A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid

View Author Information
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: J. Am. Chem. Soc. 2014, 136, 16, 6002–6010
Publication Date (Web):March 26, 2014
Copyright © 2014 American Chemical Society
Article Views
Read OnlinePDF (2 MB)
Supporting Info (1)»


First-row metals have been a target for the development of oxygen evolution reaction (OER) catalysts because they comprise noncritical elements. We now report a comprehensive electrochemical characterization of manganese oxide (MnOx) over a wide pH range, and establish MnOx as a functionally stable OER catalyst owing to self-healing, is derived from MnOx redeposition that offsets catalyst dissolution during turnover. To study this process in detail, the oxygen evolution mechanism of MnOx was investigated electrokinetically over a pH range spanning acidic, neutral, and alkaline conditions. In the alkaline pH regime, a ∼60 mV/decade Tafel slope and inverse first-order dependence on proton concentration were observed, whereas the OER acidic pH regime exhibited a quasi-infinite Tafel slope and zeroth-order dependence on proton concentration. The results reflect two competing mechanisms: a one-electron one-proton PCET pathway that is dominant under alkaline conditions and a Mn3+ disproportionation process, which predominates under acidic conditions. Reconciling the rate laws of these two OER pathways with that of MnOx electrodeposition elucidates the self-healing characteristics of these catalyst films. The intersection of the kinetic profile of deposition and that of water oxidation as a function of pH defines the region of kinetic stability for MnOx and importantly establishes that a non-noble metal oxide OER catalyst may be operated in acid by exploiting a self-healing process.

Supporting Information

Jump To

O2 sensor measurements, Tafel plots, SEM images, and NMR line broadening calibration curves. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 347 publications.

  1. Andraž Mavrič, Chunhua Cui. Advances and Challenges in Industrial-Scale Water Oxidation on Layered Double Hydroxides. ACS Applied Energy Materials 2021, 4 (11) , 12032-12055. https://doi.org/10.1021/acsaem.1c02604
  2. Yihan Feng, Ruguang Ma, Minmin Wang, Jin Wang, Tongming Sun, Lanping Hu, Jinli Zhu, Yanfeng Tang, Jiacheng Wang. Crystallinity Effect of NiFe LDH on the Growth of Pt Nanoparticles and Hydrogen Evolution Performance. The Journal of Physical Chemistry Letters 2021, 12 (30) , 7221-7228. https://doi.org/10.1021/acs.jpclett.1c02095
  3. Hongmin Seo, Sunghak Park, Kang Hee Cho, Seungwoo Choi, Changwan Ko, Hyacinthe Randriamahazaka, Ki Tae Nam. Complex Impedance Analysis on Charge Accumulation Step of Mn3O4 Nanoparticles during Water Oxidation. ACS Omega 2021, 6 (28) , 18404-18413. https://doi.org/10.1021/acsomega.1c02397
  4. Sandra M. Lang, Nina Zimmermann, Thorsten M. Bernhardt, Robert N. Barnett, Bokwon Yoon, Uzi Landman. Size, Stoichiometry, Dimensionality, and Ca Doping of Manganese Oxide-Based Water Oxidation Clusters: An Oxyl/Hydroxy Mechanism for Oxygen–Oxygen Coupling. The Journal of Physical Chemistry Letters 2021, 12 (22) , 5248-5255. https://doi.org/10.1021/acs.jpclett.1c01299
  5. Yindong Gu, Yuxiang Min, Li Li, Yuebin Lian, Hao Sun, Dan Wang, Mark H. Rummeli, Jun Guo, Jun Zhong, Lai Xu, Yang Peng, Zhao Deng. Crystal Splintering of β-MnO2 Induced by Interstitial Ru Doping Toward Reversible Oxygen Conversion. Chemistry of Materials 2021, 33 (11) , 4135-4145. https://doi.org/10.1021/acs.chemmater.1c00828
  6. Hongmei Tang, Yin Yin, Yang Huang, Jiawei Wang, Lixiang Liu, Zhe Qu, Hua Zhang, Yang Li, Minshen Zhu, Oliver G. Schmidt. Battery-Everywhere Design Based on a Cathodeless Configuration with High Sustainability and Energy Density. ACS Energy Letters 2021, 6 (5) , 1859-1868. https://doi.org/10.1021/acsenergylett.1c00555
