Mechanism of Cobalt Self-Exchange Electron Transfer

View Author Information
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
Cite this: J. Am. Chem. Soc. 2013, 135, 40, 15053–15061
Publication Date (Web):August 29, 2013
https://doi.org/10.1021/ja404469y
Copyright © 2013 American Chemical Society
Article Views
4228
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (2)»

Abstract

A heptanuclear cobalt cluster was synthesized in two different oxidation states, Co(II)7 and a mixed valence Co(III)Co(II)6, as a soluble model of a cobalt–phosphate/borate (Co-OEC) water splitting catalyst. Crystallographic characterization indicates similar cluster cores, distinguished primarily at the central Co atom. An anion associates to the cluster cores via hydrogen bonding. Using an isotope exchange method, an anomalously slow self-exchange electron transfer rate constant (kobs = 1.53 × 10–3 M–1 s–1 at 40 °C and 38 mM [OTf] in MeCN), as compared to that predicted from semiclassical Marcus theory, supports a charge transfer process that is accelerated by dissociation of the anion from the oxidized cluster. This mechanism sheds light on the inverse dependence of anions in the self-repair mechanism of Co-OECs. Moreover, because H2O cannot directly bridge cobalt centers, owing to the encapsulation of the central Co within the cluster core, the observed results address a long-standing controversy surrounding the Co2+/3+ self-exchange electron transfer reaction of the hexaaqua complex.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental details; table of crystal and refinement details and the crystallographic information file (CIF) for co-crystallized 1 and 2; 1H and 19F NMR spectra, ESI-MS spectra, cyclic voltammograms, visible and NIR spectra; mid-IR and far-IR spectra, and the details of the self-exchange rate constant calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 32 publications.

