Proton–Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst

View Author Information
Department of Chemistry and Chemical Biology, 12 Oxford Street, Harvard University, Cambridge, Massachusetts 02138-2902, United States
Sorbonne Paris Cité, Laboratoire d′Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
Cite this: J. Am. Chem. Soc. 2013, 135, 28, 10492–10502
Publication Date (Web):June 12, 2013
https://doi.org/10.1021/ja403656w
Copyright © 2013 American Chemical Society
Article Views
5027
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Solar-driven electrochemical transformations of small molecules, such as water splitting and CO2 reduction, pertinent to modern energy challenges, require the assistance of catalysts preferably deposited on conducting or semiconducting surfaces. Understanding mechanisms and identifying the factors that control the functioning of such systems are required for rational catalyst optimization and improved performance. A methodology is proposed, in the framework of rotating disk electrode voltammetry, to analyze the current responses expected in the case of a semigeneral reaction scheme involving a proton-coupled catalytic reaction associated with proton-coupled electron hopping through the film as rate controlling factors in the case where there is no limitation by substrate diffusion. The predictions concern the current density vs overpotential (Tafel) plots and their dependence on buffer concentration (including absence of buffer), film thickness and rotation rate. The Tafel plots may have a variety of slopes (e.g., F/RT ln 10, F/2RT ln 10, 0) that may even coexist within the overpotential range of a single plot. We show that an optimal film thickness exists beyond which the activity of the film plateaus. Application to water oxidation by films of a cobalt-based oxidic catalyst provides a successful test of the applicability of the proposed methodology, which also provides further insight into the mechanism by which these cobalt-based films catalyze the oxidation of water. The exact nature of the kinetic and thermodynamic characteristics that have been derived from the analysis is discussed as well as their use in catalyst benchmarking.

Supporting Information

ARTICLE SECTIONS
Jump To

Analysis of the kinetic responses and additional data. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 133 publications.

  1. Meihuan Liu, Yuanli Li, Zeming Qi, Hui Su, Weiren Cheng, Wanlin Zhou, Hui Zhang, Xuan Sun, Xiuxiu Zhang, Yanzhi Xu, Yong Jiang, Qinghua Liu, Shiqiang Wei. Self-Nanocavity-Confined Halogen Anions Boosting the High Selectivity of the Two-Electron Oxygen Reduction Pathway over Ni-Based MOFs. The Journal of Physical Chemistry Letters 2021, 12 (36) , 8706-8712. https://doi.org/10.1021/acs.jpclett.1c01981
  2. Hongmin Seo, Sunghak Park, Kang Hee Cho, Seungwoo Choi, Changwan Ko, Hyacinthe Randriamahazaka, Ki Tae Nam. Complex Impedance Analysis on Charge Accumulation Step of Mn3O4 Nanoparticles during Water Oxidation. ACS Omega 2021, 6 (28) , 18404-18413. https://doi.org/10.1021/acsomega.1c02397
  3. Yoon Jun Son, Kenta Kawashima, Bryan R. Wygant, Chon Hei Lam, James N. Burrow, Hugo Celio, Andrei Dolocan, John G. Ekerdt, C. Buddie Mullins. Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities. ACS Nano 2021, 15 (2) , 3468-3480. https://doi.org/10.1021/acsnano.0c10788
  4. Ben A. Johnson, Anna M. Beiler, Brian D. McCarthy, Sascha Ott. Transport Phenomena: Challenges and Opportunities for Molecular Catalysis in Metal–Organic Frameworks. Journal of the American Chemical Society 2020, 142 (28) , 11941-11956. https://doi.org/10.1021/jacs.0c02899