  7. Sima Heidari, S. Esmael Balaghi, Alla S. Sologubenko, Greta R. Patzke. Economic Manganese-Oxide-Based Anodes for Efficient Water Oxidation: Rapid Synthesis and In Situ Transmission Electron Microscopy Monitoring. ACS Catalysis 2021, 11 (5) , 2511-2523. https://doi.org/10.1021/acscatal.0c03388
  8. Kévin Lemoine, Zahra Gohari-Bajestani, Romain Moury, Alexandre Terry, Amandine Guiet, Jean-Marc Grenèche, Annie Hémon-Ribaud, Nina Heidary, Vincent Maisonneuve, Nikolay Kornienko, Jérôme Lhoste. Amorphous Iron–Manganese Oxyfluorides, Promising Catalysts for Oxygen Evolution Reaction under Acidic Media. ACS Applied Energy Materials 2021, 4 (2) , 1173-1181. https://doi.org/10.1021/acsaem.0c02417
  9. Amar A. Bhardwaj, Johannes G. Vos, Marissa E. S. Beatty, Amanda F. Baxter, Marc T. M. Koper, Ngai Yin Yip, Daniel V. Esposito. Ultrathin Silicon Oxide Overlayers Enable Selective Oxygen Evolution from Acidic and Unbuffered pH-Neutral Seawater. ACS Catalysis 2021, 11 (3) , 1316-1330. https://doi.org/10.1021/acscatal.0c04343
  10. Niranji Thilini Ekanayake, Shideh Ahmadi, Nicholas J. Mosey. Quantum Chemical Modeling of Oxygen Evolution Reaction Pathways Mediated by Metal (Oxy)hydroxide Complexes. The Journal of Physical Chemistry C 2021, 125 (2) , 1345-1354. https://doi.org/10.1021/acs.jpcc.0c08854
  11. Paul Plate, Christian Höhn, Ulrike Bloeck, Peter Bogdanoff, Sebastian Fiechter, Fatwa F. Abdi, Roel van de Krol, Aafke C. Bronneberg. On the Origin of the OER Activity of Ultrathin Manganese Oxide Films. ACS Applied Materials & Interfaces 2021, 13 (2) , 2428-2436. https://doi.org/10.1021/acsami.0c15977
  12. Gang Li, Fusheng Li, Yilong Zhao, Wenlong Li, Ziqi Zhao, Yingzheng Li, Hao Yang, Ke Fan, Peili Zhang, Licheng Sun. Selective Electrochemical Alkaline Seawater Oxidation Catalyzed by Cobalt Carbonate Hydroxide Nanorod Arrays with Sequential Proton-Electron Transfer Properties. ACS Sustainable Chemistry & Engineering 2021, 9 (2) , 905-913. https://doi.org/10.1021/acssuschemeng.0c07953
  13. Yao Zhou, Hong Jin Fan. Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting. ACS Materials Letters 2021, 3 (1) , 136-147. https://doi.org/10.1021/acsmaterialslett.0c00502
  14. Shun Tsunekawa, Futaba Yamamoto, Ke-Hsuan Wang, Masanari Nagasaka, Hayato Yuzawa, Satoru Takakusagi, Hiroshi Kondoh, Kiyotaka Asakura, Takeshi Kawai, Masaaki Yoshida. Operando Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2020, 124 (43) , 23611-23618. https://doi.org/10.1021/acs.jpcc.0c05571
  15. Sujit Kumar Ghosh. Diversity in the Family of Manganese Oxides at the Nanoscale: From Fundamentals to Applications. ACS Omega 2020, 5 (40) , 25493-25504. https://doi.org/10.1021/acsomega.0c03455
  16. Kamalpreet Singh, Jose de Jesus Guillen Campos, Filip Dinic, Zhaomin Hao, Tiange Yuan, Oleksandr Voznyy. Manganese MOF Enables Efficient Oxygen Evolution in Acid. ACS Materials Letters 2020, 2 (7) , 798-800. https://doi.org/10.1021/acsmaterialslett.0c00123
  17. Myeongjin Kim, Jinho Park, Minsoo Kang, Jin Young Kim, Seung Woo Lee. Toward Efficient Electrocatalytic Oxygen Evolution: Emerging Opportunities with Metallic Pyrochlore Oxides for Electrocatalysts and Conductive Supports. ACS Central Science 2020, 6 (6) , 880-891. https://doi.org/10.1021/acscentsci.0c00479
  18. Jiajian Gao, Xiang Huang, Weizheng Cai, Qilun Wang, Chunmiao Jia, Bin Liu. Rational Design of an Iridium–Tungsten Composite with an Iridium-Rich Surface for Acidic Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (23) , 25991-26001. https://doi.org/10.1021/acsami.0c05906
  19. Lan Wang, Linlin Cao, Xiaokang Liu, Wei Zhang, Wei Liu, Xinyi Shen, Yi Wang, Tao Yao. Strong Ni–S Hybridization in a Crystalline NiS Electrocatalyst for Robust Acidic Oxygen Evolution. The Journal of Physical Chemistry C 2020, 124 (5) , 2756-2761. https://doi.org/10.1021/acs.jpcc.9b09796
