Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides

View Author Information
Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623 Berlin, Germany
The Electrochemical Energy, Catalysis, and Materials Science Group, Department of Chemistry, Technische Universität Berlin, Straße des 17 Juni 124, Sekr. TC3, 10623 Berlin, Germany
§ Applied Physics and Sensors, Brandenburg University of Technology Cottbus, Konrad Wachsmann Allee 17, 03046 Cottbus, Germany
Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology, 500-712 Gwangju, South Korea
Cite this: J. Am. Chem. Soc. 2014, 136, 50, 17530–17536
Publication Date (Web):November 21, 2014
https://doi.org/10.1021/ja509348t
Copyright © 2014 American Chemical Society
Article Views
10502
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental details, spectroscopic data, electrochemical measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 434 publications.

  1. Anil A. Kashale, Fei-Chien Hsu, Ruei-Hung Juang, I-Wen Peter Chen. Coupling of Thermal and Electrochemical-Activated Stainless-Steel Mesh as a Highly Robust Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (9) , 10404-10413. https://doi.org/10.1021/acsaem.1c02407
  2. Yao Yang, Rui Zeng, Hanjong Paik, Ding-Yuan Kuo, Darrell G. Schlom, Francis J. DiSalvo, David A. Muller, Jin Suntivich, Héctor D. Abruña. Epitaxial Thin-Film Spinel Oxides as Oxygen Reduction Electrocatalysts in Alkaline Media. Chemistry of Materials 2021, 33 (11) , 4006-4013. https://doi.org/10.1021/acs.chemmater.1c00388
  3. Suhaib Alam, Tushar Kanta Sahu, Mohammad Qureshi. One-Dimensional Co(OH)F as a Noble Metal-Free Redox Mediator and Hole Extractor for Boosted Photoelectrochemical Water Oxidation in Worm-like Bismuth Vanadate. ACS Sustainable Chemistry & Engineering 2021, 9 (14) , 5155-5165. https://doi.org/10.1021/acssuschemeng.1c00288
  4. Shumaila Ibraheem, Xiuting Li, Syed Shoaib Ahmad Shah, Tayyaba Najam, Ghulam Yasin, Rashid Iqbal, Shahid Hussain, Weiyuan Ding, Farrukh Shahzad. Tellurium Triggered Formation of Te/Fe-NiOOH Nanocubes as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces 2021, 13 (9) , 10972-10978. https://doi.org/10.1021/acsami.0c22573
  5. Kévin Lemoine, Zahra Gohari-Bajestani, Romain Moury, Alexandre Terry, Amandine Guiet, Jean-Marc Grenèche, Annie Hémon-Ribaud, Nina Heidary, Vincent Maisonneuve, Nikolay Kornienko, Jérôme Lhoste. Amorphous Iron–Manganese Oxyfluorides, Promising Catalysts for Oxygen Evolution Reaction under Acidic Media. ACS Applied Energy Materials 2021, 4 (2) , 1173-1181. https://doi.org/10.1021/acsaem.0c02417
  6. Yu-Lan Meng, Yanqiang Li, Zhenquan Tan, Xi Chen, Lan-Lan Wu, Li-Wei Ji, Qi-Shun Wang, Xue-Zhi Song, Shuyan Song. Hierarchical MoO42– Intercalating α-Co(OH)2 Nanosheet Assemblies: Green Synthesis and Ultrafast Reconstruction for Boosting Electrochemical Oxygen Evolution. Energy & Fuels 2021, 35 (3) , 2775-2784. https://doi.org/10.1021/acs.energyfuels.0c03836
  7. Cheng Huang, Sirong Zou, Ye Liu, Shilin Zhang, Qingqing Jiang, Tengfei Zhou, Sen Xin, Juncheng Hu. Surface Reconstruction-Associated Partially Amorphized Bismuth Oxychloride for Boosted Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces 2021, 13 (4) , 5088-5098. https://doi.org/10.1021/acsami.0c20338
  8. Yao Zhou, Hong Jin Fan. Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting. ACS Materials Letters 2021, 3 (1) , 136-147. https://doi.org/10.1021/acsmaterialslett.0c00502
