Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ

View Author Information
WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
Cite this: J. Am. Chem. Soc. 2014, 136, 8, 3304–3311
Publication Date (Web):February 5, 2014
Copyright © 2014 American Chemical Society
Article Views
Read OnlinePDF (2 MB)
Supporting Info (2)»


Typical catalysts for the electrolysis of water at low pH are based on precious metals (Pt for the cathode and IrO2 or RuO2 for the anode). However, these metals are rare and expensive, and hence lower cost and more abundant catalysts are needed if electrolytically produced hydrogen is to become more widely available. Herein, we show that electrode-film formation from aqueous solutions of first row transition metal ions at pH 1.6 can be induced under the action of an appropriate cell bias and that in the case of cobalt voltages across the cell in excess of 2 V lead to the formation of a pair of catalysts that show functional stability for oxygen evolution and proton reduction for over 24 h. We show that these films are metastable and that if the circuit is opened, they redissolve into the electrolyte bath with concomitant O2 and H2 evolution, such that the overall Faradaic efficiency for charge into the system versus amounts of gases obtained approaches unity for both O2 and H2. This work highlights the ability of first row transition metals to mediate heterogeneous electrolytic water splitting in acidic media by exploiting, rather than trying to avoid, the natural propensity of the catalysts to dissolve at the low pHs used. This in turn we hope will encourage others to examine the promise of metastable electrocatalysts based on abundant elements for a range of reactions for which they have traditionally been overlooked on account of their perceived instability under the prevailing conditions.

Supporting Information

Jump To

Experimental protocols, additional electrochemical data, details of gas analysis, structural and spectroscopic characterization of deposits, simplified Pourbaix diagrams for Ni and Fe, and video file. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 115 publications.

  1. Xin Cui, Yu Cui, Meiling Chen, Rui Xiong, Yucheng Huang, Xiaowang Liu. Enhancing Electrochemical Hydrogen Evolution Performance of CoMoO4-Based Microrod Arrays in Neutral Media through Alkaline Activation. ACS Applied Materials & Interfaces 2020, 12 (27) , 30905-30914. https://doi.org/10.1021/acsami.0c02856
  2. Ikuya Yamada, Akihiko Takamatsu, Kaisei Asai, Takuto Shirakawa, Hideo Ohzuku, Akihiro Seno, Tasuku Uchimura, Hiroshi Fujii, Shogo Kawaguchi, Kouhei Wada, Hidekazu Ikeno, Shunsuke Yagi. Systematic Study of Descriptors for Oxygen Evolution Reaction Catalysis in Perovskite Oxides. The Journal of Physical Chemistry C 2018, 122 (49) , 27885-27892. https://doi.org/10.1021/acs.jpcc.8b09287
  3. Zonghuai Zhang, Beibei He, Liangjian Chen, Huanwen Wang, Rui Wang, Ling Zhao, Yansheng Gong. Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa0.5Sr0.5Co2O5+δ Nanorods. ACS Applied Materials & Interfaces 2018, 10 (44) , 38032-38041. https://doi.org/10.1021/acsami.8b12372
  4. Georges Siddiqi, Zhenya Luo, Yujun Xie, Zhenhua Pan, Qianhong Zhu, Jason A. Röhr, Judy J. Cha, Shu Hu. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings. ACS Applied Materials & Interfaces 2018, 10 (22) , 18805-18815. https://doi.org/10.1021/acsami.8b05323
  5. Jie Zhang, Ying Wang, Chi Zhang, Hui Gao, Lanfen Lv, Lulu Han, and Zhonghua Zhang . Self-Supported Porous NiSe2 Nanowrinkles as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 2231-2239. https://doi.org/10.1021/acssuschemeng.7b03657
