Effects of Electron Trapping and Protonation on the Efficiency of Water-Splitting Dye-Sensitized Solar Cells

View Author Information
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
Cite this: J. Am. Chem. Soc. 2014, 136, 31, 10974–10982
Publication Date (Web):July 14, 2014
https://doi.org/10.1021/ja5040705
Copyright © 2014 American Chemical Society
Article Views
2520
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Water-splitting dye-sensitized photoelectrochemical (WS-DSPECs) cells employ molecular sensitizers to absorb light and transport holes across the TiO2 surface to colloidal or molecular water oxidation catalysts. As hole diffusion occurs along the surface, electrons are transported through the mesoporous TiO2 film. In this paper we report the effects of electron trapping and protonation in the TiO2 film on the dynamics of electron and hole transport in WS-DSPECs. When the sensitizer bis(2,2′-bipyridine)(4,4′-diphosphonato-2,2′-bipyridine)ruthenium(II) is adsorbed from aqueous acid instead of from ethanol, there is more rapid hole transfer between photo-oxidized sensitizer molecules that are adsorbed from strong acid. However, the photocurrent and open-circuit photovoltage are dramatically lower with sensitizers adsorbed from acid because intercalated protons charge-compensate electron traps in the TiO2 film. Kinetic modeling of the photocurrent shows that electron trapping is responsible for the rapid electrode polarization that is observed in all WS-DSPECs. Electrochemical impedance spectroscopy suggests that proton intercalation also plays an important role in the slow degradation of WS-DSPECs, which generate protons at the anode as water is oxidized to oxygen.

Supporting Information

ARTICLE SECTIONS
Jump To

Sensitizer adsorption isotherms; cyclic voltammetry of electrodes sensitized from DMSO and H2O; current–time data used to obtain Dapp values; fit parameters for curves in Figure 5; photocurrent model fit parameters for DMSO and ethanol in Figure 7; analysis of buffering and diffusion in WS-PECs; emission data from electrodes at negative applied bias (6 pp). This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 66 publications.

  1. Yan Yan, Cheng Liu, Yi Yang, Guoxiang Hu, Vandana Tiwari, De-en Jiang, Wei Peng, Ajay Jha, Hong-Guang Duan, Friedjof Tellkamp, Yong Ding, Weidong Shi, Shouqi Yuan, Dwayne Miller, Wanhong Ma, Jincai Zhao. Fundamental Flaw in the Current Construction of the TiO2 Electron Transport Layer of Perovskite Solar Cells and Its Elimination. ACS Applied Materials & Interfaces 2021, 13 (33) , 39371-39378. https://doi.org/10.1021/acsami.1c09742
  2. Michael D. Turlington, Matthew D. Brady, Gerald J. Meyer. Dual-Sensitizer Photoanode for Bromide Oxidation. ACS Applied Energy Materials 2021, 4 (1) , 745-754. https://doi.org/10.1021/acsaem.0c02544
  3. Jennifer L. Peper, Noreen E. Gentry, Anna C. Brezny, Mackenzie J. Field, Michael T. Green, James M. Mayer. Different Kinetic Reactivities of Electrons in Distinct TiO2 Nanoparticle Trap States. The Journal of Physical Chemistry C 2021, 125 (1) , 680-690. https://doi.org/10.1021/acs.jpcc.0c10633
  4. Iwona Grądzka-Kurzaj, Mateusz Gierszewski, Gotard Burdziński, Marcin Ziółek. Interplay between Ruthenium Sensitizer and Ruthenium Catalyst in Photoelectrochemical Cells with Different Water-Based Electrolytes. The Journal of Physical Chemistry C 2020, 124 (39) , 21268-21282. https://doi.org/10.1021/acs.jpcc.0c05262