  20. Shrinath Dattatray Ghadge, Oleg I. Velikokhatnyi, Moni K. Datta, Pavithra M. Shanthi, Susheng Tan, Prashant N. Kumta. Computational and Experimental Study of Fluorine Doped (Mn1–xNbx)O2 Nanorod Electrocatalysts for Acid-Mediated Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (1) , 541-557. https://doi.org/10.1021/acsaem.9b01796
  21. Zhiwei Fang, Ping Wu, Kang Yu, Yifan Li, Yue Zhu, Paulo J. Ferreira, Yuanyue Liu, Guihua Yu. Hybrid Organic–Inorganic Gel Electrocatalyst for Stable Acidic Water Oxidation. ACS Nano 2019, 13 (12) , 14368-14376. https://doi.org/10.1021/acsnano.9b07826
  22. Dilek K. Dogutan, Daniel G. Nocera. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis. Accounts of Chemical Research 2019, 52 (11) , 3143-3148. https://doi.org/10.1021/acs.accounts.9b00380
  23. Jieqiong Shan, Yao Zheng, Bingyang Shi, Kenneth Davey, Shi-Zhang Qiao. Regulating Electrocatalysts via Surface and Interface Engineering for Acidic Water Electrooxidation. ACS Energy Letters 2019, 4 (11) , 2719-2730. https://doi.org/10.1021/acsenergylett.9b01758
  24. Yong Zuo, Yongpeng Liu, Junshan Li, Ruifeng Du, Xu Han, Ting Zhang, Jordi Arbiol, Núria J. Divins, Jordi Llorca, Néstor Guijarro, Kevin Sivula, Andreu Cabot. In Situ Electrochemical Oxidation of Cu2S into CuO Nanowires as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction. Chemistry of Materials 2019, 31 (18) , 7732-7743. https://doi.org/10.1021/acs.chemmater.9b02790
  25. Xue Teng, Lixia Guo, Lvlv Ji, Jianying Wang, Yanli Niu, Zhibiao Hu, Zuofeng Chen. Self-Growing NiFe-Based Hybrid Nanosheet Arrays on Ni Nanowires for Overall Water Splitting. ACS Applied Energy Materials 2019, 2 (8) , 5465-5471. https://doi.org/10.1021/acsaem.9b00584
  26. Meilin Cui, Huihui Zhao, Xiaoping Dai, Yang Yang, Xin Zhang, Xuebin Luan, Fei Nie, Ziteng Ren, Yin Dong, Yao Wang, Juntao Yang, Xingliang Huang. Promotion of the Electrocatalytic Oxygen Evolution Reaction by Chemical Coupling of CoOOH Particles to 3D Branched γ-MnOOH Rods. ACS Sustainable Chemistry & Engineering 2019, 7 (15) , 13015-13022. https://doi.org/10.1021/acssuschemeng.9b02106
  27. Thomas P. Keane, Daniel G. Nocera. Selective Production of Oxygen from Seawater by Oxidic Metallate Catalysts. ACS Omega 2019, 4 (7) , 12860-12864. https://doi.org/10.1021/acsomega.9b01751
  28. Andrew Nelson, Yixu Zong, Kevin E. Fritz, Jin Suntivich, Richard D. Robinson. Assessment of Soft Ligand Removal Strategies: Alkylation as a Promising Alternative to High-Temperature Treatments for Colloidal Nanoparticle Surfaces. ACS Materials Letters 2019, 1 (1) , 177-184. https://doi.org/10.1021/acsmaterialslett.9b00089
  29. Hadi Feizi, Robabeh Bagheri, Zhenlun Song, Jian-Ren Shen, Suleyman I. Allakhverdiev, Mohammad Mahdi Najafpour. Cobalt/Cobalt Oxide Surface for Water Oxidation. ACS Sustainable Chemistry & Engineering 2019, 7 (6) , 6093-6105. https://doi.org/10.1021/acssuschemeng.8b06269
  30. Shrinath Dattatray Ghadge, Oleg I. Velikokhatnyi, Moni K. Datta, Pavithra M. Shanthi, Susheng Tan, Krishnan Damodaran, Prashant N. Kumta. Experimental and Theoretical Validation of High Efficiency and Robust Electrocatalytic Response of One-Dimensional (1D) (Mn,Ir)O2:10F Nanorods for the Oxygen Evolution Reaction in PEM-Based Water Electrolysis. ACS Catalysis 2019, 9 (3) , 2134-2157. https://doi.org/10.1021/acscatal.8b02901
  31. Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Petko Chernev, Mohammad Reza Mohammadi, Leonardo Guidoni, Rodney D. L. Smith, Holger Dau. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society 2019, 141 (7) , 2938-2948. https://doi.org/10.1021/jacs.8b10002