  6. Yu Gu, Shuai Chen, Jun Ren, Yi Alec Jia, Chengmeng Chen, Sridhar Komarneni, Dongjiang Yang, and Xiangdong Yao . Electronic Structure Tuning in Ni3FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano 2018, 12 (1) , 245-253. https://doi.org/10.1021/acsnano.7b05971
  7. Jared S. Mondschein, Juan F. Callejas, Carlos G. Read, Jamie Y. C. Chen, Cameron F. Holder, Catherine K. Badding, and Raymond E. Schaak . Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chemistry of Materials 2017, 29 (3) , 950-957. https://doi.org/10.1021/acs.chemmater.6b02879
  8. Zhixiong Cai, Wei Xu, Feiming Li, Qiuhong Yao, and Xi Chen . Electropolymerization Fabrication of Co Phosphate Nanoparticles Encapsulated in N,P-Codoped Mesoporous Carbon Networks as a 3D Integrated Electrode for Full Water Splitting. ACS Sustainable Chemistry & Engineering 2017, 5 (1) , 571-579. https://doi.org/10.1021/acssuschemeng.6b01952
  9. Lijuan Han, Pengyi Tang, Álvaro Reyes-Carmona, Bárbara Rodríguez-García, Mabel Torréns, Joan Ramon Morante, Jordi Arbiol, and Jose Ramon Galan-Mascaros . Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching. Journal of the American Chemical Society 2016, 138 (49) , 16037-16045. https://doi.org/10.1021/jacs.6b09778
  10. Kui Shen, Xiaodong Chen, Junying Chen, and Yingwei Li . Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis 2016, 6 (9) , 5887-5903. https://doi.org/10.1021/acscatal.6b01222
  11. Nicolas Kaeffer, Adina Morozan, Jennifer Fize, Eugenie Martinez, Laure Guetaz, and Vincent Artero . The Dark Side of Molecular Catalysis: Diimine–Dioxime Cobalt Complexes Are Not the Actual Hydrogen Evolution Electrocatalyst in Acidic Aqueous Solutions. ACS Catalysis 2016, 6 (6) , 3727-3737. https://doi.org/10.1021/acscatal.6b00378
  12. Carlo Di Giovanni, Álvaro Reyes-Carmona, Anaïs Coursier, Sophie Nowak, Jean−Marc Grenèche, Hélène Lecoq, Ludovic Mouton, Jacques Rozière, Deborah Jones, Jennifer Peron, Marion Giraud, and Cédric Tard . Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis. ACS Catalysis 2016, 6 (4) , 2626-2631. https://doi.org/10.1021/acscatal.5b02443
  13. Paul F. Smith, Liam Hunt, Anders B. Laursen, Viral Sagar, Shivam Kaushik, Karin U. D. Calvinho, Gabriele Marotta, Edoardo Mosconi, Filippo De Angelis, and G. Charles Dismukes . Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society 2015, 137 (49) , 15460-15468. https://doi.org/10.1021/jacs.5b09152
  14. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  15. Isolda Roger and Mark D. Symes . Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations. Journal of the American Chemical Society 2015, 137 (43) , 13980-13988. https://doi.org/10.1021/jacs.5b08139
  16. Hongfei Liu, Mauro Schilling, Maxim Yulikov, Sandra Luber, and Greta R. Patzke . Homogeneous Photochemical Water Oxidation with Cobalt Chloride in Acidic Media. ACS Catalysis 2015, 5 (9) , 4994-4999. https://doi.org/10.1021/acscatal.5b01101
  17. Giuseppe Mattioli, Ivelina Zaharieva, Holger Dau, and Leonardo Guidoni . Atomistic Texture of Amorphous Manganese Oxides for Electrochemical Water Splitting Revealed by Ab Initio Calculations Combined with X-ray Spectroscopy. Journal of the American Chemical Society 2015, 137 (32) , 10254-10267. https://doi.org/10.1021/jacs.5b05174
  18. Curtis P. Berlinguette . Editorial for the ACS Select Virtual Issue on Inorganic Chemistry Driving the Energy Sciences. Inorganic Chemistry 2015, 54 (7) , 3079-3083. https://doi.org/10.1021/acs.inorgchem.5b00490
  19. Haiyan Jin, Jing Wang, Diefeng Su, Zhongzhe Wei, Zhenfeng Pang, and Yong Wang . In situ Cobalt–Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (7) , 2688-2694. https://doi.org/10.1021/ja5127165