  5. Yuhan Lin, Yan Yan, Wei Peng, Xiaofeng Qiao, Di Huang, Hongwei Ji, Chuncheng Chen, Wanhong Ma, Jincai Zhao. Crucial Effect of Ti–H Species Generated in the Visible-Light-Driven Transformations: Slowed-Down Proton-Coupled Electron Transfer. The Journal of Physical Chemistry Letters 2020, 11 (10) , 3941-3946. https://doi.org/10.1021/acs.jpclett.0c01196
  6. Anik Sen, Axel Groβ. Effect of Electron-Withdrawing/-Donating Groups on the Sensitizing Action of the Novel Organic Dye “3-(5-(4-(Diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic Acid” for N-Type Dye-Sensitized Solar Cells: A Theoretical Study. The Journal of Physical Chemistry C 2020, 124 (16) , 8526-8540. https://doi.org/10.1021/acs.jpcc.0c00369
  7. Christopher L. Gray, Pengtao Xu, August J. Rothenberger, Stephen J. Koehler, Elizabeth Elacqua, Bratoljub H. Milosavljevic, Thomas E. Mallouk. Oligomeric Ruthenium Polypyridyl Dye for Improved Stability of Aqueous Photoelectrochemical Cells. The Journal of Physical Chemistry C 2020, 124 (6) , 3542-3550. https://doi.org/10.1021/acs.jpcc.0c00493
  8. Pengtao Xu, Thomas E. Mallouk. Charge Transfer Dynamics in Aqueous Dye-Sensitized Photoelectrochemical Cells: Implications for Water Splitting Efficiency. The Journal of Physical Chemistry C 2019, 123 (1) , 299-305. https://doi.org/10.1021/acs.jpcc.8b11356
  9. Tyler C. Motley, Matthew D. Brady, Gerald J. Meyer. Influence of 4 and 4′ Substituents on RuIII/II Bipyridyl Self-Exchange Electron Transfer Across Nanocrystalline TiO2 Surfaces. The Journal of Physical Chemistry C 2018, 122 (34) , 19385-19394. https://doi.org/10.1021/acs.jpcc.8b05281
  10. Tyler C. Motley, Gerald J. Meyer. Intramolecular Electronic Coupling Enhances Lateral Electron Transfer across Semiconductor Interfaces. The Journal of Physical Chemistry C 2018, 122 (26) , 14420-14424. https://doi.org/10.1021/acs.jpcc.8b04836
  11. Bing Shan, Animesh Nayak, M. Kyle Brennaman, Meichuan Liu, Seth L. Marquard, Michael S. Eberhart, Thomas J. Meyer. Controlling Vertical and Lateral Electron Migration Using a Bifunctional Chromophore Assembly in Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society 2018, 140 (20) , 6493-6500. https://doi.org/10.1021/jacs.8b03453
  12. Renato N. Sampaio, Brian N. DiMarco, and Gerald J. Meyer . Activation Energies for Electron Transfer from TiO2 to Oxidized Dyes: A Surface Coverage Dependence Correlated with Lateral Hole Hopping. ACS Energy Letters 2017, 2 (10) , 2402-2407. https://doi.org/10.1021/acsenergylett.7b00759
  13. Bing Shan, Benjamin D. Sherman, Christina M. Klug, Animesh Nayak, Seth L. Marquard, Qing Liu, R. Morris Bullock, and Thomas J. Meyer . Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting. The Journal of Physical Chemistry Letters 2017, 8 (18) , 4374-4379. https://doi.org/10.1021/acs.jpclett.7b01911
  14. Joel T. Kirner and Richard G. Finke . Sensitization of Nanocrystalline Metal Oxides with a Phosphonate-Functionalized Perylene Diimide for Photoelectrochemical Water Oxidation with a CoOx Catalyst. ACS Applied Materials & Interfaces 2017, 9 (33) , 27625-27637. https://doi.org/10.1021/acsami.7b05874
  15. Jennifer L. Peper, David J. Vinyard, Gary W. Brudvig, and James M. Mayer . Slow Equilibration between Spectroscopically Distinct Trap States in Reduced TiO2 Nanoparticles. Journal of the American Chemical Society 2017, 139 (8) , 2868-2871. https://doi.org/10.1021/jacs.6b12112
  16. Yan Yan, Weidong Shi, Zhen Yuan, Shenggui He, Dongmei Li, Qingbo Meng, Hongwei Ji, Chuncheng Chen, Wanhong Ma, and Jincai Zhao . The Formation of Ti–H Species at Interface Is Lethal to the Efficiency of TiO2-Based Dye-Sensitized Devices. Journal of the American Chemical Society 2017, 139 (5) , 2083-2089. https://doi.org/10.1021/jacs.6b12324
