Efficient Dye-Sensitized Photovoltaic Wires Based on an Organic Redox Electrolyte

View Author Information
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
Cite this: J. Am. Chem. Soc. 2013, 135, 29, 10622–10625
Publication Date (Web):July 15, 2013
Copyright © 2013 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (1)»


An organic thiolate/disulfide redox couple with low absorption in the visible region was developed for use in fabricating novel dye-sensitized photovoltaic wires with an aligned carbon nanotube (CNT) fiber as the counter electrode. These flexible wire devices achieved a maximal energy conversion efficiency of 7.33%, much higher than the value of 5.97% for the conventional I/I3 redox couple. In addition, the aligned CNT fiber also greatly outperforms the conventional Pt counter electrode with a maximal efficiency of 2.06% based on the thiolate/disulfide redox couple.

Supporting Information

Jump To

Synthesis of the organic electrolyte and structure and property characterizations of devices. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 118 publications.

  1. Shouzheng Jiao, Zhicheng Sun, Jinyue Wen, Yuanyuan Liu, Furong Li, Qingqing Miao, Weixia Wu, Luhai Li, Yang Zhou. Development of Rapid Curing SiO2 Aerogel Composite-Based Quasi-Solid-State Dye-Sensitized Solar Cells through Screen-Printing Technology. ACS Applied Materials & Interfaces 2020, 12 (43) , 48794-48803. https://doi.org/10.1021/acsami.0c14551
  2. Jae Ho Kim, Sung-Jun Koo, Hyunil Cho, Jin Woo Choi, Seung Yoon Ryu, Jae-Wook Kang, Sung-Ho Jin, Chuljin Ahn, Myungkwan Song. 6.16% Efficiency of Solid-State Fiber Dye-Sensitized Solar Cells Based on LiTFSI Electrolytes with Novel TEMPOL Derivatives. ACS Sustainable Chemistry & Engineering 2020, 8 (40) , 15065-15071. https://doi.org/10.1021/acssuschemeng.0c05427
  3. Songlin Zhang, Yan Ma, Lakshmi Suresh, Ayou Hao, Michael Bick, Swee Ching Tan, Jun Chen. Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS Nano 2020, 14 (8) , 9282-9319. https://doi.org/10.1021/acsnano.0c03268
  4. Pui Fai Ng, Jiachuan Hua, Chang Liu, Yidi Wang, Rong Yin, Bin Fei. Solar Energy Storage Silks via Coaxial Wet Spinning. ACS Materials Letters 2020, 2 (7) , 801-807. https://doi.org/10.1021/acsmaterialslett.0c00074
  5. Junxiang Zhang, Zhuanpei Wang, Xuelian Li, Jie Yang, Chenhui Song, Yongpeng Li, Jianli Cheng, Qun Guan, Bin Wang. Flexible Platinum-Free Fiber-Shaped Dye Sensitized Solar Cell with 10.28% Efficiency. ACS Applied Energy Materials 2019, 2 (4) , 2870-2877. https://doi.org/10.1021/acsaem.9b00207
  6. Yogesh Siddaraju, Kandikere Ramaiah Prabhu. Iodine-Catalyzed Chemoselective Hydroamination Reaction Using 5-Mercaptotetrazoles Derivatives. ACS Omega 2018, 3 (5) , 4908-4917. https://doi.org/10.1021/acsomega.8b00499
  7. Zhibin Yang, Jing Ren, Zhitao Zhang, Xuli Chen, Guozhen Guan, Longbin Qiu, Ye Zhang, and Huisheng Peng . Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews 2015, 115 (11) , 5159-5223. https://doi.org/10.1021/cr5006217
  8. Kerui Li, Qinghong Zhang, Hongzhi Wang, and Yaogang Li . Red, Green, Blue (RGB) Electrochromic Fibers for the New Smart Color Change Fabrics. ACS Applied Materials & Interfaces 2014, 6 (15) , 13043-13050. https://doi.org/10.1021/am502929p