  20. Ke Sun, Shaohua Shen, Yongqi Liang, Paul E. Burrows, Samuel S. Mao, and Deli Wang . Enabling Silicon for Solar-Fuel Production. Chemical Reviews 2014, 114 (17) , 8662-8719. https://doi.org/10.1021/cr300459q
  21. Sara Goberna-Ferrón, Willinton Y. Hernández, Barbara Rodríguez-García, and José Ramón Galán-Mascarós . Light-Driven Water Oxidation with Metal Hexacyanometallate Heterogeneous Catalysts. ACS Catalysis 2014, 4 (6) , 1637-1641. https://doi.org/10.1021/cs500298e
  22. Jinzhen Huang, Hongyuan Sheng, R. Dominic Ross, Jiecai Han, Xianjie Wang, Bo Song, Song Jin. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23390-8
  23. Jihong Bae, Minjung Kim, Hyeonsoo Kang, Taeyoung Kim, Hong Choi, Bokyeong Kim, Hyung Wan Do, Wooyoung Shim. Kinetic 2D Crystals via Topochemical Approach. Advanced Materials 2021, 33 (47) , 2006043. https://doi.org/10.1002/adma.202006043
  24. Jiajian Gao, Huabing Tao, Bin Liu. Progress of Nonprecious‐Metal‐Based Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials 2021, 33 (31) , 2003786. https://doi.org/10.1002/adma.202003786
  25. Nadia Ismail, Fengjuan Qin, Chaohe Fang, Dan Liu, Bihan Liu, Xiangyu Liu, Zi‐long Wu, Zhuo Chen, Wenxing Chen. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2 (4) https://doi.org/10.1002/agt2.106
  26. Darcy Simondson, Manjunath Chatti, Shannon A. Bonke, Marc F. Tesch, Ronny Golnak, Jie Xiao, Dijon A. Hoogeveen, Pavel V. Cherepanov, James L. Gardiner, Antonio Tricoli, Douglas R. MacFarlane, Alexandr N. Simonov. Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobalt‐Selective Self‐Healing Mechanism. Angewandte Chemie 2021, 133 (29) , 15955-15960. https://doi.org/10.1002/ange.202104123
  27. Darcy Simondson, Manjunath Chatti, Shannon A. Bonke, Marc F. Tesch, Ronny Golnak, Jie Xiao, Dijon A. Hoogeveen, Pavel V. Cherepanov, James L. Gardiner, Antonio Tricoli, Douglas R. MacFarlane, Alexandr N. Simonov. Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobalt‐Selective Self‐Healing Mechanism. Angewandte Chemie International Edition 2021, 60 (29) , 15821-15826. https://doi.org/10.1002/anie.202104123
  28. Taekyung Kim, Byeongyoon Kim, Taehyun Kwon, Ho Young Kim, Jin Young Kim, Kwangyeol Lee. Multimetallic nanostructures for electrocatalytic oxygen evolution reaction in acidic media. Materials Chemistry Frontiers 2021, 5 (12) , 4445-4473. https://doi.org/10.1039/D1QM00138H
  29. Bilge Coşkuner Filiz. Self‐Healable Catalysis. 2021,,, 237-246. https://doi.org/10.1002/9781119710219.ch9
  30. Md. Imran Hossain, Tapas Debnath, M. Yousuf Ali Mollah, Md. Abu Bin Hasan Susan, Md. Mominul Islam. Highly robust, novel aluminum counter cation-based monophosphate tungsten bronze electro-catalysts for oxygen evolution in acidic solution. RSC Advances 2021, 11 (18) , 10681-10687. https://doi.org/10.1039/D1RA00699A
  31. Kouki Oka, Hiroyuki Nishide, Bjorn Winther‐Jensen. Copolymer of Phenylene and Thiophene toward a Visible‐Light‐Driven Photocatalytic Oxygen Reduction to Hydrogen Peroxide. Advanced Science 2021, 8 (5) , 2003077. https://doi.org/10.1002/advs.202003077
  32. Weiwei Yang, Yu Bai, Jiahuan Ma, Zhenhua Wang, Wang Sun, Jinshuo Qiao, Huiqun Cai, Kening Sun. Engineering of carbon nanotube-grafted carbon nanosheets encapsulating cobalt nanoparticles for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A 2020, 8 (47) , 25268-25274. https://doi.org/10.1039/D0TA01424A
  33. Sadiq Shahriyar Nishat, Md Tohidul Islam, Saquib Ahmed, Alamgir Kabir. Ab initio study of oxygen evolution reaction and hydrogen evolution reaction via water splitting on pure and nitrogen-doped graphene surface. Materials Today Communications 2020, 25 , 101602. https://doi.org/10.1016/j.mtcomm.2020.101602