  5. Cyrille Costentin. Proton-Coupled Electron Transfer Catalyst: Homogeneous Catalysis. Application to the Catalysis of Electrochemical Alcohol Oxidation in Water. ACS Catalysis 2020, 10 (12) , 6716-6725. https://doi.org/10.1021/acscatal.0c01195
  6. Moo Young Lee, Heonjin Ha, Kang Hee Cho, Hongmin Seo, Sunghak Park, Yoon Ho Lee, Sung-Joo Kwon, Tae-Woo Lee, Ki Tae Nam. Importance of Interfacial Band Structure between the Substrate and Mn3O4 Nanocatalysts during Electrochemical Water Oxidation. ACS Catalysis 2020, 10 (2) , 1237-1245. https://doi.org/10.1021/acscatal.9b03831
  7. C. John Eom, Jin Suntivich. In Situ Stimulated Raman Spectroscopy Reveals the Phosphate Network in the Amorphous Cobalt Oxide Catalyst and Its Role in the Catalyst Formation. The Journal of Physical Chemistry C 2019, 123 (48) , 29284-29290. https://doi.org/10.1021/acs.jpcc.9b10308
  8. Kang-Gyu Lee, Mani Balamurugan, Sunghak Park, Heonjin Ha, Kyoungsuk Jin, Hongmin Seo, Ki Tae Nam. Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis. ACS Energy Letters 2019, 4 (8) , 1918-1929. https://doi.org/10.1021/acsenergylett.9b00541
  9. Thomas P. Keane, Daniel G. Nocera. Selective Production of Oxygen from Seawater by Oxidic Metallate Catalysts. ACS Omega 2019, 4 (7) , 12860-12864. https://doi.org/10.1021/acsomega.9b01751
  10. Hongmin Seo, Kyoungsuk Jin, Sunghak Park, Kang Hee Cho, Heonjin Ha, Kang-Gyu Lee, Yoon Ho Lee, Dang Thanh Nguyen, Hyacinthe Randriamahazaka, Jong-Sook Lee, Ki Tae Nam. Mechanistic Investigation with Kinetic Parameters on Water Oxidation Catalyzed by Manganese Oxide Nanoparticle Film. ACS Sustainable Chemistry & Engineering 2019, 7 (12) , 10595-10604. https://doi.org/10.1021/acssuschemeng.9b01159
  11. Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Petko Chernev, Mohammad Reza Mohammadi, Leonardo Guidoni, Rodney D. L. Smith, Holger Dau. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society 2019, 141 (7) , 2938-2948. https://doi.org/10.1021/jacs.8b10002
  12. Wen-Xiu Lu, Bin Wang, Wei-Jun Chen, Jie-Ling Xie, Zhao-Qian Huang, Wei Jin, Jun-Ling Song. Nanosheet-like Co3(OH)2(HPO4)2 as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3083-3091. https://doi.org/10.1021/acssuschemeng.8b04723
  13. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  14. Cyrille Costentin, Daniel G. Nocera. Dual-Phase Molecular-like Charge Transport in Nanoporous Transition Metal Oxides. The Journal of Physical Chemistry C 2019, 123 (3) , 1966-1973. https://doi.org/10.1021/acs.jpcc.8b10948
  15. Gihan Kwon, Hoyoung Jang, Jun-Sik Lee, Anil Mane, David J. Mandia, Sarah R. Soltau, Lisa M. Utschig, Alex B. F. Martinson, David M. Tiede, Hacksung Kim, Jungho Kim. Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts. Journal of the American Chemical Society 2018, 140 (34) , 10710-10720. https://doi.org/10.1021/jacs.8b02719
  16. Hongyang He, Junxiang Chen, Dafeng Zhang, Fang Li, Xin Chen, Yumei Chen, Linyan Bian, Qiufen Wang, Peigao Duan, Zhenhai Wen, Xiaojun Lv. Modulating the Electrocatalytic Performance of Palladium with the Electronic Metal–Support Interaction: A Case Study on Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (7) , 6617-6626. https://doi.org/10.1021/acscatal.8b00460
  17. Vitor Brasiliense, Jan Clausmeyer, Pascal Berto, Gilles Tessier, Catherine Combellas, Wolfgang Schuhmann, Frédéric Kanoufi. Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy. Analytical Chemistry 2018, 90 (12) , 7341-7348. https://doi.org/10.1021/acs.analchem.8b00649