  9. Shaowu Pan, Zhibin Yang, Peining Chen, Xin Fang, Guozhen Guan, Zhitao Zhang, Jue Deng, and Huisheng Peng . Carbon Nanostructured Fibers As Counter Electrodes in Wire-Shaped Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 16419-16425. https://doi.org/10.1021/jp410402w
  10. Mingxing Wu and Tingli Ma . Recent Progress of Counter Electrode Catalysts in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 16727-16742. https://doi.org/10.1021/jp412713h
  11. Abdulla Hilmi, Tharallah A. Shoker, and Tarek H. Ghaddar . Universal Low-Temperature MWCNT-COOH-Based Counter Electrode and a New Thiolate/Disulfide Electrolyte System for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (11) , 8744-8753. https://doi.org/10.1021/am501520s
  12. Dibyendu Mondal, Mosarrat Perween, Divesh N. Srivastava, and Pushpito K. Ghosh . Unconventional Electrode Material Prepared from Coir Fiber through Sputter Coating of Gold: A Study toward Value Addition of Natural Biopolymer. ACS Sustainable Chemistry & Engineering 2014, 2 (3) , 348-352. https://doi.org/10.1021/sc400389u
  13. Jae Ho Kim, Hyun Woo Park, Sung-Jun Koo, Daseul Lee, Eunyeong Cho, Yong-Ki Kim, Myunghun Shin, Jin Woo Choi, Hee Jung Lee, Myungkwan Song. High efficiency and stable solid-state fiber dye-sensitized solar cells obtained using TiO2 photoanodes enhanced with metal organic frameworks. Journal of Energy Chemistry 2022, 67 , 458-466. https://doi.org/10.1016/j.jechem.2021.10.034
  14. Fen Qiao, Huaqiang Chu, Yi Xie, Zhankun Weng. Recent progress of transparent conductive electrodes in the construction of efficient flexible organic solar cells. International Journal of Energy Research 2021, 257 https://doi.org/10.1002/er.7516
  15. Arnauld Robert Tapa, Wanchun Xiang, Xiujian Zhao. Metal Chalcogenides (M x E y ; E = S, Se, and Te) as Counter Electrodes for Dye–Sensitized Solar Cells: An Overview and Guidelines. Advanced Energy and Sustainability Research 2021, 2 (10) , 2100056. https://doi.org/10.1002/aesr.202100056
  16. Azhar Fakharuddin, Haizeng Li, Francesco Di Giacomo, Tianyi Zhang, Nicola Gasparini, Abdulhakem Y. Elezzabi, Ankita Mohanty, Ananthakumar Ramadoss, JinKiong Ling, Anastasia Soultati, Marinos Tountas, Lukas Schmidt‐Mende, Panagiotis Argitis, Rajan Jose, Mohammad Khaja Nazeeruddin, Abd Rashid Bin Mohd Yusoff, Maria Vasilopoulou. Fiber‐Shaped Electronic Devices. Advanced Energy Materials 2021, 11 (34) , 2101443. https://doi.org/10.1002/aenm.202101443
  17. Jae Joon Kim, Yan Wang, Haoyang Wang, Sunghoon Lee, Tomoyuki Yokota, Takao Someya. Skin Electronics: Next‐Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials 2021, 31 (39) , 2009602. https://doi.org/10.1002/adfm.202009602
  18. S. Casadio, N. Sangiorgi, A. Sangiorgi, A. Dessì, L. Zani, M. Calamante, G. Reginato, A. Mordini, A. Sanson. Highly efficient long thin-film fiber-shaped dye sensitized solar cells based on a fully organic sensitizer. Solar Energy Materials and Solar Cells 2021, 224 , 110986. https://doi.org/10.1016/j.solmat.2021.110986
  19. Abniel Machín, Kenneth Fontánez, Juan C. Arango, Dayna Ortiz, Jimmy De León, Sergio Pinilla, Valeria Nicolosi, Florian I. Petrescu, Carmen Morant, Francisco Márquez. One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials 2021, 14 (10) , 2609. https://doi.org/10.3390/ma14102609