  34. Zhijie Chen, Xiaoguang Duan, Wei Wei, Shaobin Wang, Bing-Jie Ni. Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy 2020, 78 , 105392. https://doi.org/10.1016/j.nanoen.2020.105392
  35. J.T. Arens, M. Blasco-Ahicart, K. Azmani, J. Soriano-López, A. García-Eguizábal, J.M. Poblet, J.R. Galan-Mascaros. Water oxidation electrocatalysis in acidic media with Co-containing polyoxometalates. Journal of Catalysis 2020, 389 , 345-351. https://doi.org/10.1016/j.jcat.2020.06.006
  36. H.A. Younus, M. Vandichel, N. Ahmad, E. Ahlberg, M. Busch, F. Verpoort. Engineering of a highly stable metal-organic Co-film for efficient electrocatalytic water oxidation in acidic media. Materials Today Energy 2020, 17 , 100437. https://doi.org/10.1016/j.mtener.2020.100437
  37. A.S. Kotkin, V.K. Kochergin, E.N. Kabachkov, Y.M. Shulga, A.S. Lobach, R.A. Manzhos, A.G. Krivenko. One-step plasma electrochemical synthesis and oxygen electrocatalysis of nanocomposite of few-layer graphene structures with cobalt oxides. Materials Today Energy 2020, 17 , 100459. https://doi.org/10.1016/j.mtener.2020.100459
  38. Jie Zhang, Conghui Si, Tianyi Kou, Jianfeng Wang, Zhonghua Zhang. Recent progress in self-supported two-dimensional transition metal oxides and (oxy)hydroxides as oxygen evolution reaction catalysts. Sustainable Energy & Fuels 2020, 4 (6) , 2625-2637. https://doi.org/10.1039/C9SE01312A
  39. Zhanwu Lei, Tanyuan Wang, Bote Zhao, Wenbin Cai, Yang Liu, Shuhong Jiao, Qing Li, Ruiguo Cao, Meilin Liu. Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials 2020, 10 (23) , 2000478. https://doi.org/10.1002/aenm.202000478
  40. Beibei He, Kun Tan, Yansheng Gong, Rui Wang, Huanwen Wang, Ling Zhao. Coupling amorphous cobalt hydroxide nanoflakes on Sr 2 Fe 1.5 Mo 0.5 O 5+δ perovskite nanofibers to induce bifunctionality for water splitting. Nanoscale 2020, 12 (16) , 9048-9057. https://doi.org/10.1039/D0NR00848F
  41. Yu-Ri Lee, Hyeonseok Yoo, Jinsub Choi, Wha-Seung Ahn. Electrocatalytic oxygen reduction over [email protected]/N-doped porous carbon derived from pyrolysis of ZIF-8/67 on cellulose nanofibers. Cellulose 2020, 27 (5) , 2723-2735. https://doi.org/10.1007/s10570-019-02937-5
  42. Changqin Zhang, Yi Zhang, Shuai Zhou, Changxing Li. Self-supported iron-doping NiSe2 nanowrinkles as bifunctional electrocatalysts for electrochemical water splitting. Journal of Alloys and Compounds 2020, 818 , 152833. https://doi.org/10.1016/j.jallcom.2019.152833
  43. Fei Xiao, Zhimin Chen, Hao Wu, Ying Wang, Erping Cao, Xiaodong Lu, Yiqun Wu, Zhiyu Ren. Phytic acid-guided ultra-thin N,P co-doped carbon coated carbon nanotubes for efficient all-pH electrocatalytic hydrogen evolution. Nanoscale 2019, 11 (47) , 23027-23034. https://doi.org/10.1039/C9NR07362K
  44. Matthias J. Young, Tatyana Kiryutina, Nicholas M. Bedford, Taylor J. Woehl, Carlo U. Segre. Discovery of Anion Insertion Electrochemistry in Layered Hydroxide Nanomaterials. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-39052-1
  45. Joo Yeon Kim, Hangil Lee. Influence of pH Modification on Catalytic Activities of Metal-Doped IrO2 Nanoparticles. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-42358-9
  46. Lina Zhang, Liangliu Wu, Jing Li, Jinglei Lei. Electrodeposition of amorphous molybdenum sulfide thin film for electrochemical hydrogen evolution reaction. BMC Chemistry 2019, 13 (1) https://doi.org/10.1186/s13065-019-0600-0
  47. Jan Rongé, Thomas Dobbelaere, Lowie Henderick, Matthias M. Minjauw, Sreeprasanth Pulinthanathu Sree, Jolien Dendooven, Johan A. Martens, Christophe Detavernier. Bifunctional earth-abundant phosphate/phosphide catalysts prepared via atomic layer deposition for electrocatalytic water splitting. Nanoscale Advances 2019, 1 (10) , 4166-4172. https://doi.org/10.1039/C9NA00391F