  18. Alexis Grimaud, Antonella Iadecola, Dmitry Batuk, Matthieu Saubanère, Artem M. Abakumov, John W. Freeland, Jordi Cabana, Haifeng Li, Marie-Liesse Doublet, Gwenaëlle Rousse, Jean-Marie Tarascon. Chemical Activity of the Peroxide/Oxide Redox Couple: Case Study of Ba5Ru2O11 in Aqueous and Organic Solvents. Chemistry of Materials 2018, 30 (11) , 3882-3893. https://doi.org/10.1021/acs.chemmater.8b01372
  19. Chao You, Yuyao Ji, Zhiang Liu, Xiaoli Xiong, and Xuping Sun . Ultrathin CoFe-Borate Layer Coated CoFe-Layered Double Hydroxide Nanosheets Array: A Non-Noble-Metal 3D Catalyst Electrode for Efficient and Durable Water Oxidation in Potassium Borate. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 1527-1531. https://doi.org/10.1021/acssuschemeng.7b03780
  20. Xiaoxi Guo, Rong-Mei Kong, Xiaoping Zhang, Huitong Du, and Fengli Qu . Ni(OH)2 Nanoparticles Embedded in Conductive Microrod Array: An Efficient and Durable Electrocatalyst for Alkaline Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (1) , 651-655. https://doi.org/10.1021/acscatal.7b03406
  21. Fabrizio Sordello, Manuel Ghibaudo, and Claudio Minero . Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst. ACS Applied Materials & Interfaces 2017, 9 (28) , 23800-23809. https://doi.org/10.1021/acsami.7b05901
  22. Marco Favaro, Jinhui Yang, Silvia Nappini, Elena Magnano, Francesca M. Toma, Ethan J. Crumlin, Junko Yano, and Ian D. Sharp . Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 2017, 139 (26) , 8960-8970. https://doi.org/10.1021/jacs.7b03211
  23. Weiyi Wang, Danni Liu, Shuai Hao, Fengli Qu, Yongjun Ma, Gu Du, Abdullah M. Asiri, Yadong Yao, and Xuping Sun . High-Efficiency and Durable Water Oxidation under Mild pH Conditions: An Iron Phosphate–Borate Nanosheet Array as a Non-Noble-Metal Catalyst Electrode. Inorganic Chemistry 2017, 56 (6) , 3131-3135. https://doi.org/10.1021/acs.inorgchem.6b03171
  24. Sung Ki Cho and Jinho Chang . Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni2+ and Its Combination with Photoelectrode. ACS Omega 2017, 2 (2) , 432-442. https://doi.org/10.1021/acsomega.6b00448
  25. Kyoungsuk Jin, Hongmin Seo, Toru Hayashi, Mani Balamurugan, Donghyuk Jeong, Yoo Kyung Go, Jung Sug Hong, Kang Hee Cho, Hirotaka Kakizaki, Nadège Bonnet-Mercier, Min Gyu Kim, Sun Hee Kim, Ryuhei Nakamura, and Ki Tae Nam . Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. Journal of the American Chemical Society 2017, 139 (6) , 2277-2285. https://doi.org/10.1021/jacs.6b10657
  26. Masaaki Yoshida, Sho Onishi, Yosuke Mitsutomi, Futaba Yamamoto, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Integration of Active Nickel Oxide Clusters by Amino Acids for Water Oxidation. The Journal of Physical Chemistry C 2017, 121 (1) , 255-260. https://doi.org/10.1021/acs.jpcc.6b08796
  27. Shannon A. Bonke, Alan M. Bond, Leone Spiccia, and Alexandr N. Simonov . Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society 2016, 138 (49) , 16095-16104. https://doi.org/10.1021/jacs.6b10304
  28. Mitchell C. Groenenboom, Karthikeyan Saravanan, Yaqun Zhu, Jeffrey M. Carr, Aude Marjolin, Gabriel G. Faura, Eric C. Yu, Raymond N. Dominey, and John A. Keith . Structural and Substituent Group Effects on Multielectron Standard Reduction Potentials of Aromatic N-Heterocycles. The Journal of Physical Chemistry A 2016, 120 (34) , 6888-6894. https://doi.org/10.1021/acs.jpca.6b07291
  29. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
  30. Carlos G. Morales-Guio, Laurent Liardet, and Xile Hu . Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts. Journal of the American Chemical Society 2016, 138 (28) , 8946-8957. https://doi.org/10.1021/jacs.6b05196
  31. Cyrille Costentin, Thomas R. Porter, and Jean-Michel Savéant . Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films. Journal of the American Chemical Society 2016, 138 (17) , 5615-5622. https://doi.org/10.1021/jacs.6b00737