  32. Zuozhong Liang, Chaochao Zhang, Yang Xu, Wei Zhang, Haoquan Zheng, Rui Cao. Dual Tuning of Ultrathin α-Co(OH)2 Nanosheets by Solvent Engineering and Coordination Competition for Efficient Oxygen Evolution. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3527-3535. https://doi.org/10.1021/acssuschemeng.8b05770
  33. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  34. Jingfu He, Aoxue Huang, Noah J. J. Johnson, Kevan E. Dettelbach, David M. Weekes, Yang Cao, Curtis P. Berlinguette. Stabilizing Copper for CO2 Reduction in Low-Grade Electrolyte. Inorganic Chemistry 2018, 57 (23) , 14624-14631. https://doi.org/10.1021/acs.inorgchem.8b02311
  35. Gangbin Yan, Yuebin Lian, Yindong Gu, Cheng Yang, Hao Sun, Qiaoqiao Mu, Qin Li, Wei Zhu, Xusheng Zheng, Muzi Chen, Junfa Zhu, Zhao Deng, Yang Peng. Phase and Morphology Transformation of MnO2 Induced by Ionic Liquids toward Efficient Water Oxidation. ACS Catalysis 2018, 8 (11) , 10137-10147. https://doi.org/10.1021/acscatal.8b02203
  36. Hendrik Antoni, Dulce M. Morales, Qi Fu, Yen-Ting Chen, Justus Masa, Wolfgang Schuhmann, Martin Muhler. Oxidative Deposition of Manganese Oxide Nanosheets on Nitrogen-Functionalized Carbon Nanotubes Applied in the Alkaline Oxygen Evolution Reaction. ACS Omega 2018, 3 (9) , 11216-11226. https://doi.org/10.1021/acsomega.8b01433
  37. Johannes G. Vos, Tim A. Wezendonk, Adriaan W. Jeremiasse, Marc T. M. Koper. MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution. Journal of the American Chemical Society 2018, 140 (32) , 10270-10281. https://doi.org/10.1021/jacs.8b05382
  38. Hao Wan, Renzhi Ma, Xiaohe Liu, Jiangling Pan, Haidong Wang, Shuquan Liang, Guanzhou Qiu, Takayoshi Sasaki. Rare Cobalt-Based Phosphate Nanoribbons with Unique 5-Coordination for Electrocatalytic Water Oxidation. ACS Energy Letters 2018, 3 (6) , 1254-1260. https://doi.org/10.1021/acsenergylett.8b00621
  39. Hainan Sun, Gao Chen, Jaka Sunarso, Jie Dai, Wei Zhou, Zongping Shao. Molybdenum and Niobium Codoped B-Site-Ordered Double Perovskite Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2018, 10 (20) , 16939-16942. https://doi.org/10.1021/acsami.8b03702
  40. Jared S. Mondschein, Kuldeep Kumar, Cameron F. Holder, Kriti Seth, Hojong Kim, Raymond E. Schaak. Intermetallic Ni2Ta Electrocatalyst for the Oxygen Evolution Reaction in Highly Acidic Electrolytes. Inorganic Chemistry 2018, 57 (10) , 6010-6015. https://doi.org/10.1021/acs.inorgchem.8b00503
  41. HyukSu Han, Kang Min Kim, Heechae Choi, Ghulam Ali, Kyung Yoon Chung, Yu-Rim Hong, Junghyun Choi, Jiseok Kwon, Seung Woo Lee, Jae Woong Lee, Jeong Ho Ryu, Taeseup Song, Sungwook Mhin. Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide–Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis 2018, 8 (5) , 4091-4102. https://doi.org/10.1021/acscatal.8b00017
  42. Martin Davi, Markus Mann, Zili Ma, Felix Schrader, Andreas Drichel, Serhiy Budnyk, Anna Rokicinska, Piotr Kustrowski, Richard Dronskowski, Adam Slabon. An MnNCN-Derived Electrocatalyst for CuWO4 Photoanodes. Langmuir 2018, 34 (13) , 3845-3852. https://doi.org/10.1021/acs.langmuir.8b00149
  43. Bowei Zhang, Yu Hui Lui, Anand P. S. Gaur, Bolin Chen, Xiaohui Tang, Zhiyuan Qi, Shan Hu. Hierarchical [email protected] Carbon Nanoflakes as Alkaline Oxygen Evolution and Acidic Hydrogen Evolution Catalyst for Efficient Water Electrolysis and Organic Decomposition. ACS Applied Materials & Interfaces 2018, 10 (10) , 8739-8748. https://doi.org/10.1021/acsami.8b00069
  44. Hamed Simchi, Kayla A. Cooley, Jonas Ohms, Lingqin Huang, Philipp Kurz, and Suzanne E. Mohney . Cosputtered Calcium Manganese Oxide Electrodes for Water Oxidation. Inorganic Chemistry 2018, 57 (2) , 785-792. https://doi.org/10.1021/acs.inorgchem.7b02717