  48. Changqin Zhang, Yanwen Bai, Yi Zhang, Changxing Li, Shuai Zhou. Effects of iron doping on the hydrogen evolution reaction performance of self-supported nickel selenides. Results in Physics 2019, 14 , 102522. https://doi.org/10.1016/j.rinp.2019.102522
  49. Abdullah M. Asiri, Kalsoom Akhtar, Sher Bahadar Khan. Cobalt oxide nanocomposites and their electrocatalytic behavior for oxygen evolution reaction. Ceramics International 2019, 45 (10) , 13340-13346. https://doi.org/10.1016/j.ceramint.2019.04.028
  50. Jihoon Lee, Ingyeom Kim, Sehkyu Park. Boosting Stability and Activity of Oxygen Evolution Catalyst in Acidic Medium: Bimetallic Ir−Fe Oxides on Reduced Graphene Oxide Prepared through Ultrasonic Spray Pyrolysis. ChemCatChem 2019, 11 (11) , 2615-2623. https://doi.org/10.1002/cctc.201900287
  51. Ting Xiong, Guofang Li, David J. Young, Ziyu Tan, Xian-Hong Yin, Yan Mi, Feilong Hu. In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co3O4 nanoarrays as an advanced overall water splitting electrocatalyst in alkaline solution. Journal of Alloys and Compounds 2019, 791 , 328-335. https://doi.org/10.1016/j.jallcom.2019.03.313
  52. Fabiola Navarro-Pardo, Xin Tong, Xin Tong, Gurpreet S. Selopal, Sylvain G. Cloutier, Shuhui Sun, Ana C. Tavares, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. Graphene oxide/cobalt-based nanohybrid electrodes for robust hydrogen generation. Applied Catalysis B: Environmental 2019, 245 , 167-176. https://doi.org/10.1016/j.apcatb.2018.12.041
  53. Van-Toan Nguyen, Ngoc-Anh Nguyen, Yousuf Ali, Quoc Chinh Tran, Ho-Suk Choi. Graphene dot armored PtMo nanosponge as a highly efficient and stable electrocatalyst for hydrogen evolution reactions in both acidic and alkaline media. Carbon 2019, 146 , 116-124. https://doi.org/10.1016/j.carbon.2019.01.087
  54. Manjunath Chatti, James L. Gardiner, Maxime Fournier, Bernt Johannessen, Tim Williams, Thomas R. Gengenbach, Narendra Pai, Cuong Nguyen, Douglas R. MacFarlane, Rosalie K. Hocking, Alexandr N. Simonov. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nature Catalysis 2019, 2 (5) , 457-465. https://doi.org/10.1038/s41929-019-0277-8
  55. Xuan Liu, Jingqi Chi, Bin Dong, Yujie Sun. Recent Progress in Decoupled H 2 and O 2 Production from Electrolytic Water Splitting. ChemElectroChem 2019, 6 (8) , 2157-2166. https://doi.org/10.1002/celc.201801671
  56. Fang Li, Rongchen Xu, Yueming Li, Fei Liang, Dafeng Zhang, Wen-Fu Fu, Xiao-Jun Lv. N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon 2019, 145 , 521-528. https://doi.org/10.1016/j.carbon.2019.01.065
  57. Yang Wang, Yinlong Zhu, Sepideh Afshar, Meng Wai Woo, Jing Tang, Timothy Williams, Biao Kong, Dongyuan Zhao, Huanting Wang, Cordelia Selomulya. One-dimensional CoS 2 –MoS 2 nano-flakes decorated MoO 2 sub-micro-wires for synergistically enhanced hydrogen evolution. Nanoscale 2019, 11 (8) , 3500-3505. https://doi.org/10.1039/C8NR08418A
  58. Qi Hu, Guodong Li, Xiufang Liu, Bin Zhu, Guomin Li, Liangdong Fan, Xiaoyan Chai, Qianling Zhang, Jianhong Liu, Chuanxin He. Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation. Journal of Materials Chemistry A 2019, 7 (2) , 461-468. https://doi.org/10.1039/C8TA09534E
  59. Robert Schlögl. Synthetic Fuels. 2019,,, 191-223. https://doi.org/10.1007/978-3-662-58006-6_11
  60. Chang-jiang Yang, Qing-feng Shen, Da-cheng Zhai, Yu Gu. Carbon nanotubes sheathed in lead for the oxygen evolution in zinc electrowinning. Journal of Applied Electrochemistry 2019, 49 (1) , 67-77. https://doi.org/10.1007/s10800-018-1277-0