  32. Andrew M. Ullman, Casey N. Brodsky, Nancy Li, Shao-Liang Zheng, and Daniel G. Nocera . Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. Journal of the American Chemical Society 2016, 138 (12) , 4229-4236. https://doi.org/10.1021/jacs.6b00762
  33. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  34. Adam S. Batchellor and Shannon W. Boettcher . Pulse-Electrodeposited Ni–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings. ACS Catalysis 2015, 5 (11) , 6680-6689. https://doi.org/10.1021/acscatal.5b01551
  35. Masaaki Yoshida, Yosuke Mitsutomi, Takehiro Mineo, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Direct Observation of Active Nickel Oxide Cluster in Nickel–Borate Electrocatalyst for Water Oxidation by In Situ O K-Edge X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (33) , 19279-19286. https://doi.org/10.1021/acs.jpcc.5b06102
  36. Cyrille Costentin and Jean-Michel Saveant . Cyclic Voltammetry Analysis of Electrocatalytic Films. The Journal of Physical Chemistry C 2015, 119 (22) , 12174-12182. https://doi.org/10.1021/acs.jpcc.5b02376
  37. Yongzhen Han, Yizhen Wu, Wenzhen Lai, and Rui Cao . Electrocatalytic Water Oxidation by a Water-Soluble Nickel Porphyrin Complex at Neutral pH with Low Overpotential. Inorganic Chemistry 2015, 54 (11) , 5604-5613. https://doi.org/10.1021/acs.inorgchem.5b00924
  38. Vincent Fourmond, Stefanie Stapf, Huaiguang Li, Darren Buesen, James Birrell, Olaf Rüdiger, Wolfgang Lubitz, Wolfgang Schuhmann, Nicolas Plumeré, and Christophe Léger . Mechanism of Protection of Catalysts Supported in Redox Hydrogel Films. Journal of the American Chemical Society 2015, 137 (16) , 5494-5505. https://doi.org/10.1021/jacs.5b01194
  39. Shima Haghighat and Jahan M. Dawlaty . Continuous Representation of the Proton and Electron Kinetic Parameters in the pH–Potential Space for Water Oxidation on Hematite. The Journal of Physical Chemistry C 2015, 119 (12) , 6619-6625. https://doi.org/10.1021/acs.jpcc.5b00053
  40. Michaela S. Burke, Matthew G. Kast, Lena Trotochaud, Adam M. Smith, and Shannon W. Boettcher . Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society 2015, 137 (10) , 3638-3648. https://doi.org/10.1021/jacs.5b00281
  41. Chunmei Ding, Xin Zhou, Jingying Shi, Pengli Yan, Zhiliang Wang, Guiji Liu, and Can Li . Abnormal Effects of Cations (Li+, Na+, and K+) on Photoelectrochemical and Electrocatalytic Water Splitting. The Journal of Physical Chemistry B 2015, 119 (8) , 3560-3566. https://doi.org/10.1021/acs.jpcb.5b00713
  42. Jonathan D. Herr, Justin Talbot, and Ryan P. Steele . Structural Progression in Clusters of Ionized Water, (H2O)n=1–5+. The Journal of Physical Chemistry A 2015, 119 (4) , 752-766. https://doi.org/10.1021/jp509698y
  43. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  44. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
  45. Ke Sun, Shaohua Shen, Yongqi Liang, Paul E. Burrows, Samuel S. Mao, and Deli Wang . Enabling Silicon for Solar-Fuel Production. Chemical Reviews 2014, 114 (17) , 8662-8719. https://doi.org/10.1021/cr300459q
  46. Yi Liu and Daniel G. Nocera . Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17060-17066. https://doi.org/10.1021/jp5008347
  47. Michael Huynh, D. Kwabena Bediako, Yi Liu, and Daniel G. Nocera . Nucleation and Growth Mechanisms of an Electrodeposited Manganese Oxide Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17142-17152. https://doi.org/10.1021/jp501768n
  48. Michael Huynh, D. Kwabena Bediako, and Daniel G. Nocera . A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society 2014, 136 (16) , 6002-6010. https://doi.org/10.1021/ja413147e