  1. Julian Lorenz, Mingquan Yu, Harun Tüysüz, Corinna Harms, Alexander Dyck, Gunther Wittstock. Coulometric Titration of Active Sites at Mesostructured Cobalt Oxide Spinel by Surface Interrogation Mode of Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C 2020, 124 (14) , 7737-7748. https://doi.org/10.1021/acs.jpcc.9b11114
  2. Hannah J. King, Maxime Fournier, Shannon A. Bonke, Enrico Seeman, Manjunath Chatti, Askhat N. Jumabekov, Bernt Johannessen, Peter Kappen, Alexandr N. Simonov, Rosalie K. Hocking. Photon-Induced, Timescale, and Electrode Effects Critical for the in Situ X-ray Spectroscopic Analysis of Electrocatalysts: The Water Oxidation Case. The Journal of Physical Chemistry C 2019, 123 (47) , 28533-28549. https://doi.org/10.1021/acs.jpcc.9b06944
  3. John R. Miller, Andrew R. Cook, Ludmila Šimková, Lubomír Pospíšil, Jiří Ludvík, Josef Michl. The Impact of Huge Structural Changes on Electron Transfer and Measurement of Redox Potentials: Reduction of ortho-12-Carborane. The Journal of Physical Chemistry B 2019, 123 (45) , 9668-9676. https://doi.org/10.1021/acs.jpcb.9b08151
  4. Mathias T. Nielsen, Klaus A. Moltved, Kasper P. Kepp. Electron Transfer of Hydrated Transition-Metal Ions and the Electronic State of Co3+(aq). Inorganic Chemistry 2018, 57 (13) , 7914-7924. https://doi.org/10.1021/acs.inorgchem.8b01011
  5. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
  6. Hyun S. Ahn and Allen J. Bard . Surface Interrogation of CoPi Water Oxidation Catalyst by Scanning Electrochemical Microscopy. Journal of the American Chemical Society 2015, 137 (2) , 612-615. https://doi.org/10.1021/ja511740h
  7. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  8. Yi Liu and Daniel G. Nocera . Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17060-17066. https://doi.org/10.1021/jp5008347
  9. Michael Huynh, D. Kwabena Bediako, Yi Liu, and Daniel G. Nocera . Nucleation and Growth Mechanisms of an Electrodeposited Manganese Oxide Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17142-17152. https://doi.org/10.1021/jp501768n
  10. Jinglin Zhu, Hongchao Li, Chao Shan, Shu Wang, Lu Lv, Bingcai Pan. Trace Co2+ coupled with phosphate triggers efficient peroxymonosulfate activation for organic degradation. Journal of Hazardous Materials 2021, 409 , 124920. https://doi.org/10.1016/j.jhazmat.2020.124920
  11. Santarupa Thakurta, Monami Maiti, Georgina M. Rosair, Aleksey Kuznetsov. A Rare Angular Trinuclear Mixed Valence Cobalt(III-II-III) Complex With Azido Bridges And Salpn-Type Schiff-Base Ligand: Synthesis, Crystal Structure And DFT Study. Journal of Molecular Structure 2021, 1230 , 129863. https://doi.org/10.1016/j.molstruc.2020.129863
  12. Marcus B. Kindervater, Toren Hynes, Katherine M. Marczenko, Saurabh S. Chitnis. Squeezing Bi: PNP and P 2 N 3 pincer complexes of bismuth. Dalton Transactions 2020, 49 (45) , 16072-16076. https://doi.org/10.1039/D0DT01413C
  13. Lu Wang, Jinzhan Su, Liejin Guo. Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting. Nano Research 2019, 12 (3) , 575-580. https://doi.org/10.1007/s12274-018-2256-9
  14. Mari E. Slater-Parry, James P. Durrant, Joshua M. Howells, Mateusz B. Pitak, Peter N. Horton, Wim T. Klooster, Simon J. Coles, Helen M. O'Connor, Euan K. Brechin, Anne-Laure Barra, Leigh F. Jones. Crowding out: ligand modifications and their structure directing effects on brucite-like {M x (μ 3 -OH) y } (M = Co( ii ), Ni( ii )) core growth within polymetallic cages. Dalton Transactions 2019, 48 (4) , 1477-1488. https://doi.org/10.1039/C8DT04229B
  15. Michael Tausch. Chemie mit Licht – eine didaktische Herausforderung. 2019,,, 15-33. https://doi.org/10.1007/978-3-662-60376-5_2
  16. Denis A. Kuznetsov, Dmitry V. Konev, Sergey A. Sokolov, Ivan V. Fedyanin. Cobalt Oxide Materials for Oxygen Evolution Catalysis via Single-Source Precursor Chemistry. Chemistry - A European Journal 2018, 24 (52) , 13890-13896. https://doi.org/10.1002/chem.201802632
  17. Ting Wang, Ping Su, Fangyuan Lin, Ye Yang, Yi Yang. Self-sacrificial template synthesis of mixed-valence-state cobalt nanomaterials with high catalytic activities for colorimetric detection of glutathione. Sensors and Actuators B: Chemical 2018, 254 , 329-336. https://doi.org/10.1016/j.snb.2017.07.104
  18. Iaroslav Doroshenko, Michal Babiak, Axel Buchholz, Helmar Görls, Winfried Plass, Jiri Pinkas. New molecular heptanuclear cobalt phosphonates: synthesis, structures and magnetic properties. New Journal of Chemistry 2018, 42 (12) , 9568-9577. https://doi.org/10.1039/C8NJ00902C
  19. Cyrille Costentin, Daniel G. Nocera. Self-healing catalysis in water. Proceedings of the National Academy of Sciences 2017, 114 (51) , 13380-13384. https://doi.org/10.1073/pnas.1711836114
  20. Dandan Cai, Ali Han, Pei-Yu Yang, Yan-Fang Wu, Pingwu Du, Mohamedally Kurmoo, Ming-Hua Zeng. Heptanuclear Co, Ni and mixed Co-Ni clusters as high-performance water oxidation electrocatalysts. Electrochimica Acta 2017, 249 , 343-352. https://doi.org/10.1016/j.electacta.2017.08.037
  21. Miao Zhang, Heinz Frei. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates. Annual Review of Physical Chemistry 2017, 68 (1) , 209-231. https://doi.org/10.1146/annurev-physchem-052516-050655
  22. Fei Mao, Zhengliang Qi, Haipeng Fan, Dejun Sui, Rizhi Chen, Jun Huang. Heterogeneous cobalt catalysts for selective oxygenation of alcohols to aldehydes, esters and nitriles. RSC Advances 2017, 7 (3) , 1498-1503. https://doi.org/10.1039/C6RA27073E
  23. Yuan-Ye Jiang, Xiaoping Man, Siwei Bi. Advances in theoretical study on transition-metal-catalyzed C−H activation. Science China Chemistry 2016, 59 (11) , 1448-1466. https://doi.org/10.1007/s11426-016-0330-3
  24. Chih‐Yu Hsu, Jian Zhang, Satoshi Moriyama, Masayoshi Higuchi. Solvent Effect on Electrochemical Properties of a Co(II)‐Based Metallo‐Supramolecular Polymer Film. Macromolecular Symposia 2016, 363 (1) , 12-19. https://doi.org/10.1002/masy.201500136
  25. Wooyul Kim, Beth Anne McClure, Eran Edri, Heinz Frei. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews 2016, 45 (11) , 3221-3243. https://doi.org/10.1039/C6CS00062B
  26. Markus D. Kärkäs, Björn Åkermark. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Transactions 2016, 45 (37) , 14421-14461. https://doi.org/10.1039/C6DT00809G
  27. Tufan Singha Mahapatra, Dipmalya Basak, Santanu Chand, Jeff Lengyel, Michael Shatruk, Valerio Bertolasi, Debashis Ray. Competitive coordination aggregation for V-shaped [Co 3 ] and disc-like [Co 7 ] complexes: synthesis, magnetic properties and catechol oxidase activity. Dalton Transactions 2016, 45 (34) , 13576-13589. https://doi.org/10.1039/C6DT02494G
  28. Gihan Kwon, Oleksandr Kokhan, Ali Han, Karena W. Chapman, Peter J. Chupas, Pingwu Du, David M. Tiede. Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 2015, 71 (6) , 713-721. https://doi.org/10.1107/S2052520615022180
  29. A. Mary Imelda Jayaseeli, Arumugam Ramdass, Seenivasan Rajagopal. Selective H2O2 oxidation of organic sulfides to sulfoxides catalyzed by cobalt(III)–salen ion. Polyhedron 2015, 100 , 59-66. https://doi.org/10.1016/j.poly.2015.07.020
  30. Jianqing Chen, Donghui Yang, Dan Song, Jinghua Jiang, Aibin Ma, Michael Z. Hu, Chaoying Ni. Recent progress in enhancing solar-to-hydrogen efficiency. Journal of Power Sources 2015, 280 , 649-666. https://doi.org/10.1016/j.jpowsour.2015.01.073
  31. D. Kwabena Bediako, Andrew M. Ullman, Daniel G. Nocera. Catalytic Oxygen Evolution by Cobalt Oxido Thin Films. 2015,,, 173-213. https://doi.org/10.1007/128_2015_649
  32. Thomas Faunce. Nanotechnology Toward the Sustainocene. 2014,,, 1-26. https://doi.org/10.1201/b17705-2