Part I. Structural disorder studied by synchrotron X-ray total scattering. Journal of Catalysis 2020, 385 , 76-86. https://doi.org/10.1016/j.jcat.2020.03.002
  58. Ran Zhang, Jing Xian Dong, Guo Liang Gao, Xue Lu Wang, Ye-Feng Yao. Facile Synthesis of Amorphous C3N4ZnxOy (x, y = 0.32–1.10) with High Photocatalytic Efficiency for Antibiotic Degradation. Catalysts 2020, 10 (5) , 514. https://doi.org/10.3390/catal10050514
  59. Saran Kalasina, Ketsuda Kongsawatvoragul, Nutthaphon Phattharasupakun, Phitchayapha Phattharaphuti, Montree Sawangphruk. Cobalt oxysulphide/hydroxide nanosheets with dual properties based on electrochromism and a charge storage mechanism. RSC Advances 2020, 10 (24) , 14154-14160. https://doi.org/10.1039/D0RA01714K
  60. Marc Widenmeyer, Stefano Checchia, Xingxing Xiao, Marco Scavini, Anke Weidenkaff. Effects of Nanodomains on Local and Long-Range Phase Transitions in Perovskite-Type Eu0.8Ca0.2TiO3–δ. Nanomaterials 2020, 10 (4) , 769. https://doi.org/10.3390/nano10040769
  61. Kanta YAMADA, Tomoki HIUE, Toshiaki INA, Kehsuan WANG, Hiroshi KONDOH, Yoshihisa SAKATA, Yuh-Lang LEE, Takeshi KAWAI, Masaaki YOSHIDA. Improvement in Cobalt Phosphate Electrocatalyst Activity toward Oxygen Evolution from Water by Glycine Molecule Addition and Functional Details. Analytical Sciences 2020, 36 (1) , 35-40. https://doi.org/10.2116/analsci.19SAP08
  62. Suraj Gupta, Maulik K. Patel, Antonio Miotello, Nainesh Patel. Metal Boride‐Based Catalysts for Electrochemical Water‐Splitting: A Review. Advanced Functional Materials 2020, 30 (1) , 1906481. https://doi.org/10.1002/adfm.201906481
  63. Wenbin Wang, Ruidong Xu, Bohao Yu, Xuanbin Wang, Suyang Feng. Electrochemical fabrication of FeS x films with high catalytic activity for oxygen evolution. RSC Advances 2019, 9 (55) , 31979-31987. https://doi.org/10.1039/C9RA05343C
  64. Yushan Liu, Yanhui Ao, Chao Wang, Peifang Wang. Enhanced photoelectrocatalytic performance of TiO2 nanorod array under visible light irradiation: Synergistic effect of doping, heterojunction construction and cocatalyst deposition. Inorganic Chemistry Communications 2019, 108 , 107521. https://doi.org/10.1016/j.inoche.2019.107521
  65. Gihan Kwon, Yeong-Ho Cho, Ki-Bum Kim, Jonathan D. Emery, In Soo Kim, Xiaoyi Zhang, Alex B. F. Martinson, David M. Tiede. Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering. Journal of Synchrotron Radiation 2019, 26 (5) , 1600-1611. https://doi.org/10.1107/S1600577519007240
  66. Chenchun Hao, Ru Zhang, Wenzhong Wang, Yujie Liang, Junli Fu, Bin Zou, Honglong Shi. Efficient charge transfer and separation of [email protected] core-shell nanowire arrays for enhanced photoelectrochemical water-splitting. Journal of Solid State Electrochemistry 2019, 23 (8) , 2343-2353. https://doi.org/10.1007/s10008-019-04304-7
  67. Javier Villalobos, Diego González-Flores, Katharina Klingan, Petko Chernev, Paul Kubella, Roberto Urcuyo, Chiara Pasquini, Mohammad Reza Mohammadi, Rodney D. L. Smith, Mavis L. Montero, Holger Dau. Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials. Physical Chemistry Chemical Physics 2019, 21 (23) , 12485-12493. https://doi.org/10.1039/C9CP01754B