  61. Chang-jiang Yang. Polyoxometalate/Lead Composite Anode for Efficient Oxygen Evolution in Zinc Electrowinning. Journal of The Electrochemical Society 2019, 166 (4) , E129-E136. https://doi.org/10.1149/2.0751904jes
  62. Xinwei Sun, Kaiqi Xu, Christian Fleischer, Xin Liu, Mathieu Grandcolas, Ragnar Strandbakke, Tor Bjørheim, Truls Norby, Athanasios Chatzitakis. Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers. Catalysts 2018, 8 (12) , 657. https://doi.org/10.3390/catal8120657
  63. Andinet Ejigu, Kazunori Fujisawa, Ben F. Spencer, Bin Wang, Mauricio Terrones, Ian A. Kinloch, Robert A. W. Dryfe. On the Role of Transition Metal Salts During Electrochemical Exfoliation of Graphite: Antioxidants or Metal Oxide Decorators for Energy Storage Applications. Advanced Functional Materials 2018, 28 (48) , 1804357. https://doi.org/10.1002/adfm.201804357
  64. Yeongdong Mun, Kyeounghak Kim, Seongbeen Kim, Seunghyun Lee, Seonggyu Lee, Sujeong Kim, Wonyong Choi, Soo-kil Kim, Jeong Woo Han, Jinwoo Lee. A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. Applied Catalysis B: Environmental 2018, 236 , 154-161. https://doi.org/10.1016/j.apcatb.2018.05.025
  65. Keyu Tao, Yun Gong, Qingfeng Zhou, Jianhua Lin. Nickel sulfide wrapped by porous cobalt molybdate nanosheet arrays grown on Ni foam for oxygen evolution reaction and supercapacitor. Electrochimica Acta 2018, 286 , 65-76. https://doi.org/10.1016/j.electacta.2018.07.206
  66. Xiaopeng Han, Xiaoyu Wu, Yida Deng, Jian Liu, Jun Lu, Cheng Zhong, Wenbin Hu. Ultrafine Pt Nanoparticle‐Decorated Pyrite‐Type CoS 2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials 2018, 8 (24) , 1800935. https://doi.org/10.1002/aenm.201800935
  67. Shannon A. Bonke, Ken L. Abel, Dijon A. Hoogeveen, Manjunath Chatti, Thomas Gengenbach, Maxime Fournier, Leone Spiccia, Alexandr N. Simonov. Electrolysis of Natural Waters Contaminated with Transition‐Metal Ions: Identification of A Metastable FePb‐Based Oxygen‐Evolution Catalyst Operating in Weakly Acidic Solutions. ChemPlusChem 2018, 83 (7) , 704-710. https://doi.org/10.1002/cplu.201800020
  68. Zamyla Morgan Chan, Daniil A. Kitchaev, Johanna Nelson Weker, Christoph Schnedermann, Kipil Lim, Gerbrand Ceder, William Tumas, Michael F. Toney, Daniel G. Nocera. Electrochemical trapping of metastable Mn 3+ ions for activation of MnO 2 oxygen evolution catalysts. Proceedings of the National Academy of Sciences 2018, 115 (23) , E5261-E5268. https://doi.org/10.1073/pnas.1722235115
  69. Savio J. A. Moniz. Recent Developments in Heterostructure-Based Catalysts for Water Splitting. 2018,,, 191-226. https://doi.org/10.1002/9783527808175.ch8
  70. Elif Pınar Alsaç, Emine Ülker, Satya Vijaya Kumar Nune, Yavuz Dede, Ferdi Karadas. Tuning the Electronic Properties of Prussian Blue Analogues for Efficient Water Oxidation Electrocatalysis: Experimental and Computational Studies. Chemistry - A European Journal 2018, 24 (19) , 4856-4863. https://doi.org/10.1002/chem.201704933
  71. Fangfang Zhang, Yu Pei, Yuancai Ge, Hang Chu, Steven Craig, Pei Dong, Jun Cao, Pulickel M. Ajayan, Mingxin Ye, Jianfeng Shen. Controlled Synthesis of Eutectic NiSe/Ni 3 Se 2 Self‐Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials Interfaces 2018, 5 (8) , 1701507. https://doi.org/10.1002/admi.201701507
  72. Jiale Xing, Zehua Zou, Kailu Guo, Cailing Xu. The effect of phosphating time on the electrocatalytic activity of nickel phosphide nanorod arrays grown on Ni foam. Journal of Materials Research 2018, 33 (5) , 556-567. https://doi.org/10.1557/jmr.2017.399