  20. Siwei Xiang, Nannan Zhang, Xing Fan. From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Advanced Fiber Materials 2021, 3 (2) , 76-106. https://doi.org/10.1007/s42765-020-00062-8
  21. Yufang Cao, Tao Zhou, Kunjie Wu, Zhenzhong Yong, Yongyi Zhang. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Advances 2021, 11 (12) , 6628-6643. https://doi.org/10.1039/D0RA09482J
  22. Jae Ho Kim, Soon Kyu Hong, Seok-Ju Yoo, Chae Young Woo, Jin Woo Choi, Daseul Lee, Jae-Wook Kang, Hyung Woo Lee, Myungkwan Song. Pt-free, cost-effective and efficient counter electrode with carbon nanotube yarn for solid-state fiber dye-sensitized solar cells. Dyes and Pigments 2021, 185 , 108855. https://doi.org/10.1016/j.dyepig.2020.108855
  23. Jun Liu, Weifeng Yang, Aixiang Wei, Huajiang Zuo, Weiwei Zhang, Kangle Liu, Zhen Liu, Zhiming Xiao, Yu Zhao. Anchoring CoS on three-dimensional porous rGO thin films as efficient counter electrodes for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics 2020, 31 (24) , 22546-22553. https://doi.org/10.1007/s10854-020-04765-x
  24. Yuxiang Hu, Shanshan Ding, Peng Chen, Trent Seaby, Jingwei Hou, Lianzhou Wang. Flexible solar-rechargeable energy system. Energy Storage Materials 2020, 32 , 356-376. https://doi.org/10.1016/j.ensm.2020.06.028
  25. Fernando Torres-Canas, Ahmed Bentaleb, Marie Fӧllmer, Julien Roman, Wilfrid Neri, Isabelle Ly, Alain Derré, Philippe Poulin. Improved structure and highly conductive lignin-carbon fibers through graphene oxide liquid crystal. Carbon 2020, 163 , 120-127. https://doi.org/10.1016/j.carbon.2020.02.077
  26. Do-Gwan Kim, Dowon Ahn, Kang-Han Kim, Yong-Cheol Jeong. A flexible yet wear-resistant co-citrate elastomer for on-demand disposable patch sensors. Journal of Materials Chemistry C 2020, 8 (29) , 10047-10059. https://doi.org/10.1039/D0TC02058C
  27. Lie Wang, Xuemei Fu, Jiqing He, Xiang Shi, Taiqiang Chen, Peining Chen, Bingjie Wang, Huisheng Peng. Application Challenges in Fiber and Textile Electronics. Advanced Materials 2020, 32 (5) , 1901971. https://doi.org/10.1002/adma.201901971
  28. Huisheng Peng. Smart Textiles. 2020,,, 427-457. https://doi.org/10.1007/978-981-15-9945-3_16
  29. Huisheng Peng. Charge Separation and Transport Mechanism in Fiber Electronics. 2020,,, 53-70. https://doi.org/10.1007/978-981-15-9945-3_3
  30. Huisheng Peng. Fiber Dye-Sensitized Solar Cells. 2020,,, 71-111. https://doi.org/10.1007/978-981-15-9945-3_4
  31. Ömer Faruk Ünsal, Ayşe Sezer Hiçyilmaz, Ayten Nur Yüksel Yilmaz, Yasin Altin, İsmail Borazan, Ayşe Çelik Bedeloğlu. Energy-generating textiles. 2020,,, 415-455. https://doi.org/10.1016/B978-0-12-820257-9.00017-5
  32. Joydip Sengupta. Application of carbon nanomaterials in the electronic industry. 2020,,, 421-450. https://doi.org/10.1016/B978-0-12-821381-0.00017-X
  33. Umer Mehmood, Waqar Ahmad, Shakeel Ahmed. Nickel impregnated multi-walled carbon nanotubes (Ni/MWCNT) as active catalyst materials for efficient and platinum-free dye-sensitized solar cells (DSSCs). Sustainable Energy & Fuels 2019, 3 (12) , 3473-3480. https://doi.org/10.1039/C9SE00583H
  34. Nayab Abdul Karim, Umer Mehmood, Hafiza Fizza Zahid, Tahira Asif. Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy 2019, 185 , 165-188. https://doi.org/10.1016/j.solener.2019.04.057