  68. Meiling Huo, Zhiyuan Yang, Chenxi Yang, Zhong Gao, Jing Qi, Zuozhong Liang, Kaiqiang Liu, Heyin Chen, Haoquan Zheng, Rui Cao. Hierarchical Zn‐Doped CoO Nanoflowers for Electrocatalytic Oxygen Evolution Reaction. ChemCatChem 2019, 11 (5) , 1480-1486. https://doi.org/10.1002/cctc.201801908
  69. Zhou Yin, Knud Dideriksen, Mustapha Abdelmoula, Christian Ruby, Frederick Marc Michel, Morten Jannik Bjerrum, Hans Christian B. Hansen. Structure of single sheet iron oxides produced from surfactant interlayered green rusts. Applied Clay Science 2019, 170 , 86-96. https://doi.org/10.1016/j.clay.2019.01.009
  70. Mari E. Slater-Parry, James P. Durrant, Joshua M. Howells, Mateusz B. Pitak, Peter N. Horton, Wim T. Klooster, Simon J. Coles, Helen M. O'Connor, Euan K. Brechin, Anne-Laure Barra, Leigh F. Jones. Crowding out: ligand modifications and their structure directing effects on brucite-like {M x (μ 3 -OH) y } (M = Co( ii ), Ni( ii )) core growth within polymetallic cages. Dalton Transactions 2019, 48 (4) , 1477-1488. https://doi.org/10.1039/C8DT04229B
  71. Xiao-Ting Xu, Lun Pan, Xiangwen Zhang, Li Wang, Ji-Jun Zou. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. Advanced Science 2019, 6 (2) , 1801505. https://doi.org/10.1002/advs.201801505
  72. Ronghui Guo, Xiaoxu Lai, Jianwen Huang, Xinchuan Du, Yichao Yan, Yinghui Sun, Guifu Zou, Jie Xiong. Phosphate‐Based Electrocatalysts for Water Splitting: Recent Progress. ChemElectroChem 2018, 5 (24) , 3822-3834. https://doi.org/10.1002/celc.201800996
  73. Huayang Zhang, Wenjie Tian, Yunguo Li, Hongqi Sun, Moses O. Tadé, Shaobin Wang. A comparative study of metal (Ni, Co, or Mn)-borate catalysts and their photodeposition on rGO/ZnO nanoarrays for photoelectrochemical water splitting. Journal of Materials Chemistry A 2018, 6 (47) , 24149-24156. https://doi.org/10.1039/C8TA06921B
  74. Byunghoon Kim, Inchul Park, Gabin Yoon, Ju Seong Kim, Hyunah Kim, Kisuk Kang. Atomistic Investigation of Doping Effects on Electrocatalytic Properties of Cobalt Oxides for Water Oxidation. Advanced Science 2018, 5 (12) , 1801632. https://doi.org/10.1002/advs.201801632
  75. S.R. Ede, S. Anantharaj, K. Sakthikumar, K. Karthick, Subrata Kundu. Investigation of various synthetic protocols for self-assembled nanomaterials and their role in catalysis: progress and perspectives. Materials Today Chemistry 2018, 10 , 31-78. https://doi.org/10.1016/j.mtchem.2018.07.003
  76. Arindam Indra, Taeseup Song, Ungyu Paik. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Advanced Materials 2018, 30 (39) , 1705146. https://doi.org/10.1002/adma.201705146
  77. Emine A. Turhan, Satya Vijaya Kumar Nune, Emine Ülker, Ufuk Şahin, Yavuz Dede, Ferdi Karadas. Water Oxidation Electrocatalysis with a Cobalt-Borate-Based Hybrid System under Neutral Conditions. Chemistry - A European Journal 2018, 24 (41) , 10372-10382. https://doi.org/10.1002/chem.201801412