  49. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  50. Zi-Xiao Shi, Jia-Wei Zhao, Cheng-Fei Li, Han Xu, Gao-Ren Li. Fully exposed edge/corner active sites in Fe substituted-Ni(OH)2 tube-in-tube arrays for efficient electrocatalytic oxygen evolution. Applied Catalysis B: Environmental 2021, 298 , 120558. https://doi.org/10.1016/j.apcatb.2021.120558
  51. Yan Li, Xinfa Wei, Shuhe Han, Lisong Chen, Jianlin Shi. MnO 2 Electrocatalysts Coordinating Alcohol Oxidation for Ultra‐Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie International Edition 2021, 60 (39) , 21464-21472. https://doi.org/10.1002/anie.202107510
  52. Yan Li, Xinfa Wei, Shuhe Han, Lisong Chen, Jianlin Shi. MnO 2 Electrocatalysts Coordinating Alcohol Oxidation for Ultra‐Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie 2021, 133 (39) , 21634-21642. https://doi.org/10.1002/ange.202107510
  53. Javier Villalobos, Diego González‐Flores, Roberto Urcuyo, Mavis L. Montero, Götz Schuck, Paul Beyer, Marcel Risch. Requirements for Beneficial Electrochemical Restructuring: A Model Study on a Cobalt Oxide in Selected Electrolytes. Advanced Energy Materials 2021, 11 (36) , 2101737. https://doi.org/10.1002/aenm.202101737
  54. KrishnaRao Eswar Neerugatti, Sangeeta Adhikari, Do-Heyoung Kim, Jaeyeong Heo. Eventual loss of phosphate and compensated passivation observed in CoPi thin films for efficient water oxidation in alkaline solutions. Applied Catalysis B: Environmental 2021, 292 , 120192. https://doi.org/10.1016/j.apcatb.2021.120192
  55. Darcy Simondson, Manjunath Chatti, Shannon A. Bonke, Marc F. Tesch, Ronny Golnak, Jie Xiao, Dijon A. Hoogeveen, Pavel V. Cherepanov, James L. Gardiner, Antonio Tricoli, Douglas R. MacFarlane, Alexandr N. Simonov. Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobalt‐Selective Self‐Healing Mechanism. Angewandte Chemie 2021, 133 (29) , 15955-15960. https://doi.org/10.1002/ange.202104123
  56. Darcy Simondson, Manjunath Chatti, Shannon A. Bonke, Marc F. Tesch, Ronny Golnak, Jie Xiao, Dijon A. Hoogeveen, Pavel V. Cherepanov, James L. Gardiner, Antonio Tricoli, Douglas R. MacFarlane, Alexandr N. Simonov. Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobalt‐Selective Self‐Healing Mechanism. Angewandte Chemie International Edition 2021, 60 (29) , 15821-15826. https://doi.org/10.1002/anie.202104123
  57. Shihan Yan, Hao Li, Jiahao Zhu, Wei Xiong, Renbo Lei, Xinwei Wang. Atomic layer deposited nickel sulfide for bifunctional oxygen evolution/reduction electrocatalysis and zinc–air batteries. Nanotechnology 2021, 32 (27) , 275402. https://doi.org/10.1088/1361-6528/abf26f
  58. Yun Li, Ruopeng Li, Dan Wang, Hao Xu, Xiangyu Lu, Lihui Xiao, Fan Meng, Jinqiu Zhang, Maozhong An, Peixia Yang. Pulse electrodeposited CoFeNiP as a highly active and stable electrocatalyst for alkaline water electrolysis. Sustainable Energy & Fuels 2021, 5 (12) , 3172-3181. https://doi.org/10.1039/D1SE00350J
  59. Ning Liu, Yin Wang, Qiaoqiao Zhang, Jingqi Guan. Trifunctional iridium-based electrocatalysts for overall water splitting and Zn-air batteries. Electrochimica Acta 2021, 380 , 138215. https://doi.org/10.1016/j.electacta.2021.138215
  60. Bilge Coşkuner Filiz. Self‐Healable Catalysis. 2021,,, 237-246. https://doi.org/10.1002/9781119710219.ch9
  61. Danilo González, Javier Heras-Domingo, Mariona Sodupe, Luis Rodríguez-Santiago, Xavier Solans-Monfort. Importance of the oxyl character on the IrO2 surface dependent catalytic activity for the oxygen evolution reaction. Journal of Catalysis 2021, 396 , 192-201. https://doi.org/10.1016/j.jcat.2021.02.026