  73. Marta Blasco-Ahicart, Joaquín Soriano-López, Jorge J. Carbó, Josep M. Poblet, J. R. Galan-Mascaros. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nature Chemistry 2018, 10 (1) , 24-30. https://doi.org/10.1038/nchem.2874
  74. Luyu Wang, Changdong Gu, Xiang Ge, Jialei Zhang, Hongyi Zhu, Jiangping Tu. Highly Efficient Bifunctional Catalyst of NiCo 2 O 4 @[email protected] Core/Shell Nanocone Array for Stable Overall Water Splitting. Particle & Particle Systems Characterization 2017, 34 (11) , 1700228. https://doi.org/10.1002/ppsc.201700228
  75. Guanhua Cheng, Tianyi Kou, Jie Zhang, Conghui Si, Hui Gao, Zhonghua Zhang. O 2 2- /O - functionalized oxygen-deficient Co 3 O 4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38 , 155-166. https://doi.org/10.1016/j.nanoen.2017.05.043
  76. Pierre Wrzolek, Sebastian Wahl, Matthias Schwalbe. Electrocatalytic investigation on the water oxidation ability of a hangman complex based on the [Ru(tpy)(bpy)(OH 2 )] 2+ motif. Catalysis Today 2017, 290 , 28-32. https://doi.org/10.1016/j.cattod.2016.10.013
  77. Jianmin Sun, Yajie Chen, Zhiyu Ren, Huiying Fu, Yuting Xiao, Jinge Wang, Guohui Tian. Self-Supported NiS Nanoparticle-Coupled Ni 2 P Nanoflake Array Architecture: An Advanced Catalyst for Electrochemical Hydrogen Evolution. ChemElectroChem 2017, 4 (6) , 1341-1348. https://doi.org/10.1002/celc.201700094
  78. Yanzhi Sun, Chunxiang Liu, Linying Zhang, Pingyu Wan, Shuxian Zhuang, Yang Tang, Yongmei Chen, Junqing Pan. Ultrafast Electrodeposition of Ni−Fe Hydroxide Nanosheets on Nickel Foam as Oxygen Evolution Anode for Energy-Saving Electrolysis of Na 2 CO 3 /NaHCO 3. ChemElectroChem 2017, 4 (5) , 1044-1050. https://doi.org/10.1002/celc.201600713
  79. Luigi Osmieri, Ricardo Escudero-Cid, Marco Armandi, Alessandro H.A. Monteverde Videla, José Luís García Fierro, Pilar Ocón, Stefania Specchia. Fe-N/C catalysts for oxygen reduction reaction supported on different carbonaceous materials. Performance in acidic and alkaline direct alcohol fuel cells. Applied Catalysis B: Environmental 2017, 205 , 637-653. https://doi.org/10.1016/j.apcatb.2017.01.003
  80. Ye Xie, Yuanfu Deng, Chunxiang Yang, Zhenou Zeng, Yingwei Li, Guohua Chen. CoO functionalized IrO2-Sb2O5-SnO2 anode with an enhanced activity and stability for electrocatalytic oxygen evolution. Journal of Alloys and Compounds 2017, 696 , 257-265. https://doi.org/10.1016/j.jallcom.2016.11.240
  81. Smita Masid Roy, Nageswara N. Rao, Alexandre Herissan, Christophe Colbeau-Justin. Polyaniline film-based wireless photo reactor for hydrogen generation through exciton mediated proton reduction. Polymer 2017, 112 , 351-358. https://doi.org/10.1016/j.polymer.2017.02.013
  82. . Water-Splitting Technologies for Hydrogen Generation. 2017,,, 85-124. https://doi.org/10.1201/9781315279657-4
  83. Henrik Svengren, Kjell Jansson, Jekabs Grins, Wei Wan, Natallia Torapava, Mats Johnsson. Direct Synthesis of Two Inorganic Catalysts on Carbon Fibres for the Electrocatalytic Oxidation of Water. Chemistry - A European Journal 2017, 23 (3) , 568-575. https://doi.org/10.1002/chem.201603085
  84. Zhilin Zheng, Wangchang Geng, Yi Wang, Yun Huang, Tao Qi. NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction. International Journal of Hydrogen Energy 2017, 42 (1) , 119-124. https://doi.org/10.1016/j.ijhydene.2016.11.187
  85. Isolda Roger, Michael A. Shipman, Mark D. Symes. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry 2017, 1 (1) https://doi.org/10.1038/s41570-016-0003
  86. Samantha Hilliard, Guido Baldinozzi, Dennis Friedrich, Stéphane Kressman, Henri Strub, Vincent Artero, Christel Laberty-Robert. Mesoporous thin film WO 3 photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustainable Energy & Fuels 2017, 1 (1) , 145-153. https://doi.org/10.1039/C6SE00001K