  45. Kelsey A. Stoerzinger, Wesley T. Hong, Xiao Renshaw Wang, Reshma R. Rao, Srinivas Bengaluru Subramanyam, Changjian Li, Ariando, T. Venkatesan, Qiang Liu, Ethan J. Crumlin, Kripa K. Varanasi, and Yang Shao-Horn . Decreasing the Hydroxylation Affinity of La1–xSrxMnO3 Perovskites To Promote Oxygen Reduction Electrocatalysis. Chemistry of Materials 2017, 29 (23) , 9990-9997. https://doi.org/10.1021/acs.chemmater.7b03399
  46. Lifei Xi, Fuxian Wang, Christoph Schwanke, Fatwa F. Abdi, Ronny Golnak, Sebastian Fiechter, Klaus Ellmer, Roel van de Krol, and Kathrin M. Lange . In Situ Structural Study of MnPi-Modified BiVO4 Photoanodes by Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2017, 121 (36) , 19668-19676. https://doi.org/10.1021/acs.jpcc.7b06459
  47. Kevan E. Dettelbach, Michael Kolbeck, Aoxue Huang, Jingfu He, and Curtis P. Berlinguette . Rapid Quantification of Film Thickness and Metal Loading for Electrocatalytic Metal Oxide Films. Chemistry of Materials 2017, 29 (17) , 7272-7277. https://doi.org/10.1021/acs.chemmater.7b01914
  48. Biaobiao Zhang, Hong Chen, Quentin Daniel, Bertrand Philippe, Fengshou Yu, Mario Valvo, Yuanyuan Li, Ram B. Ambre, Peili Zhang, Fei Li, Håkan Rensmo, and Licheng Sun . Defective and “c-Disordered” Hortensia-like Layered MnOx as an Efficient Electrocatalyst for Water Oxidation at Neutral pH. ACS Catalysis 2017, 7 (9) , 6311-6322. https://doi.org/10.1021/acscatal.7b00420
  49. Mario Bärtsch, Marta Sarnowska, Olga Krysiak, Christoph Willa, Christian Huber, Lex Pillatsch, Sandra Reinhard, and Markus Niederberger . Multicomposite Nanostructured Hematite–Titania Photoanodes with Improved Oxygen Evolution: The Role of the Oxygen Evolution Catalyst. ACS Omega 2017, 2 (8) , 4531-4539. https://doi.org/10.1021/acsomega.7b00696
  50. Hideshi Ooka, Akira Yamaguchi, Toshihiro Takashima, Kazuhito Hashimoto, and Ryuhei Nakamura . Efficiency of Oxygen Evolution on Iridium Oxide Determined from the pH Dependence of Charge Accumulation. The Journal of Physical Chemistry C 2017, 121 (33) , 17873-17881. https://doi.org/10.1021/acs.jpcc.7b03749
  51. Carlito S. Ponseca, Jr., Pavel Chábera, Jens Uhlig, Petter Persson, and Villy Sundström . Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews 2017, 117 (16) , 10940-11024. https://doi.org/10.1021/acs.chemrev.6b00807
  52. Jibo Zhang, Chenhao Zhang, Junwei Sha, Huilong Fei, Yilun Li, James M. Tour. Efficient Water-Splitting Electrodes Based on Laser-Induced Graphene. ACS Applied Materials & Interfaces 2017, 9 (32) , 26840-26847. https://doi.org/10.1021/acsami.7b06727
  53. Lifei Xi, Christoph Schwanke, Jie Xiao, Fatwa F. Abdi, Ivelina Zaharieva, and Kathrin M. Lange . In Situ L-Edge XAS Study of a Manganese Oxide Water Oxidation Catalyst. The Journal of Physical Chemistry C 2017, 121 (22) , 12003-12009. https://doi.org/10.1021/acs.jpcc.7b02331
  54. Desmond E. Schipper, Zhenhuan Zhao, Andrew P. Leitner, Lixin Xie, Fan Qin, Md Kamrul Alam, Shuo Chen, Dezhi Wang, Zhifeng Ren, Zhiming Wang, Jiming Bao, and Kenton H. Whitmire . A TiO2/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution. ACS Nano 2017, 11 (4) , 4051-4059. https://doi.org/10.1021/acsnano.7b00704
  55. Daniel G. Nocera . Solar Fuels and Solar Chemicals Industry. Accounts of Chemical Research 2017, 50 (3) , 616-619. https://doi.org/10.1021/acs.accounts.6b00615
  56. Kyoungsuk Jin, Hongmin Seo, Toru Hayashi, Mani Balamurugan, Donghyuk Jeong, Yoo Kyung Go, Jung Sug Hong, Kang Hee Cho, Hirotaka Kakizaki, Nadège Bonnet-Mercier, Min Gyu Kim, Sun Hee Kim, Ryuhei Nakamura, and Ki Tae Nam . Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. Journal of the American Chemical Society 2017, 139 (6) , 2277-2285. https://doi.org/10.1021/jacs.6b10657
  57. Jared S. Mondschein, Juan F. Callejas, Carlos G. Read, Jamie Y. C. Chen, Cameron F. Holder, Catherine K. Badding, and Raymond E. Schaak . Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chemistry of Materials 2017, 29 (3) , 950-957. https://doi.org/10.1021/acs.chemmater.6b02879