  17. John R. Swierk, Kevin P. Regan, Jianbing Jiang, Gary W. Brudvig, and Charles A. Schmuttenmaer . Rutile TiO2 as an Anode Material for Water-Splitting Dye-Sensitized Photoelectrochemical Cells. ACS Energy Letters 2016, 1 (3) , 603-606. https://doi.org/10.1021/acsenergylett.6b00279
  18. Jinzhan Su and Lionel Vayssieres . A Place in the Sun for Artificial Photosynthesis?. ACS Energy Letters 2016, 1 (1) , 121-135. https://doi.org/10.1021/acsenergylett.6b00059
  19. Brian N. DiMarco, Tyler C. Motley, Ryan S. Balok, Guocan Li, Maxime A. Siegler, Ryan M. O’Donnell, Ke Hu, and Gerald J. Meyer . A Distance Dependence to Lateral Self-Exchange across Nanocrystalline TiO2. A Comparative Study of Three Homologous RuIII/II Polypyridyl Compounds. The Journal of Physical Chemistry C 2016, 120 (26) , 14226-14235. https://doi.org/10.1021/acs.jpcc.6b04438
  20. Nicholas S. McCool, John R. Swierk, Coleen T. Nemes, Timothy P. Saunders, Charles A. Schmuttenmaer, and Thomas E. Mallouk . Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. ACS Applied Materials & Interfaces 2016, 8 (26) , 16727-16735. https://doi.org/10.1021/acsami.6b05362
  21. John R. Swierk, Nicholas S. McCool, Coleen T. Nemes, Thomas E. Mallouk, and Charles A. Schmuttenmaer . Ultrafast Electron Injection Dynamics of Photoanodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells. The Journal of Physical Chemistry C 2016, 120 (11) , 5940-5948. https://doi.org/10.1021/acs.jpcc.6b00749
  22. Matthew V. Sheridan, Benjamin D. Sherman, Seth L. Marquard, Zhen Fang, Dennis L. Ashford, Kyung-Ryang Wee, Alexander S. Gold, Leila Alibabaei, Jennifer A. Rudd, Michael K. Coggins, and Thomas J. Meyer . Electron Transfer Mediator Effects in Water Oxidation Catalysis by Solution and Surface-Bound Ruthenium Bpy-Dicarboxylate Complexes. The Journal of Physical Chemistry C 2015, 119 (45) , 25420-25428. https://doi.org/10.1021/acs.jpcc.5b08326
  23. Alexey V. Akimov, Ryoji Asahi, Ryosuke Jinnouchi, and Oleg V. Prezhdo . What Makes the Photocatalytic CO2 Reduction on N-Doped Ta2O5 Efficient: Insights from Nonadiabatic Molecular Dynamics. Journal of the American Chemical Society 2015, 137 (35) , 11517-11525. https://doi.org/10.1021/jacs.5b07454
  24. Benjamin D. Sherman, Dennis L. Ashford, Alexander M. Lapides, Matthew V. Sheridan, Kyung-Ryang Wee, and Thomas J. Meyer . Light-Driven Water Splitting with a Molecular Electroassembly-Based Core/Shell Photoanode. The Journal of Physical Chemistry Letters 2015, 6 (16) , 3213-3217. https://doi.org/10.1021/acs.jpclett.5b01370
  25. John R. Swierk, Nicholas S. McCool, and Thomas E. Mallouk . Dynamics of Electron Recombination and Transport in Water-Splitting Dye-Sensitized Photoanodes. The Journal of Physical Chemistry C 2015, 119 (24) , 13858-13867. https://doi.org/10.1021/acs.jpcc.5b01442
  26. Mariachiara Pastore and Filippo De Angelis . First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation. Journal of the American Chemical Society 2015, 137 (17) , 5798-5809. https://doi.org/10.1021/jacs.5b02128
  27. Zhi-Ming Zhang, Teng Zhang, Cheng Wang, Zekai Lin, La-Sheng Long, and Wenbin Lin . Photosensitizing Metal–Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells–Dawson-Type Polyoxometalate. Journal of the American Chemical Society 2015, 137 (9) , 3197-3200. https://doi.org/10.1021/jacs.5b00075
  28. Ana Belén Muñoz-García, Iacopo Benesperi, Gerrit Boschloo, Javier J. Concepcion, Jared H. Delcamp, Elizabeth A. Gibson, Gerald J. Meyer, Michele Pavone, Henrik Pettersson, Anders Hagfeldt, Marina Freitag. Dye-sensitized solar cells strike back. Chemical Society Reviews 2021, 50 (22) , 12450-12550. https://doi.org/10.1039/D0CS01336F