  35. Tenghao Yin, Lei Wu, Tonghao Wu, Guoyong Mao, Guodong Nian, Zhe Chen, Xiaocheng Hu, Peng Wang, Yuhai Xiang, Honghui Yu, Shaoxing Qu, Wei Yang. Ultrastretchable and conductive core/sheath hydrogel fibers with multifunctionality. Journal of Polymer Science Part B: Polymer Physics 2019, 57 (5) , 272-280. https://doi.org/10.1002/polb.24781
  36. Kangle Liu, Aixiang Wei, Weiwei Zhang, Zhiming Xiao, Yu Zhao, Jun Liu. Synthesis of vertically aligned CoS prismatic nanorods as counter electrodes for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics 2019, 30 (2) , 1541-1546. https://doi.org/10.1007/s10854-018-0425-y
  37. Alfonso Monreal-Bernal, Juan J. Vilatela, Rubén D. Costa. CNT fibres as dual counter-electrode/current-collector in highly efficient and stable dye-sensitized solar cells. Carbon 2019, 141 , 488-496. https://doi.org/10.1016/j.carbon.2018.09.090
  38. Serkan Dayan, Namık Özdemir, Nilgün Kalaycıoğlu Özpozan. Enhanced Performance of Organic/Inorganic Hybrid Nanomaterials bearing Impregnated [PdL 2 ] Complexes as Counter‐Electrode Catalyst for Dye‐Sensitized Solar Cells. Applied Organometallic Chemistry 2018, 353 , e4710. https://doi.org/10.1002/aoc.4710
  39. LePing Yu, Munkhbayar Batmunkh, Cameron Shearer, Joseph G. Shapter, Joseph G. Shapter. Use of Carbon Nanotubes (CNTs) in Third‐Generation Solar Cells. 2018,,, 551-609. https://doi.org/10.1002/9781119407690.ch15
  40. Xuemei Fu, Limin Xu, Jiaxin Li, Xuemei Sun, Huisheng Peng. Flexible solar cells based on carbon nanomaterials. Carbon 2018, 139 , 1063-1073. https://doi.org/10.1016/j.carbon.2018.08.017
  41. Séverine de Mulatier, Mohamed Nasreldin, Roger Delattre, Marc Ramuz, Thierry Djenizian. Electronic Circuits Integration in Textiles for Data Processing in Wearable Technologies. Advanced Materials Technologies 2018, 3 (10) , 1700320. https://doi.org/10.1002/admt.201700320
  42. Prabhakarn Arunachalam. Rational Screening Strategies for Counter Electrode Nanocomposite Materials for Efficient Solar Energy Conversion. 2018,,, 169-192. https://doi.org/10.1002/9781119437499.ch6
  43. Xiao Zhou, Chen Wang, Yangliang Zhang, Wen Fang, Yuzhi Hou, Chen Zhang, Xiaodong Wang, Sining Yun. Cell Efficiency Table of DSSCs with Various Counter Electrode Electrocatalysts. 2018,,, 531-617. https://doi.org/10.1002/9783527813636.app1
  44. Theerthagiri Jayaraman, Arun Prasad Murthy, Venugopal Elakkiya, Sivaraman Chandrasekaran, Palaniyandy Nithyadharseni, Ziyauddin Khan, Raja Arumugam Senthil, Ravi Shanker, Mitty Raghavender, Parasuraman Kuppusami, Madhavan Jagannathan, Muthupandian Ashokkumar. Recent development on carbon based heterostructures for their applications in energy and environment: A review. Journal of Industrial and Engineering Chemistry 2018, 64 , 16-59. https://doi.org/10.1016/j.jiec.2018.02.029
  45. G. Ryan Adams, Okenwa I. Okoli. A review of perovskite solar cells with a focus on wire-shaped devices. Renewable Energy Focus 2018, 25 , 17-23. https://doi.org/10.1016/j.ref.2018.02.002
  46. Mengxue Chen, Yun Yang, Dezhi Chen, Hua Wang. Recent progress of unconventional and multifunctional integrated supercapacitors. Chinese Chemical Letters 2018, 29 (4) , 564-570. https://doi.org/10.1016/j.cclet.2017.12.019