  58. Masaaki Yoshida, Sho Onishi, Yosuke Mitsutomi, Futaba Yamamoto, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Integration of Active Nickel Oxide Clusters by Amino Acids for Water Oxidation. The Journal of Physical Chemistry C 2017, 121 (1) , 255-260. https://doi.org/10.1021/acs.jpcc.6b08796
  59. Chunmei Ding, Jingying Shi, Zhiliang Wang, and Can Li . Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis 2017, 7 (1) , 675-688. https://doi.org/10.1021/acscatal.6b03107
  60. Lijuan Han, Pengyi Tang, Álvaro Reyes-Carmona, Bárbara Rodríguez-García, Mabel Torréns, Joan Ramon Morante, Jordi Arbiol, and Jose Ramon Galan-Mascaros . Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching. Journal of the American Chemical Society 2016, 138 (49) , 16037-16045. https://doi.org/10.1021/jacs.6b09778
  61. Shannon A. Bonke, Alan M. Bond, Leone Spiccia, and Alexandr N. Simonov . Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society 2016, 138 (49) , 16095-16104. https://doi.org/10.1021/jacs.6b10304
  62. Bryan M. Hunter, Harry B. Gray, and Astrid M. Müller . Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22) , 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
  63. Mohammad Mahdi Najafpour, Davood Jafarian Sedigh, Seyedeh Maedeh Hosseini, and Ivelina Zaharieva . Treated Nanolayered Mn Oxide by Oxidizable Compounds: A Strategy To Improve the Catalytic Activity toward Water Oxidation. Inorganic Chemistry 2016, 55 (17) , 8827-8832. https://doi.org/10.1021/acs.inorgchem.6b01334
  64. Mohammad Mahdi Najafpour, Gernot Renger, Małgorzata Hołyńska, Atefeh Nemati Moghaddam, Eva-Mari Aro, Robert Carpentier, Hiroshi Nishihara, Julian J. Eaton-Rye, Jian-Ren Shen, and Suleyman I. Allakhverdiev . Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews 2016, 116 (5) , 2886-2936. https://doi.org/10.1021/acs.chemrev.5b00340
  65. Qiang Gao, Chinmoy Ranjan, Zoran Pavlovic, Raoul Blume, and Robert Schlögl . Enhancement of Stability and Activity of MnOx/Au Electrocatalysts for Oxygen Evolution through Adequate Electrolyte Composition. ACS Catalysis 2015, 5 (12) , 7265-7275. https://doi.org/10.1021/acscatal.5b01632
  66. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  67. Dengjie Chen, Chi Chen, Zarah Medina Baiyee, Zongping Shao, and Francesco Ciucci . Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews 2015, 115 (18) , 9869-9921. https://doi.org/10.1021/acs.chemrev.5b00073
  68. Masaaki Yoshida, Yosuke Mitsutomi, Takehiro Mineo, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Direct Observation of Active Nickel Oxide Cluster in Nickel–Borate Electrocatalyst for Water Oxidation by In Situ O K-Edge X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (33) , 19279-19286. https://doi.org/10.1021/acs.jpcc.5b06102
  69. Ahamed Irshad and Nookala Munichandraiah . High Catalytic Activity of Amorphous Ir-Pi for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2015, 7 (29) , 15765-15776. https://doi.org/10.1021/acsami.5b02601
  70. Yixin Zhao, Nella M. Vargas-Barbosa, Megan E. Strayer, Nicholas S. McCool, Maria-Erini Pandelia, Timothy P. Saunders, John R. Swierk, Juan F. Callejas, Lasse Jensen, and Thomas E. Mallouk . Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrOx·nH2O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society 2015, 137 (27) , 8749-8757. https://doi.org/10.1021/jacs.5b03470
  71. Ravi Pokhrel, McKenna K. Goetz, Sarah E. Shaner, Xiaoxia Wu, and Shannon S. Stahl . The “Best Catalyst” for Water Oxidation Depends on the Oxidation Method Employed: A Case Study of Manganese Oxides. Journal of the American Chemical Society 2015, 137 (26) , 8384-8387. https://doi.org/10.1021/jacs.5b05093