  62. J. Peng, W. Dong, Z. Wang, Y. Meng, W. Liu, P. Song, Z. Liu. Recent advances in 2D transition metal compounds for electrocatalytic full water splitting in neutral media. Materials Today Advances 2020, 8 , 100081. https://doi.org/10.1016/j.mtadv.2020.100081
  63. Simona Ostachavičiūtė, Agnė Šulčiūtė, Eugenijus Valatka. The morphology and electrochemical properties of WO3 and Se-WO3 films modified with cobalt-based oxygen evolution catalyst. Materials Science and Engineering: B 2020, 260 , 114630. https://doi.org/10.1016/j.mseb.2020.114630
  64. David M. Tiede, Gihan Kwon, Xiang He, Karen L. Mulfort, Alex B. F. Martinson. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 2020, 12 (25) , 13276-13296. https://doi.org/10.1039/D0NR02350G
  65. Jens Melder, Peter Bogdanoff, Ivelina Zaharieva, Sebastian Fiechter, Holger Dau, Philipp Kurz. Water-Oxidation Electrocatalysis by Manganese Oxides: Syntheses, Electrode Preparations, Electrolytes and Two Fundamental Questions. Zeitschrift für Physikalische Chemie 2020, 234 (5) , 925-978. https://doi.org/10.1515/zpch-2019-1491
  66. Chiara Pasquini, Luca D’Amario, Ivelina Zaharieva, Holger Dau. Operando Raman spectroscopy tracks oxidation-state changes in an amorphous Co oxide material for electrocatalysis of the oxygen evolution reaction. The Journal of Chemical Physics 2020, 152 (19) , 194202. https://doi.org/10.1063/5.0006306
  67. Yongxiao Tuo, Xueyuan Wang, Chen Chen, Xiang Feng, Zhengqing Liu, Yan Zhou, Jun Zhang. Identifying the role of Ni and Fe in Ni–Fe co-doped orthorhombic CoSe2 for driving enhanced electrocatalytic activity for oxygen evolution reaction. Electrochimica Acta 2020, 335 , 135682. https://doi.org/10.1016/j.electacta.2020.135682
  68. J. Niklas Hausmann, Eva M. Heppke, Rodrigo Beltrán‐Suito, Johannes Schmidt, Martin Mühlbauer, Martin Lerch, Prashanth W. Menezes, Matthias Driess. Stannites – A New Promising Class of Durable Electrocatalysts for Efficient Water Oxidation. ChemCatChem 2020, 12 (4) , 1161-1168. https://doi.org/10.1002/cctc.201901705
  69. Kanta YAMADA, Tomoki HIUE, Toshiaki INA, Kehsuan WANG, Hiroshi KONDOH, Yoshihisa SAKATA, Yuh-Lang LEE, Takeshi KAWAI, Masaaki YOSHIDA. Improvement in Cobalt Phosphate Electrocatalyst Activity toward Oxygen Evolution from Water by Glycine Molecule Addition and Functional Details. Analytical Sciences 2020, 36 (1) , 35-40. https://doi.org/10.2116/analsci.19SAP08
  70. Wenlong Li, Fusheng Li, Hao Yang, Xiujuan Wu, Peili Zhang, Yu Shan, Licheng Sun. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13052-1
  71. Dong Xiang, Xiangjie Bo, Xiaohui Gao, Chunmei Zhang, Cheng Du, Fuqin Zheng, Zhihua Zhuang, Ping Li, Liande Zhu, Wei Chen. Novel one-step synthesis of [email protected] iron–nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis. Journal of Power Sources 2019, 438 , 226988. https://doi.org/10.1016/j.jpowsour.2019.226988
  72. Yimei Yang, Baoshan Hu, Wenbin Zhao, Qian Yang, Feng Yang, Juncong Ren, Xiaogang Li, Yan Jin, Liang Fang, Qingjiang Pan. Bridging N-doped graphene and carbon rich C3N4 layers for photo-promoted multi-functional electrocatalysts. Electrochimica Acta 2019, 317 , 25-33. https://doi.org/10.1016/j.electacta.2019.05.140
  73. Chavi Mahala, Mamta Devi Sharma, Mrinmoyee Basu. Fe‐Doped Nickel Hydroxide/Nickel Oxyhydroxide Function as an Efficient Catalyst for the Oxygen Evolution Reaction. ChemElectroChem 2019, 6 (13) , 3488-3498. https://doi.org/10.1002/celc.201900857
  74. Peipei Li, Runbo Zhao, Hongyu Chen, Huanbo Wang, Peipei Wei, Hong Huang, Qian Liu, Tingshuai Li, Xifeng Shi, Youyu Zhang, Meiling Liu, Xuping Sun. Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. Small 2019, 15 (13) , 1805103. https://doi.org/10.1002/smll.201805103