  47. Sandeep Kumar, Monika Nehra, Deepak Kedia, Neeraj Dilbaghi, K Tankeshwar, Ki-Hyun Kim. Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science 2018, 64 , 219-253. https://doi.org/10.1016/j.pecs.2017.10.005
  48. Bichitra Nanda Sahoo, Byungwoo Choi, Jungmok Seo, Taeyoon Lee. Hybrid functional microfibers for textile electronics and biosensors. Journal of Semiconductors 2018, 39 (1) , 011009. https://doi.org/10.1088/1674-4926/39/1/011009
  49. Mingzhi Zou, Yue Ma, Xin Yuan, Yi Hu, Jie Liu, Zhong Jin. Flexible devices: from materials, architectures to applications. Journal of Semiconductors 2018, 39 (1) , 011010. https://doi.org/10.1088/1674-4926/39/1/011010
  50. Ahmed Zubair, Xuan Wang, Francesca Mirri, Dmitri E. Tsentalovich, Naoki Fujimura, Daichi Suzuki, Karuppasamy P. Soundarapandian, Yukio Kawano, Matteo Pasquali, Junichiro Kono. Carbon nanotube woven textile photodetector. Physical Review Materials 2018, 2 (1) https://doi.org/10.1103/PhysRevMaterials.2.015201
  51. Hitoshi Kusama. Interaction between disulfide/thiolate mediators and ruthenium complex in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2017, 349 , 207-215. https://doi.org/10.1016/j.jphotochem.2017.09.035
  52. Chenjing Gao, Hongrui Wang, Zaixin Hu, Mingxing Wu. A novel carbon bead string cathode for dye-sensitized solar cells. Electrochimica Acta 2017, 255 , 9-14. https://doi.org/10.1016/j.electacta.2017.09.132
  53. C. González, J.J. Vilatela, J.M. Molina-Aldareguía, C.S. Lopes, J. LLorca. Structural composites for multifunctional applications: Current challenges and future trends. Progress in Materials Science 2017, 89 , 194-251. https://doi.org/10.1016/j.pmatsci.2017.04.005
  54. Zhixian Chi, Jie Shen, Hao Zhang, Liang Chen. NiCo2S4 nanosheets in situ grown on carbon fibers as an efficient counter electrode for fiber-shaped dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics 2017, 28 (14) , 10640-10644. https://doi.org/10.1007/s10854-017-6839-0
  55. Maziar Marandi, Zahra Goudarzi, Leila Moradi. Synthesis of randomly directed inclined TiO 2 nanorods on the nanocrystalline TiO 2 layers and their optimized application in dye sensitized solar cells. Journal of Alloys and Compounds 2017, 711 , 603-610. https://doi.org/10.1016/j.jallcom.2017.04.040
  56. Jinbiao Jia, Jihuai Wu, Jia Dong, Quanlin Bao, Leqing Fan, Jianming Lin, Linhua Hu, Songyuan Dai. Influence of deposition voltage of cobalt diselenide preparation on the film quality and the performance of dye-sensitized solar cells. Solar Energy 2017, 151 , 61-67. https://doi.org/10.1016/j.solener.2017.05.036
  57. Hao Sun, Ye Zhang, Jing Zhang, Xuemei Sun, Huisheng Peng. Energy harvesting and storage in 1D devices. Nature Reviews Materials 2017, 2 (6) https://doi.org/10.1038/natrevmats.2017.23
  58. Robert Mather, John Wilson. Fabrication of Photovoltaic Textiles. Coatings 2017, 7 (5) , 63. https://doi.org/10.3390/coatings7050063
  59. Yingjun Liu, Zhen Xu, Weiwei Gao, Zhengdong Cheng, Chao Gao. Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers. Advanced Materials 2017, 29 (14) , 1606794. https://doi.org/10.1002/adma.201606794