  29. Carly F. Jewell, Ashwanth Subramanian, Chang-Yong Nam, Richard G. Finke. Ultrathin alumina passivation for improved photoelectrochemical water oxidation catalysis of tin oxide sensitized by a phosphonate-functionalized perylene diimide first without, and then with, CoO y . Sustainable Energy & Fuels 2021, 5 (20) , 5257-5269. https://doi.org/10.1039/D1SE00908G
  30. Tao Wang, Tianyi Sun, Jiahui Xu, Huan Xiao, Zhengmei Zhang, Haiqin Bian, Huihui Ding. The pre-acidizing corrosion on the surface of TiO2 enhanced the photocatalytic activity of g-C3N4/TiO2. Journal of Materials Science: Materials in Electronics 2021, 32 (16) , 21083-21092. https://doi.org/10.1007/s10854-021-06608-9
  31. Palas Baran Pati, Mohamed Abdellah, Stéphane Diring, Leif Hammarström, Fabrice Odobel. Molecular Triad Containing a TEMPO Catalyst Grafted on Mesoporous Indium Tin Oxide as a Photoelectrocatalytic Anode for Visible Light‐Driven Alcohol Oxidation. ChemSusChem 2021, 14 (14) , 2902-2913. https://doi.org/10.1002/cssc.202100843
  32. Anik Sen. Promising DSSCs Involving Organic D–π–A and Similar Structures for n- and p-type Semiconductors—A Theoretical Approach. 2021,,, 127-165. https://doi.org/10.1007/978-3-030-69445-6_6
  33. Robert Godin, James R. Durrant. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chemical Society Reviews 2021, 103 https://doi.org/10.1039/D1CS00577D
  34. Daniel Antón-García, Julien Warnan, Erwin Reisner. A diketopyrrolopyrrole dye-based dyad on a porous TiO 2 photoanode for solar-driven water oxidation. Chemical Science 2020, 11 (47) , 12769-12776. https://doi.org/10.1039/D0SC04509H
  35. Pimchanok Longchin, Dariusz Mitoraj, Oliver Mendoza Reyes, Christiane Adler, Natda Wetchakun, Radim Beranek. Hybrid photoanodes for visible light-driven water oxidation: the beneficial and detrimental effects of nickel oxide cocatalyst. Journal of Physics: Energy 2020, 2 (4) , 044001. https://doi.org/10.1088/2515-7655/abaec9
  36. José A. Freire, Guilherme A. Emidio. What can transient absorption spectroscopy reveal about the trap distribution in a semiconductor?. Journal of Photochemistry and Photobiology A: Chemistry 2020, 393 , 112439. https://doi.org/10.1016/j.jphotochem.2020.112439
  37. Marie-Noëlle Collomb, Daniela V. Morales, Catalina N. Astudillo, Baptiste Dautreppe, Jérôme Fortage. Hybrid photoanodes for water oxidation combining a molecular photosensitizer with a metal oxide oxygen-evolving catalyst. Sustainable Energy & Fuels 2020, 4 (1) , 31-49. https://doi.org/10.1039/C9SE00597H
  38. Yan Yan, Weidong Shi, Wei Peng, Yuhan Lin, Chunxi Zhang, Lailai Li, Young Sun, Huanxin Ju, Junfa Zhu, Wanhong Ma, Jincai Zhao. Proton-free electron-trapping feature of titanium dioxide nanoparticles without the characteristic blue color. Communications Chemistry 2019, 2 (1) https://doi.org/10.1038/s42004-019-0191-7
  39. Linfeng Pan, Nick Vlachopoulos, Anders Hagfeldt. Directly Photoexcited Oxides for Photoelectrochemical Water Splitting. ChemSusChem 2019, 12 (19) , 4337-4352. https://doi.org/10.1002/cssc.201900849
  40. Iwona Grądzka, Mateusz Gierszewski, Marcin Ziółek. The Effect of Chloride Anions on Charge Transfer in Dye-Sensitized Photoanodes for Water Splitting. Biomimetics 2019, 4 (1) , 5. https://doi.org/10.3390/biomimetics4010005
  41. Sinval F. Sousa, Breno L. Souza, Cristiane L. Barros, Antonio Otavio T. Patrocinio. Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to Solar Fuel Production. International Journal of Photoenergy 2019, 2019 , 1-23. https://doi.org/10.1155/2019/9624092