  72. Joseph M. Falkowski, Nolan M. Concannon, Bing Yan, and Yogesh Surendranath . Heazlewoodite, Ni3S2: A Potent Catalyst for Oxygen Reduction to Water under Benign Conditions. Journal of the American Chemical Society 2015, 137 (25) , 7978-7981. https://doi.org/10.1021/jacs.5b03426
  73. Mohammad Mahdi Najafpour, Monika Fekete, Davood Jafarian Sedigh, Eva-Mari Aro, Robert Carpentier, Julian J. Eaton-Rye, Hiroshi Nishihara, Jian-Ren Shen, Suleyman I. Allakhverdiev, and Leone Spiccia . Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catalysis 2015, 5 (3) , 1499-1512. https://doi.org/10.1021/cs5015157
  74. Diane M. Colabello, Fernando E. Camino, Ashfia Huq, Mark Hybertsen, and Peter G. Khalifah . Charge Disproportionation in Tetragonal La2MoO5, a Small Band Gap Semiconductor Influenced by Direct Mo–Mo Bonding. Journal of the American Chemical Society 2015, 137 (3) , 1245-1257. https://doi.org/10.1021/ja511218g
  75. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
  76. Feipeng Zhao, Yeyun Wang, Xiaona Xu, Yiling Liu, Rui Song, Guang Lu, and Yanguang Li . Cobalt Hexacyanoferrate Nanoparticles as a High-Rate and Ultra-Stable Supercapacitor Electrode Material. ACS Applied Materials & Interfaces 2014, 6 (14) , 11007-11012. https://doi.org/10.1021/am503375h
  77. Botao Shen, Yuehui He, Zhenli He, Zhonghe Wang, Yao Jiang, Haiyan Gao. Porous Fe5Si3 intermetallic anode for the oxygen evolution reaction in acidic electrolytes. Journal of Colloid and Interface Science 2022, 605 , 637-647. https://doi.org/10.1016/j.jcis.2021.07.127
  78. Jing Yang, Lei Wang, Shaoqi Zhan, Haiyuan Zou, Hong Chen, Mårten S. G. Ahlquist, Lele Duan, Licheng Sun. From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20637-8
  79. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  80. Maosheng You, Liangqi Gui, Xing Ma, Zhenbin Wang, Yin Xu, Jing Zhang, Jian Sun, Beibei He, Ling Zhao. Electronic tuning of SrIrO3 perovskite nanosheets by sulfur incorporation to induce highly efficient and long-lasting oxygen evolution in acidic media. Applied Catalysis B: Environmental 2021, 298 , 120562. https://doi.org/10.1016/j.apcatb.2021.120562
  81. David L. Burnett, Enrico Petrucco, Reza J. Kashtiban, Stewart F. Parker, Jonathan D. B. Sharman, Richard I. Walton. Exploiting the flexibility of the pyrochlore composition for acid-resilient iridium oxide electrocatalysts in proton exchange membranes. Journal of Materials Chemistry A 2021, 9 (44) , 25114-25127. https://doi.org/10.1039/D1TA05457K
  82. Zhenhui Kou, Kexin Wang, Zhibin Liu, Libin Zeng, Zhongjian Li, Bin Yang, Lecheng Lei, Chris Yuan, Yang Hou. Recent Advances in Manifold Exfoliated Synthesis of Two‐Dimensional Non‐Precious Metal‐Based Nanosheet Electrocatalysts for Water Splitting. Small Structures 2021, https://doi.org/10.1002/sstr.202100153
  83. Zonghua Pu, Tingting Liu, Gaixia Zhang, Hariprasad Ranganathan, Zhangxing Chen, Shuhui Sun. Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. ChemSusChem 2021, 14 (21) , 4636-4657. https://doi.org/10.1002/cssc.202101461
  84. Hongxing Liang, Min Xu, Edouard Asselin. Corrosion of monometallic iron- and nickel-based electrocatalysts for the alkaline oxygen evolution reaction: A review. Journal of Power Sources 2021, 510 , 230387. https://doi.org/10.1016/j.jpowsour.2021.230387
  85. Yan Li, Xinfa Wei, Shuhe Han, Lisong Chen, Jianlin Shi. MnO 2 Electrocatalysts Coordinating Alcohol Oxidation for Ultra‐Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie International Edition 2021, 60 (39) , 21464-21472. https://doi.org/10.1002/anie.202107510
  86. Yan Li, Xinfa Wei, Shuhe Han, Lisong Chen, Jianlin Shi. MnO 2 Electrocatalysts Coordinating Alcohol Oxidation for Ultra‐Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie 2021, 133 (39) , 21634-21642. https://doi.org/10.1002/ange.202107510