  60. Jia Liang, Guoyin Zhu, Caixing Wang, Yanrong Wang, Hongfei Zhu, Yi Hu, Hongling Lv, Renpeng Chen, Lianbo Ma, Tao Chen, Zhong Jin, Jie Liu. MoS 2 -Based All-Purpose Fibrous Electrode and Self-Powering Energy Fiber for Efficient Energy Harvesting and Storage. Advanced Energy Materials 2017, 7 (3) , 1601208. https://doi.org/10.1002/aenm.201601208
  61. T. Grace, C. Shearer, D. Tune, L. Yu, M. Batmunkh, M.J. Biggs, Z.A. ALOthman, J.G. Shapter. Use of Carbon Nanotubes in Third-Generation Solar Cells. 2017,,, 201-249. https://doi.org/10.1016/B978-0-323-41481-4.00008-3
  62. Y. Yao, N. Li, T. Lv, T. Chen. Carbon Nanotube Fibers for Wearable Devices. 2017,,, 347-379. https://doi.org/10.1016/B978-0-323-41481-4.00012-5
  63. Wen Liu, Ming Peng, Si Chen, Dechun Zou, Chaoqun Zhang, Yueping Fang, Xin Cai. Low-cost nanocarbon electrodes on arbitrary fibrous substrates as efficient bifacial photovoltaic wires. RSC Advances 2017, 7 (16) , 9653-9661. https://doi.org/10.1039/C6RA27211H
  64. Dmytro A. Grynko, Alexander N. Fedoryak, Petro S. Smertenko, Oleg P. Dimitriev, Nikolay A. Ogurtsov, Alexander A. Pud. Hybrid solar cell on a carbon fiber. Nanoscale Research Letters 2016, 11 (1) https://doi.org/10.1186/s11671-016-1469-7
  65. Yueh-Yun Yao, Hsi-Jung Chao, Tzung-Han Chou, Sheng Hsiung Chang, Chun-Guey Wu, Yong-Chien Ling, Jia-Yaw Chang. In situ fabrication of Co 0.85 Se and Ni 0.85 Se hierarchical thin films as high-performance counter electrode for dye-sensitized solar cells. Solar Energy 2016, 137 , 401-408. https://doi.org/10.1016/j.solener.2016.08.040
  66. Yasin Cengiz Celik, Giridhar Pulletikurthi, Frank Endres. Electrodeposition of Al, Zn, and Pt on silver-coated textile fibres from ionic liquids. Journal of Solid State Electrochemistry 2016, 20 (10) , 2781-2790. https://doi.org/10.1007/s10008-016-3276-6
  67. Tian Lv, Yao Yao, Ning Li, Tao Chen. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 2016, 11 (5) , 644-660. https://doi.org/10.1016/j.nantod.2016.08.010
  68. Huan Liu, Gengmin Zhang, Jia Liang, Jia Li, Jin Yang, Jindi Wei, Wentao Sun, Ziyong Shen. Multiworking Electrode Flexible Fiber-Type Quantum Dot-Sensitized Solar Cells. IEEE Journal of Photovoltaics 2016, 6 (4) , 952-959. https://doi.org/10.1109/JPHOTOV.2016.2568757
  69. L. V. Myznikov, S. V. Vorona, T. V. Artamonova, Yu. E. Zevatskii. Tetrazoles with oxygen-, sulfur-, and selenium-containing substituents. Russian Chemical Bulletin 2016, 65 (4) , 923-938. https://doi.org/10.1007/s11172-016-1394-z
  70. Yajing Zhu, Hongyue Guo, Haikuo Zheng, Ya-nan Lin, Chenjin Gao, Qianji Han, Mingxing Wu. Choose a reasonable counter electrode catalyst toward a fixed redox couple in dye-sensitized solar cells. Nano Energy 2016, 21 , 1-18. https://doi.org/10.1016/j.nanoen.2016.01.001
  71. Shaowu Pan, Jing Ren, Xin Fang, Huisheng Peng. Integration: An Effective Strategy to Develop Multifunctional Energy Storage Devices. Advanced Energy Materials 2016, 6 (4) , 1501867. https://doi.org/10.1002/aenm.201501867
  72. Liang Chen, Hexing Yin, Yong Zhou, Hui Dai, Tao Yu, Jianguo Liu, Zhigang Zou. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells. Nanoscale 2016, 8 (4) , 2304-2308. https://doi.org/10.1039/C5NR07376F
  73. S. Arumugam, Y. Li, S. Senthilarasu, R. Torah, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, S. P. Beeby. Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applications. Journal of Materials Chemistry A 2016, 4 (15) , 5561-5568. https://doi.org/10.1039/C5TA03389F