  42. Lei Zhang, Qiaoyi Wang. First Principles Study on the Interfacial Structure and Electronic Properties of a Metal-Free Organic Dye/TiO2 Photoanode for Water Oxidation. Russian Journal of Physical Chemistry A 2018, 92 (8) , 1631-1635. https://doi.org/10.1134/S0036024418080162
  43. B. Arredondo, B. Romero, M.J. Beliatis, G. del Pozo, D. Martín-Martín, J.C. Blakesley, G. Dibb, F.C. Krebs, S.A. Gevorgyan, F.A. Castro. Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy. Solar Energy Materials and Solar Cells 2018, 176 , 397-404. https://doi.org/10.1016/j.solmat.2017.10.028
  44. Jamie C. Wang, Sean P. Hill, Tristan Dilbeck, Omotola O. Ogunsolu, Tanmay Banerjee, Kenneth Hanson. Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chemical Society Reviews 2018, 47 (1) , 104-148. https://doi.org/10.1039/C7CS00565B
  45. Bing Shan, Animesh Nayak, Renato N. Sampaio, Michael S. Eberhart, Ludovic Troian-Gautier, M. Kyle Brennaman, Gerald J. Meyer, Thomas J. Meyer. Direct photoactivation of a nickel-based, water-reduction photocathode by a highly conjugated supramolecular chromophore. Energy & Environmental Science 2018, 11 (2) , 447-455. https://doi.org/10.1039/C7EE03115G
  46. Maxime Fournier, Dijon A. Hoogeveen, Shannon A. Bonke, Leone Spiccia, Alexandr N. Simonov. Cooperative silanetriolate-carboxylate sensitiser anchoring for outstanding stability and improved performance of dye-sensitised photoelectrodes. Sustainable Energy & Fuels 2018, 2 (8) , 1707-1718. https://doi.org/10.1039/C8SE00056E
  47. Pengtao Xu, Nicholas S. McCool, Thomas E. Mallouk. Water splitting dye-sensitized solar cells. Nano Today 2017, 14 , 42-58. https://doi.org/10.1016/j.nantod.2017.04.009
  48. Rodolfo L. Coppo, Byron H. Farnum, Benjamin D. Sherman, Neyde Y. Murakami Iha, Thomas J. Meyer. The role of layer-by-layer, compact TiO 2 films in dye-sensitized photoelectrosynthesis cells. Sustainable Energy & Fuels 2017, 1 (1) , 112-118. https://doi.org/10.1039/C6SE00022C
  49. Tao He, Libo Wang, Francisco Fabregat-Santiago, Guoqun Liu, Ying Li, Chong Wang, Rengui Guan. Electron trapping induced electrostatic adsorption of cations: a general factor leading to photoactivity decay of nanostructured TiO 2. Journal of Materials Chemistry A 2017, 5 (14) , 6455-6464. https://doi.org/10.1039/C7TA01132F
  50. Joel T. Kirner, Richard G. Finke. Water-oxidation photoanodes using organic light-harvesting materials: a review. Journal of Materials Chemistry A 2017, 5 (37) , 19560-19592. https://doi.org/10.1039/C7TA05709A
  51. Qing Lan, Zhi-Ming Zhang, Chao Qin, Xin-Long Wang, Yang-Guang Li, Hua-Qiao Tan, En-Bo Wang. Highly Dispersed Polyoxometalate-Doped Porous Co 3 O 4 Water Oxidation Photocatalysts Derived from [email protected] Crystalline Materials. Chemistry - A European Journal 2016, 22 (43) , 15513-15520. https://doi.org/10.1002/chem.201602127
  52. Masanori Yamamoto, Koji Tanaka. Artificial Molecular Photosynthetic Systems: Towards Efficient Photoelectrochemical Water Oxidation. ChemPlusChem 2016, 81 (10) , 1028-1044. https://doi.org/10.1002/cplu.201600236
  53. Zuoli He, Zhiqiang Hou, Yonglei Xing, Xiaobin Liu, Xingtian Yin, Meidan Que, Jinyou Shao, Wenxiu Que, Peter J. Stang. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep29476
  54. Abul Kalam Biswas, Sunirmal Barik, Amitava Das, Bishwajit Ganguly. Does the position of the electron-donating nitrogen atom in the ring system influence the efficiency of a dye-sensitized solar cell? A computational study. Journal of Molecular Modeling 2016, 22 (6) https://doi.org/10.1007/s00894-016-2976-2