  9. Jumi Bak, Yoon Heo, Tae Gyu Yun, Sung-Yoon Chung. Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano 2020, 14 (11) , 14323-14354. https://doi.org/10.1021/acsnano.0c06411
  10. Cameron L. Bentley, Roland Agoston, Binglin Tao, Marc Walker, Xiangdong Xu, Anthony P. O’Mullane, Patrick R. Unwin. Correlating the Local Electrocatalytic Activity of Amorphous Molybdenum Sulfide Thin Films with Microscopic Composition, Structure, and Porosity. ACS Applied Materials & Interfaces 2020, 12 (39) , 44307-44316. https://doi.org/10.1021/acsami.0c11759
  11. Baghendra Singh, Om Prakash, Pralay Maiti, Arindam Indra. Electrochemical Transformation of Metal Organic Framework into Ultrathin Metal Hydroxide-(oxy)hydroxide Nanosheets for Alkaline Water Oxidation. ACS Applied Nano Materials 2020, 3 (7) , 6693-6701. https://doi.org/10.1021/acsanm.0c01137
  12. Wen-Jie Jiang, Tang Tang, Yun Zhang, Jin-Song Hu. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Accounts of Chemical Research 2020, 53 (6) , 1111-1123. https://doi.org/10.1021/acs.accounts.0c00127
  13. Jun Zhao, Dengke Zhao, Ligui Li, Li Zhou, Xinghua Liang, Zexing Wu, Zhong-Jie Jiang. Defect-Rich, Mesoporous Cobalt Sulfide Hexagonal Nanosheets as Superior Sulfur Hosts for High-Rate, Long-Cycle Rechargeable Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2020, 124 (23) , 12259-12268. https://doi.org/10.1021/acs.jpcc.0c02324
  14. Weizheng Cai, Rong Chen, Hongbin Yang, Hua Bing Tao, Hsin-Yi Wang, Jiajian Gao, Wei Liu, Song Liu, Sung-Fu Hung, Bin Liu. Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy. Nano Letters 2020, 20 (6) , 4278-4285. https://doi.org/10.1021/acs.nanolett.0c00840
  15. Chao Feng, M. Bilal Faheem, Jie Fu, Yequan Xiao, Changli Li, Yanbo Li. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis 2020, 10 (7) , 4019-4047. https://doi.org/10.1021/acscatal.9b05445
  16. Lejing Li, Zhuofeng Hu, Li Tao, Jianbin Xu, Jimmy C. Yu. Efficient Electronic Transport in Partially Disordered Co3O4 Nanosheets for Electrocatalytic Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (3) , 3071-3081. https://doi.org/10.1021/acsaem.0c00190
  17. Jiannan Du, Shijie You, Xuerui Li, Bo Tang, Baojiang Jiang, Yang Yu, Zhuang Cai, Nanqi Ren, Jinlong Zou. In Situ Crystallization of Active NiOOH/CoOOH Heterostructures with Hydroxide Ion Adsorption Sites on Velutipes-like CoSe/NiSe Nanorods as Catalysts for Oxygen Evolution and Cocatalysts for Methanol Oxidation. ACS Applied Materials & Interfaces 2020, 12 (1) , 686-697. https://doi.org/10.1021/acsami.9b16626
  18. Ruilin Yuan, Wentuan Bi, Tianpei Zhou, Nan Zhang, Cheng’an Zhong, Wangsheng Chu, Wensheng Yan, Qian Xu, Changzheng Wu, Yi Xie. Two-Dimensional Hierarchical Fe–N–C Electrocatalyst for Zn-Air Batteries with Ultrahigh Specific Capacity. ACS Materials Letters 2020, 2 (1) , 35-41. https://doi.org/10.1021/acsmaterialslett.9b00386
  19. Kumar Kashyap Hazarika Pankaj Bharali . 3d-Metal Oxide Nanostructures for Oxygen Electrocatalysis. 2020,,, 353-372. https://doi.org/10.1021/bk-2020-1359.ch012
  20. Yao Yang, Rui Zeng, Yin Xiong, Francis J. DiSalvo, Héctor D. Abruña. Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society 2019, 141 (49) , 19241-19245. https://doi.org/10.1021/jacs.9b10809
  21. Yao Yang, Rui Zeng, Yin Xiong, Francis J. DiSalvo, Héctor D. Abruña. Rock-Salt-Type MnCo2O3/C as Efficient Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Chemistry of Materials 2019, 31 (22) , 9331-9337. https://doi.org/10.1021/acs.chemmater.9b02801