  74. Alvira Ayoub Arbab, Kyung Chul Sun, Iftikhar Ali Sahito, Anam Ali Memon, Yun Seon Choi, Sung Hoon Jeong. Fabrication of textile fabric counter electrodes using activated charcoal doped multi walled carbon nanotube hybrids for dye sensitized solar cells. Journal of Materials Chemistry A 2016, 4 (4) , 1495-1505. https://doi.org/10.1039/C5TA08858E
  75. Muhammad M. Hossain, Hossain Shima, Seungbae Son, Jae R. Hahn. In situ fabrication of a thermally stable and highly porous conductive solar light-driven ZnO–CNT fiber photocatalyst. RSC Advances 2016, 6 (75) , 71450-71460. https://doi.org/10.1039/C6RA08190H
  76. Jinbiao Jia, Jihuai Wu, Jia Dong, Jianming Lin. Cobalt telluride/reduced graphene oxide using as high performance counter electrode for dye-sensitized solar cells. Electrochimica Acta 2015, 185 , 184-189. https://doi.org/10.1016/j.electacta.2015.10.150
  77. Wanchun Xiang, Dehong Chen, Rachel A. Caruso, Yi-Bing Cheng, Udo Bach, Leone Spiccia. The Effect of the Scattering Layer in Dye-Sensitized Solar Cells Employing a Cobalt-Based Aqueous Gel Electrolyte. ChemSusChem 2015, 8 (21) , 3704-3711. https://doi.org/10.1002/cssc.201500627
  78. Jinghao Huo, Jihuai Wu, Min Zheng, Yongguang Tu, Zhang Lan. High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells. Journal of Power Sources 2015, 293 , 570-576. https://doi.org/10.1016/j.jpowsour.2015.05.117
  79. Taihong Zhang, Yanfang Liu, Sining Yun. Recent Advances in Counter Electrodes for Thiolate-mediated Dye-sensitized Solar Cells. Israel Journal of Chemistry 2015, 55 (9) , 943-954. https://doi.org/10.1002/ijch.201400190
  80. Hongyue Guo, Yajing Zhu, Wenyan Li, Haikuo Zheng, Kezhong Wu, Keqiang Ding, Bei Ruan, Anders Hagfeldt, Tingli Ma, Mingxing Wu. Synthesis of highly effective Pt/carbon fiber composite counter electrode catalyst for dye-sensitized solar cells. Electrochimica Acta 2015, 176 , 997-1000. https://doi.org/10.1016/j.electacta.2015.07.103
  81. Lingamallu Giribabu, Ramababu Bolligarla, Mallika Panigrahi. Recent Advances of Cobalt(II/III) Redox Couples for Dye-Sensitized Solar Cell Applications. The Chemical Record 2015, 15 (4) , 760-788. https://doi.org/10.1002/tcr.201402098
  82. Jinbiao Jia, Jihuai Wu, Yongguang Tu, Jinghao Huo, Min Zheng, Jianming Lin. Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells. Journal of Alloys and Compounds 2015, 640 , 29-33. https://doi.org/10.1016/j.jallcom.2015.03.233
  83. Munkhbayar Batmunkh, Mark J. Biggs, Joseph G. Shapter. Carbon Nanotubes for Dye-Sensitized Solar Cells. Small 2015, 11 (25) , 2963-2989. https://doi.org/10.1002/smll.201403155
  84. Jia Dong, Jihuai Wu, Jinbiao Jia, Shaoyun Wu, Pei Zhou, Yongguang Tu, Zhang Lan. Cobalt selenide nanorods used as a high efficient counter electrode for dye-sensitized solar cells. Electrochimica Acta 2015, 168 , 69-75. https://doi.org/10.1016/j.electacta.2015.03.226
  85. Xianfu Wang, Kai Jiang, Guozhen Shen. Flexible fiber energy storage and integrated devices: recent progress and perspectives. Materials Today 2015, 18 (5) , 265-272. https://doi.org/10.1016/j.mattod.2015.01.002
  86. Min Ju Yun, Seung I. Cha, Seon Hee Seo, Dong Y. Lee. Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth. Scientific Reports 2015, 4 (1) https://doi.org/10.1038/srep05322