  87. Ivan A. Moreno-Hernandez, Clara A. MacFarland, Carlos G. Read, Kimberly M. Papadantonakis, Bruce S. Brunschwig, Nathan S. Lewis. Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H 2 SO 4. Energy & Environmental Science 2017, 10 (10) , 2103-2108. https://doi.org/10.1039/C7EE01486D
  88. Michael Huynh, Tuncay Ozel, Chong Liu, Eric C. Lau, Daniel G. Nocera. Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chemical Science 2017, 8 (7) , 4779-4794. https://doi.org/10.1039/C7SC01239J
  89. Qiang Zhao, Dandan Li, Guofeng Gao, Wen Yuan, Genyan Hao, Jinping Li. Nanostructured Fe(III) catalysts for water oxidation assembled with the aid of organic acid salt electrolytes. Applied Surface Science 2016, 387 , 1274-1280. https://doi.org/10.1016/j.apsusc.2016.07.065
  90. Kaidan Li, Jingfang Zhang, Rui Wu, Yifu Yu, Bin Zhang. Anchoring CoO Domains on CoSe 2 Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media. Advanced Science 2016, 3 (6) , 1500426. https://doi.org/10.1002/advs.201500426
  91. Rui Xu, Rui Wu, Yanmei Shi, Jingfang Zhang, Bin Zhang. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 2016, 24 , 103-110. https://doi.org/10.1016/j.nanoen.2016.04.006
  92. Omar Movil-Cabrera, Allen Rodriguez-Silva, Christian Arroyo-Torres, John A. Staser. Electrochemical conversion of lignin to useful chemicals. Biomass and Bioenergy 2016, 88 , 89-96. https://doi.org/10.1016/j.biombioe.2016.03.014
  93. Gao‐Feng Chen, Tian Yi Ma, Zhao‐Qing Liu, Nan Li, Yu‐Zhi Su, Kenneth Davey, Shi‐Zhang Qiao. Efficient and Stable Bifunctional Electrocatalysts Ni/Ni x M y (M = P, S) for Overall Water Splitting. Advanced Functional Materials 2016, 26 (19) , 3314-3323. https://doi.org/10.1002/adfm.201505626
  94. Long Chen, Xiaoli Dong, Fei Wang, Yonggang Wang, Yongyao Xia. Base–acid hybrid water electrolysis. Chemical Communications 2016, 52 (15) , 3147-3150. https://doi.org/10.1039/C5CC09642A
  95. H. Svengren, N. Torapava, I. Athanassiadis, S. I. Ali, M. Johnsson. A transition metal oxofluoride offering advantages in electrocatalysis and potential use in applications. Faraday Discussions 2016, 188 , 481-498. https://doi.org/10.1039/C5FD00169B
  96. Zhaoquan Yao, Yuezeng Su, Chenbao Lu, Chongqing Yang, Zhixiao Xu, Jinhui Zhu, Xiaodong Zhuang, Fan Zhang. Template-directed approach to two-dimensional molybdenum phosphide–carbon nanocomposites with high catalytic activities in the hydrogen evolution reaction. New Journal of Chemistry 2016, 40 (7) , 6015-6021. https://doi.org/10.1039/C5NJ03440J
  97. Isolda Roger, Mark D. Symes. First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition. Journal of Materials Chemistry A 2016, 4 (18) , 6724-6741. https://doi.org/10.1039/C5TA09423B
  98. Xiaojian Yang, Xiaojia Feng, Huaqiao Tan, Hongying Zang, Xinlong Wang, Yonghui Wang, Enbo Wang, Yangguang Li. N-Doped graphene-coated molybdenum carbide nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2016, 4 (10) , 3947-3954. https://doi.org/10.1039/C5TA09507G
  99. Koshal Kishor , Sulay Saha , Manish Kumar Gupta , Anshumaan Bajpai, Moitrayee Chatterjee, Sri Sivakumar , Raj Ganesh S. Pala . Roughened Zn-Doped Ru-Ti Oxide Water Oxidation Electrocatalysts by Blending Active and Activated Passive Components. ChemElectroChem 2015, 2 (11) , 1839-1846. https://doi.org/10.1002/celc.201500137
  100. Lili Li, Tian Tian, Jing Jiang, Lunhong Ai. Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. Journal of Power Sources 2015, 294 , 103-111. https://doi.org/10.1016/j.jpowsour.2015.06.056
Load all citations