  78. Sumana Kundu, Bibhudatta Malik, Deepak K. Pattanayak, Vijayamohanan K. Pillai. Mixed Valent, Distorted Cobalt Ludwigite (Co 3 BO 5 /Co 3 O 2 BO 3 ) and Its Composite with Reduced Multiwalled Carbon Nanotubes (R-MWCNT) in Enhancing the Domain Edge-Sharing Oxygen as Superior Water Oxidation Electrocatalysts. ChemElectroChem 2018, 5 (13) , 1670-1676. https://doi.org/10.1002/celc.201800389
  79. Daniela V. Morales, Catalina N. Astudillo, Youssef Lattach, Bruno F. Urbano, Eduardo Pereira, Bernabé L. Rivas, Josiane Arnaud, Jean-Luc Putaux, Selim Sirach, Saioa Cobo, Jean-Claude Moutet, Marie-Noëlle Collomb, Jérôme Fortage. Nickel oxide–polypyrrole nanocomposite electrode materials for electrocatalytic water oxidation. Catalysis Science & Technology 2018, 8 (16) , 4030-4043. https://doi.org/10.1039/C7CY01949A
  80. Casey N. Brodsky, Guillaume Passard, Andrew M. Ullman, David E. Jaramillo, Eric D. Bloch, Michael Huynh, David Gygi, Cyrille Costentin, Daniel G. Nocera. Oxygen activation at a dicobalt centre of a dipyridylethane naphthyridine complex. Dalton Transactions 2018, 47 (34) , 11903-11908. https://doi.org/10.1039/C8DT01598H
  81. Tianran Zhang, Yansong Zhu, Jim Yang Lee. Unconventional noble metal-free catalysts for oxygen evolution in aqueous systems. Journal of Materials Chemistry A 2018, 6 (18) , 8147-8158. https://doi.org/10.1039/C8TA01363B
  82. Cyrille Costentin, Daniel G. Nocera. Self-healing catalysis in water. Proceedings of the National Academy of Sciences 2017, 114 (51) , 13380-13384. https://doi.org/10.1073/pnas.1711836114
  83. Rodney D. L. Smith, Chiara Pasquini, Stefan Loos, Petko Chernev, Katharina Klingan, Paul Kubella, Mohammad Reza Mohammadi, Diego Gonzalez-Flores, Holger Dau. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01949-8
  84. Wei Hua, Huanyan Liu, Jian-Gan Wang, Bingqing Wei. Self-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution. Nanomaterials 2017, 7 (12) , 433. https://doi.org/10.3390/nano7120433
  85. Benedikt Lassalle-Kaiser, Sheraz Gul, Jan Kern, Vittal K. Yachandra, Junko Yano. In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena 2017, 221 , 18-27. https://doi.org/10.1016/j.elspec.2017.05.001
  86. Ju Seong Kim, Inchul Park, Eun-Suk Jeong, Kyoungsuk Jin, Won Mo Seong, Gabin Yoon, Hyunah Kim, Byunghoon Kim, Ki Tae Nam, Kisuk Kang. Amorphous Cobalt Phyllosilicate with Layered Crystalline Motifs as Water Oxidation Catalyst. Advanced Materials 2017, 29 (21) , 1606893. https://doi.org/10.1002/adma.201606893
  87. Casey N. Brodsky, Ryan G. Hadt, Dugan Hayes, Benjamin J. Reinhart, Nancy Li, Lin X. Chen, Daniel G. Nocera. In situ characterization of cofacial Co(IV) centers in Co 4 O 4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proceedings of the National Academy of Sciences 2017, 114 (15) , 3855-3860. https://doi.org/10.1073/pnas.1701816114
  88. Yipu Liu, Qiuju Li, Rui Si, Guo-Dong Li, Wang Li, Da-Peng Liu, Dejun Wang, Lei Sun, Yu Zhang, Xiaoxin Zou. Coupling Sub-Nanometric Copper Clusters with Quasi-Amorphous Cobalt Sulfide Yields Efficient and Robust Electrocatalysts for Water Splitting Reaction. Advanced Materials 2017, 29 (13) , 1606200. https://doi.org/10.1002/adma.201606200