  87. Elif Pınar Alsaç, Nataraju Bodappa, Alexander W. H. Whittingham, Yutong Liu, Adriana de Lazzari, Rodney D. L. Smith. Structure–property correlations for analysis of heterogeneous electrocatalysts. Chemical Physics Reviews 2021, 2 (3) , 031306. https://doi.org/10.1063/5.0058704
  88. Shuairu Zhu, Jiabo Le, Jianming Li, Deyu Liu, Yongbo Kuang. Tungsten doped manganese silicate films as stable and efficient oxygen evolution catalysts in near-neutral media. Journal of Materials Chemistry A 2021, 9 (33) , 17893-17904. https://doi.org/10.1039/D1TA01524A
  89. Sacha Corby, Reshma R. Rao, Ludmilla Steier, James R. Durrant. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nature Reviews Materials 2021, 238 https://doi.org/10.1038/s41578-021-00343-7
  90. Gabriel M.S. Salvador, Ana Luisa Silva, Ludmila P.C. Silva, Fabio B. Passos, Nakédia M.F. Carvalho. Enhanced activity of Pd/α-MnO2 for electrocatalytic oxygen evolution reaction. International Journal of Hydrogen Energy 2021, 46 (53) , 26976-26988. https://doi.org/10.1016/j.ijhydene.2021.05.168
  91. Jiajian Gao, Huabing Tao, Bin Liu. Progress of Nonprecious‐Metal‐Based Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials 2021, 33 (31) , 2003786. https://doi.org/10.1002/adma.202003786
  92. Nadia Ismail, Fengjuan Qin, Chaohe Fang, Dan Liu, Bihan Liu, Xiangyu Liu, Zi‐long Wu, Zhuo Chen, Wenxing Chen. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2 (4) https://doi.org/10.1002/agt2.106
  93. Abdul Qayoom Mugheri, Muhammad Soomar Samtio, Shahzad Ahmed Memon, Hassan Fouad, Sukumaran Anil, M. S. Akhtar. The Synergetic Effect of MoSO 2 /Graphite Nanosheets as Highly Efficient for Electrochemical Water Splitting in Acidic Media. Science of Advanced Materials 2021, 13 (8) , 1574-1583. https://doi.org/10.1166/sam.2021.4064
  94. Perumal Kannan, K.B. Akshaya, Y.N. Sudhakar, Ajesh Vijayan, Anitha Varghese. Amorphous Ru-Pi nanoclusters decorated on PEDOT modified carbon fibre paper as a highly efficient electrocatalyst for oxygen evolution reaction. Materials Chemistry and Physics 2021, 267 , 124650. https://doi.org/10.1016/j.matchemphys.2021.124650
  95. Victor Charles, Abdulraheem Okehi Anumah, Kayode Adesina Adegoke, Morenike Oluwabunmi Adesina, Ikegwuonu P. Ebuka, Ndepana A. Gaya, Sunday Ogwuche, Mary Ohunene Yakubu. Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustainable Materials and Technologies 2021, 28 , e00252. https://doi.org/10.1016/j.susmat.2021.e00252
  96. Hui-Ju Chao, Zih-Syun Lin, Murali Mohana Rao Singuru, Min-Chieh Chuang. Sustainable oxygen-evolving electrode via in situ regenerative deposition of hexahydroxyiridate (IV)-adsorbed IrOx nanoparticles. Electrochimica Acta 2021, 383 , 138291. https://doi.org/10.1016/j.electacta.2021.138291
  97. Arslan Hameed, Mariam Batool, Waheed Iqbal, Saghir Abbas, Muhammad Imran, Inayat Ali Khan, Muhammad Arif Nadeem. ZIF-12/Fe-Cu LDH Composite as a High Performance Electrocatalyst for Water Oxidation. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.686968
  98. Shujiao Yang, Shanhong Wan, Fanfan Shang, Dandan Chen, Wei Zhang, Rui Cao. Autologous manganese phosphates with different Mn sites for electrocatalytic water oxidation. Chemical Communications 2021, 57 (50) , 6165-6168. https://doi.org/10.1039/D1CC01004B
  99. Hyokyung Han, Ingyeom Kim, Sehkyu Park. Thermally templated cobalt oxide nanobubbles on crumpled graphene sheets: A promising non-precious metal catalysts for acidic oxygen evolution. Electrochimica Acta 2021, 382 , 138277. https://doi.org/10.1016/j.electacta.2021.138277
  100. Abdul Qayoom Mugheri, Aijaz Ali Otho, Maqsood Ahmed Abro, Awais Ali, Shaista Khan. Versatile noble-metal-free electrocatalyst synergistically accelerating for the highly comprehensive understanding evidence for Electrochemical Water Splitting: Future Achievements & Perspectives. Surfaces and Interfaces 2021, 24 , 101104. https://doi.org/10.1016/j.surfin.2021.101104
Load more citations