  75. Holger Dau, Chiara Pasquini. Modelling the (Essential) Role of Proton Transport by Electrolyte Bases for Electrochemical Water Oxidation at Near-Neutral pH. Inorganics 2019, 7 (2) , 20. https://doi.org/10.3390/inorganics7020020
  76. Karuppiah Selvakumar, Sakkarapalayam Murugesan Senthil Kumar, Rangasamy Thangamuthu, Parasmani Rajput, Dibyendu Bhattacharyya, Shambhu Nath Jha. 2D and 3D Silica‐Template‐Derived MnO 2 Electrocatalysts towards Enhanced Oxygen Evolution and Oxygen Reduction Activity. ChemElectroChem 2018, 5 (24) , 3980-3990. https://doi.org/10.1002/celc.201801143
  77. Xudong Wen, Lu Bai, Min Li, Jingqi Guan. Ultrafine iridium oxide supported on carbon nanotubes for efficient catalysis of oxygen evolution and oxygen reduction reactions. Materials Today Energy 2018, 10 , 153-160. https://doi.org/10.1016/j.mtener.2018.09.002
  78. Jeonga Kim, Ho Yeon Son, Yoon Sung Nam. Multilayered Plasmonic Heterostructure of Gold and Titania Nanoparticles for Solar Fuel Production. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-28789-w
  79. Zhuo Xing, Hengyi Wu, Liang Wu, Xuening Wang, Huizhou Zhong, Feng Li, Jinchao Shi, Dengyuan Song, Wei Xiao, Changzhong Jiang, Feng Ren. A multifunctional vanadium-doped cobalt oxide layer on silicon photoanodes for efficient and stable photoelectrochemical water oxidation. Journal of Materials Chemistry A 2018, 6 (42) , 21167-21177. https://doi.org/10.1039/C8TA07552B
  80. Huaiguang Li, Darren Buesen, Rhodri Williams, Joerg Henig, Stefanie Stapf, Kallol Mukherjee, Erik Freier, Wolfgang Lubitz, Martin Winkler, Thomas Happe, Nicolas Plumeré. Preventing the coffee-ring effect and aggregate sedimentation by in situ gelation of monodisperse materials. Chemical Science 2018, 9 (39) , 7596-7605. https://doi.org/10.1039/C8SC03302A
  81. Yuyao Ji, Min Ma, Xuqiang Ji, Xiaoli Xiong, Xuping Sun. Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions. Frontiers of Chemical Science and Engineering 2018, 12 (3) , 467-472. https://doi.org/10.1007/s11705-018-1717-8
  82. Hai Xiao, Hyeyoung Shin, William A. Goddard. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proceedings of the National Academy of Sciences 2018, 115 (23) , 5872-5877. https://doi.org/10.1073/pnas.1722034115
  83. Bing Ni, Kai Wang, Ting He, Yue Gong, Lin Gu, Jing Zhuang, Xun Wang. Mimic the Photosystem II for Water Oxidation in Neutral Solution: A Case of Co 3 O 4. Advanced Energy Materials 2018, 8 (11) , 1702313. https://doi.org/10.1002/aenm.201702313
  84. Dongyu Xu, Michaela Burke Stevens, Yichuan Rui, Giovanni DeLuca, Shannon W. Boettcher, Elsa Reichmanis, Yaogang Li, Qinghong Zhang, Hongzhi Wang. The role of Cr doping in Ni Fe oxide/(oxy)hydroxide electrocatalysts for oxygen evolution. Electrochimica Acta 2018, 265 , 10-18. https://doi.org/10.1016/j.electacta.2018.01.143
  85. Jagdeep S. Sagu, Diana Mehta, K.G. Upul Wijayantha. Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media. Electrochemistry Communications 2018, 87 , 1-4. https://doi.org/10.1016/j.elecom.2017.12.017
  86. Jihun Rho, Sung Yul Lim, Inseong Hwang, Jeongse Yun, Taek Dong Chung. Chemically Deposited Cobalt-Based Oxygen-Evolution Electrocatalysts on DOPA-Displaying Viruses. ChemCatChem 2018, 10 (1) , 165-169. https://doi.org/10.1002/cctc.201701111
  87. Daniela V. Morales, Catalina N. Astudillo, Youssef Lattach, Bruno F. Urbano, Eduardo Pereira, Bernabé L. Rivas, Josiane Arnaud, Jean-Luc Putaux, Selim Sirach, Saioa Cobo, Jean-Claude Moutet, Marie-Noëlle Collomb, Jérôme Fortage. Nickel oxide–polypyrrole nanocomposite electrode materials for electrocatalytic water oxidation. Catalysis Science & Technology 2018, 8 (16) , 4030-4043. https://doi.org/10.1039/C7CY01949A