  89. Fengkai Yang, Kirill Sliozberg, Ilya Sinev, Hendrik Antoni, Alexander Bähr, Kevin Ollegott, Wei Xia, Justus Masa, Wolfgang Grünert, Beatriz Roldan Cuenya, Wolfgang Schuhmann, Martin Muhler. Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem 2017, 10 (1) , 156-165. https://doi.org/10.1002/cssc.201601272
  90. Tian Tian, Jing Jiang, Lunhong Ai. In situ electrochemically generated composite-type CoOx/WOx in self-activated cobalt tungstate nanostructures: implication for highly enhanced electrocatalytic oxygen evolution. Electrochimica Acta 2017, 224 , 551-560. https://doi.org/10.1016/j.electacta.2016.11.173
  91. Hui Zhao, Zhong-Yong Yuan. Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catalysis Science & Technology 2017, 7 (2) , 330-347. https://doi.org/10.1039/C6CY01719C
  92. J. Li, R. Güttinger, R. Moré, F. Song, W. Wan, G. R. Patzke. Frontiers of water oxidation: the quest for true catalysts. Chemical Society Reviews 2017, 46 (20) , 6124-6147. https://doi.org/10.1039/C7CS00306D
  93. Lifei Xi, Christoph Schwanke, Dong Zhou, Dorian Drevon, Roel van de Krol, Kathrin M. Lange. In situ XAS study of CoB i modified hematite photoanodes. Dalton Transactions 2017, 46 (45) , 15719-15726. https://doi.org/10.1039/C7DT02647A
  94. M. Mathankumar, S. Anantharaj, A. K. Nandakumar, Subrata Kundu, B. Subramanian. Potentiostatic phase formation of β-CoOOH on pulsed laser deposited biphasic cobalt oxide thin film for enhanced oxygen evolution. Journal of Materials Chemistry A 2017, 5 (44) , 23053-23066. https://doi.org/10.1039/C7TA07410G
  95. Richard Foulkes, Chaoran Jiang, Junwang Tang. 2 Devices for Solar-Driven Water Splitting to Hydrogen Fuel and Their Technical and Economic Assessments. 2016,,, 9-46. https://doi.org/10.1201/9781315370538-3
  96. Qiuchun Dong, Chencheng Sun, Ziyang Dai, Xiaoxian Zang, Xiaochen Dong. Free-Standing [email protected] Nanobelt as an Efficient Catalyst for Water Splitting. ChemCatChem 2016, 8 (22) , 3484-3489. https://doi.org/10.1002/cctc.201601059
  97. Yuangang Li, Shuli Yang, Huajing Li, Gang Li, Min Li, Lihua Shen, Zhiyuan Yang, Anning Zhou. Electrodeposited ternary iron-cobalt-nickel catalyst on nickel foam for efficient water electrolysis at high current density. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 506 , 694-702. https://doi.org/10.1016/j.colsurfa.2016.07.047
  98. Qiang Zhao, Dandan Li, Guofeng Gao, Wen Yuan, Genyan Hao, Jinping Li. Nanostructured iron(III) oxide catalyst electrodeposited from Fe(II) triflate for electrocatalytic water oxidation. International Journal of Hydrogen Energy 2016, 41 (39) , 17193-17198. https://doi.org/10.1016/j.ijhydene.2016.07.126
  99. Joseph P. Klesko, James A. Bellow, Mark J. Saly, Charles H. Winter, Jaakko Julin, Timo Sajavaara. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2016, 34 (5) , 051515. https://doi.org/10.1116/1.4961385
  100. Kaidan Li, Jingfang Zhang, Rui Wu, Yifu Yu, Bin Zhang. Anchoring CoO Domains on CoSe 2 Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media. Advanced Science 2016, 3 (6) , 1500426. https://doi.org/10.1002/advs.201500426
Load all citations