  87. Longbin Qiu, Qiong Wu, Zhibin Yang, Xuemei Sun, Yuanbo Zhang, Huisheng Peng. Freestanding Aligned Carbon Nanotube Array Grown on a Large-Area Single-Layered Graphene Sheet for Efficient Dye-Sensitized Solar Cell. Small 2015, 11 (9-10) , 1150-1155. https://doi.org/10.1002/smll.201400703
  88. Jia Liang, Gengmin Zhang, Wentao Sun, Pei Dong. High efficiency flexible fiber-type dye-sensitized solar cells with multi-working electrodes. Nano Energy 2015, 12 , 501-509. https://doi.org/10.1016/j.nanoen.2015.01.023
  89. Shaowu Pan, Huijuan Lin, Jue Deng, Peining Chen, Xuli Chen, Zhibin Yang, Huisheng Peng. Novel Wearable Energy Devices Based on Aligned Carbon Nanotube Fiber Textiles. Advanced Energy Materials 2015, 5 (4) , 1401438. https://doi.org/10.1002/aenm.201401438
  90. Zhitao Zhang, Zhibin Yang, Jue Deng, Ye Zhang, Guozhen Guan, Huisheng Peng. Stretchable Polymer Solar Cell Fibers. Small 2015, 11 (6) , 675-680. https://doi.org/10.1002/smll.201400874
  91. Huisheng Peng. Fiber-Shaped Dye-Sensitized Solar Cell. 2015,,, 39-76. https://doi.org/10.1007/978-3-662-45744-3_3
  92. Huisheng Peng. Energy Textiles. 2015,,, 199-211. https://doi.org/10.1007/978-3-662-45744-3_9
  93. Xiaoyan Wang, Zhen Li, Wenjing Xu, Sneha A. Kulkarni, Sudip K. Batabyal, Sam Zhang, Anyuan Cao, Lydia Helena Wong. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 2015, 11 , 728-735. https://doi.org/10.1016/j.nanoen.2014.11.042
  94. Liang Chen, Yong Zhou, Hui Dai, Tao Yu, Jianguo Liu, Zhigang Zou. One-step growth of CoNi2S4 nanoribbons on carbon fibers as platinum-free counter electrodes for fiber-shaped dye-sensitized solar cells with high performance: Polymorph-dependent conversion efficiency. Nano Energy 2015, 11 , 697-703. https://doi.org/10.1016/j.nanoen.2014.11.047
  95. Hao Sun, Jue Deng, Longbin Qiu, Xin Fang, Huisheng Peng. Recent progress in solar cells based on one-dimensional nanomaterials. Energy & Environmental Science 2015, 8 (4) , 1139-1159. https://doi.org/10.1039/C4EE03853C
  96. Alvira Ayoub Arbab, Kyung Chul Sun, Iftikhar Ali Sahito, Muhammad Bilal Qadir, Sung Hoon Jeong. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell. Physical Chemistry Chemical Physics 2015, 17 (19) , 12957-12969. https://doi.org/10.1039/C5CP00818B
  97. Shaowu Pan, Jue Deng, Guozhen Guan, Ye Zhang, Peining Chen, Jing Ren, Huisheng Peng. A redox-active gel electrolyte for fiber-shaped supercapacitor with high area specific capacitance. Journal of Materials Chemistry A 2015, 3 (12) , 6286-6290. https://doi.org/10.1039/C5TA00007F
  98. Mingxing Wu, Xiao Lin, Yudi Wang, Tingli Ma. Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells. Journal of Materials Chemistry A 2015, 3 (39) , 19638-19656. https://doi.org/10.1039/C5TA03682H
  99. Ming Peng, Dechun Zou. Flexible fiber/wire-shaped solar cells in progress: properties, materials, and designs. Journal of Materials Chemistry A 2015, 3 (41) , 20435-20458. https://doi.org/10.1039/C5TA03731J
  100. Jue Deng, Longbin Qiu, Xin Lu, Zhibin Yang, Guozhen Guan, Zhitao Zhang, Huisheng Peng. Elastic perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (42) , 21070-21076. https://doi.org/10.1039/C5TA06156C
Load all citations