  55. Liping Zhang, Ping Cui, Hongbin Yang, Jiazang Chen, Fangxing Xiao, Yuanyuan Guo, Ye Liu, Weina Zhang, Fengwei Huo, Bin Liu. Metal–Organic Frameworks as Promising Photosensitizers for Photoelectrochemical Water Splitting. Advanced Science 2016, 3 (1) , 1500243. https://doi.org/10.1002/advs.201500243
  56. Masanori Yamamoto, Lei Wang, Fusheng Li, Takashi Fukushima, Koji Tanaka, Licheng Sun, Hiroshi Imahori. Visible light-driven water oxidation using a covalently-linked molecular catalyst–sensitizer dyad assembled on a TiO 2 electrode. Chemical Science 2016, 7 (2) , 1430-1439. https://doi.org/10.1039/C5SC03669K
  57. Rebecca J. Lindquist, Brian T. Phelan, Anna Reynal, Eric A. Margulies, Leah E. Shoer, James R. Durrant, Michael R. Wasielewski. Strongly oxidizing perylene-3,4-dicarboximides for use in water oxidation photoelectrochemical cells. Journal of Materials Chemistry A 2016, 4 (8) , 2880-2893. https://doi.org/10.1039/C5TA05790F
  58. Kyung-Ryang Wee, Benjamin D. Sherman, M. Kyle Brennaman, Matthew V. Sheridan, Animesh Nayak, Leila Alibabaei, Thomas J. Meyer. An aqueous, organic dye derivatized SnO 2 /TiO 2 core/shell photoanode. Journal of Materials Chemistry A 2016, 4 (8) , 2969-2975. https://doi.org/10.1039/C5TA06678F
  59. Masanori Yamamoto, Yusuke Nishizawa, Pavel Chábera, Fusheng Li, Torbjörn Pascher, Villy Sundström, Licheng Sun, Hiroshi Imahori. Visible light-driven water oxidation with a subporphyrin sensitizer and a water oxidation catalyst. Chemical Communications 2016, 52 (94) , 13702-13705. https://doi.org/10.1039/C6CC07877J
  60. Bocheng Qiu, Mingyang Xing, Qiuying Yi, Jinlong Zhang. Chiral Carbonaceous Nanotubes Modified with Titania Nanocrystals: Plasmon-Free and Recyclable SERS Sensitivity. Angewandte Chemie 2015, 127 (36) , 10789-10793. https://doi.org/10.1002/ange.201505319
  61. Bocheng Qiu, Mingyang Xing, Qiuying Yi, Jinlong Zhang. Chiral Carbonaceous Nanotubes Modified with Titania Nanocrystals: Plasmon-Free and Recyclable SERS Sensitivity. Angewandte Chemie International Edition 2015, 54 (36) , 10643-10647. https://doi.org/10.1002/anie.201505319
  62. Ileana Dragutan, Valerian Dragutan, Albert Demonceau. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015, 20 (9) , 17244-17274. https://doi.org/10.3390/molecules200917244
  63. Leila Alibabaei, Benjamin D. Sherman, Michael R. Norris, M. Kyle Brennaman, Thomas J. Meyer. Visible photoelectrochemical water splitting into H 2 and O 2 in a dye-sensitized photoelectrosynthesis cell. Proceedings of the National Academy of Sciences 2015, 112 (19) , 5899-5902. https://doi.org/10.1073/pnas.1506111112
  64. John R. Swierk, Dalvin D. Méndez-Hernández, Nicholas S. McCool, Paul Liddell, Yuichi Terazono, Ian Pahk, John J. Tomlin, Nolan V. Oster, Thomas A. Moore, Ana L. Moore, Devens Gust, Thomas E. Mallouk. Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proceedings of the National Academy of Sciences 2015, 112 (6) , 1681-1686. https://doi.org/10.1073/pnas.1414901112
  65. Maximilian Bräutigam, Joachim Kübel, Martin Schulz, Johannes G. Vos, Benjamin Dietzek. Hole injection dynamics from two structurally related Ru–bipyridine complexes into NiO x is determined by the substitution pattern of the ligands. Physical Chemistry Chemical Physics 2015, 17 (12) , 7823-7830. https://doi.org/10.1039/C4CP05663A
  66. P. Sudhagar, Anitha Devadoss, K. Nakata, C. Terashima, A. Fujishima. Enhanced Photoelectrocatalytic Water Splitting at Hierarchical Gd 3+ :TiO 2 Nanostructures through Amplifying Light Reception and Surface States Passivation. Journal of The Electrochemical Society 2015, 162 (3) , H108-H114. https://doi.org/10.1149/2.0161503jes