  88. Lu Bai, Jingqi Guan. Binary Ni 2 FeO x anchored on modified graphite for efficient and durable oxygen evolution electrocatalysis. Sustainable Energy & Fuels 2018, 2 (10) , 2160-2164. https://doi.org/10.1039/C8SE00307F
  89. Cyrille Costentin, Daniel G. Nocera. Self-healing catalysis in water. Proceedings of the National Academy of Sciences 2017, 114 (51) , 13380-13384. https://doi.org/10.1073/pnas.1711836114
  90. Fengyu Xie, Huali Wu, Jirong Mou, Dunmin Lin, Chenggang Xu, Cong Wu, Xuping Sun. [email protected] nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis 2017, 356 , 165-172. https://doi.org/10.1016/j.jcat.2017.10.013
  91. Jens Melder, Wai Ling Kwong, Dmitriy Shevela, Johannes Messinger, Philipp Kurz. Electrocatalytic Water Oxidation by MnO x /C: In Situ Catalyst Formation, Carbon Substrate Variations, and Direct O 2 /CO 2 Monitoring by Membrane-Inlet Mass Spectrometry. ChemSusChem 2017, 10 (22) , 4491-4502. https://doi.org/10.1002/cssc.201701383
  92. Zao Wang, Fengyu Xie, Zhiang Liu, Gu Du, Abdullah M. Asiri, Xuping Sun. High‐Performance Non‐Enzyme Hydrogen Peroxide Detection in Neutral Solution: Using a Nickel Borate Nanoarray as a 3D Electrochemical Sensor. Chemistry – A European Journal 2017, 23 (64) , 16179-16183. https://doi.org/10.1002/chem.201704038
  93. Feng Yan, Yue Wang, Kaiyue Li, Chunling Zhu, Peng Gao, Chunyan Li, Xitian Zhang, Yujin Chen. Highly Stable Three-Dimensional Porous Nickel-Iron Nitride Nanosheets for Full Water Splitting at High Current Densities. Chemistry - A European Journal 2017, 23 (42) , 10187-10194. https://doi.org/10.1002/chem.201701662
  94. Chunzhen Yang, Olivier Fontaine, Jean-Marie Tarascon, Alexis Grimaud. Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts. Angewandte Chemie 2017, 129 (30) , 8778-8782. https://doi.org/10.1002/ange.201701984
  95. Chunzhen Yang, Olivier Fontaine, Jean-Marie Tarascon, Alexis Grimaud. Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts. Angewandte Chemie International Edition 2017, 56 (30) , 8652-8656. https://doi.org/10.1002/anie.201701984
  96. Min Ma, Fengli Qu, Xuqiang Ji, Danni Liu, Shuai Hao, Gu Du, Abdullah M. Asiri, Yadong Yao, Liang Chen, Xuping Sun. Bimetallic Nickel-Substituted Cobalt-Borate Nanowire Array: An Earth-Abundant Water Oxidation Electrocatalyst with Superior Activity and Durability at Near Neutral pH. Small 2017, 13 (25) , 1700394. https://doi.org/10.1002/smll.201700394
  97. Xing Zhang, Xiao Zhang, Haomin Xu, Zishan Wu, Hailiang Wang, Yongye Liang. Iron-Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. Advanced Functional Materials 2017, 27 (24) , 1606635. https://doi.org/10.1002/adfm.201606635
  98. Ruixiang Ge, Xiang Ren, Fengli Qu, Danni Liu, Min Ma, Shuai Hao, Gu Du, Abdullah M. Asiri, Liang Chen, Xuping Sun. Three-Dimensional Nickel-Borate Nanosheets Array for Efficient Oxygen Evolution at Near-Neutral pH. Chemistry - A European Journal 2017, 23 (29) , 6959-6963. https://doi.org/10.1002/chem.201700408
  99. Shikui Yao, Chengcheng Wang, Meng Li, Yi Cheng, Wei Xing, San Ping Jiang. Dimensionally stable Ni [email protected]/Ti nanoporous electrodes by reactive deposition for water electrolysis. International Journal of Hydrogen Energy 2017, 42 (10) , 7143-7150. https://doi.org/10.1016/j.ijhydene.2016.05.026
  100. Nancy Li, D. Kwabena Bediako, Ryan G. Hadt, Dugan Hayes, Thomas J. Kempa, Felix von Cube, David C. Bell, Lin X. Chen, Daniel G. Nocera. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proceedings of the National Academy of Sciences 2017, 114 (7) , 1486-1491. https://doi.org/10.1073/pnas.1620787114
Load all citations