  22. Xiuming Bu, ChaoLung Chiang, Renjie Wei, Zebiao Li, You Meng, ChunKuo Peng, YuChang Lin, Yangyang Li, YanGu Lin, Kwok Sum Chan, Johnny C. Ho. Two-Dimensional Cobalt Phosphate Hydroxide Nanosheets: A New Type of High-Performance Electrocatalysts with Intrinsic CoO6 Lattice Distortion for Water Oxidation. ACS Applied Materials & Interfaces 2019, 11 (42) , 38633-38640. https://doi.org/10.1021/acsami.9b11594
  23. Yuanjun Liu, Suxiao Ju, Cheng Wang, Mo Li, Wenjuan Zhu, Danyang Chen, Aihua Yuan, Guoxing Zhu. In Situ Derived Electrocatalysts from Fe–Co Sulfides with Enhanced Activity toward Oxygen Evolution. Industrial & Engineering Chemistry Research 2019, 58 (41) , 18976-18985. https://doi.org/10.1021/acs.iecr.9b03931
  24. Renjie Wei, Xiuming Bu, Wei Gao, Rovi Angelo B. Villaos, Gennevieve Macam, Zhi-Quan Huang, Changyong Lan, Feng-Chuan Chuang, Yongquan Qu, Johnny C. Ho. Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (36) , 33012-33021. https://doi.org/10.1021/acsami.9b10868
  25. Lu Bai, Xudong Wen, Jingqi Guan. High-Efficiency Electrocatalytic Water Oxidation on Trimetal-Based Fe–Co–Cr Oxide. ACS Applied Energy Materials 2019, 2 (8) , 5584-5590. https://doi.org/10.1021/acsaem.9b00762
  26. Min Chen, Yiming Xu. Trace Amount CoFe2O4 Anchored on a TiO2 Photocatalyst Efficiently Catalyzing O2 Reduction and Phenol Oxidation. Langmuir 2019, 35 (29) , 9334-9342. https://doi.org/10.1021/acs.langmuir.9b00291
  27. Wangting Lu, Xuwen Li, Feng Wei, Kun Cheng, Wenhui Li, Youhua Zhou, Wanquan Zheng, Lei Pan, Geng Zhang. In-Situ Transformed Ni, S-Codoped CoO from Amorphous Co–Ni Sulfide as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Media. ACS Sustainable Chemistry & Engineering 2019, 7 (14) , 12501-12509. https://doi.org/10.1021/acssuschemeng.9b02216
  28. Jose-Luis Ortiz-Quiñonez, Umapada Pal. Borohydride-Assisted Surface Activation of Co3O4/CoFe2O4 Composite and Its Catalytic Activity for 4-Nitrophenol Reduction. ACS Omega 2019, 4 (6) , 10129-10139. https://doi.org/10.1021/acsomega.9b00118
  29. Sayyar Ali Shah, Zhenyuan Ji, Xiaoping Shen, Xiaoyang Yue, Guoxing Zhu, Keqiang Xu, Aihua Yuan, Nabi Ullah, Jun Zhu, Peng Song, Xiaoyun Li. Thermal Synthesis of [email protected] Graphene Dispersed on Nitrogen-Doped Carbon Matrix as an Excellent Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials 2019, 2 (6) , 4075-4083. https://doi.org/10.1021/acsaem.9b00199
  30. HyukSu Han, Jungwook Woo, Yu-Rim Hong, Yong-Chae Chung, Sungwook Mhin. Polarized Electronic Configuration in Transition Metal–Fluoride Oxide Hollow Nanoprism for Highly Efficient and Robust Water Splitting. ACS Applied Energy Materials 2019, 2 (6) , 3999-4007. https://doi.org/10.1021/acsaem.9b00449
  31. Maria Retuerto, Federico Calle-Vallejo, Laura Pascual, Gunnar Lumbeeck, María Teresa Fernandez-Diaz, Mark Croft, Jagannatha Gopalakrishnan, Miguel A. Peña, Joke Hadermann, Martha Greenblatt, Sergio Rojas. La1.5Sr0.5NiMn0.5Ru0.5O6 Double Perovskite with Enhanced ORR/OER Bifunctional Catalytic Activity. ACS Applied Materials & Interfaces 2019, 11 (24) , 21454-21464. https://doi.org/10.1021/acsami.9b02077
  32. Yao Yang, Hanqing Peng, Yin Xiong, Qihao Li, Juntao Lu, Li Xiao, Francis J. DiSalvo, Lin Zhuang, Héctor D. Abruña. High-Loading Composition-Tolerant Co–Mn Spinel Oxides with Performance beyond 1 W/cm2 in Alkaline Polymer Electrolyte Fuel Cells. ACS Energy Letters 2019, 4 (6) , 1251-1257. https://doi.org/10.1021/acsenergylett.9b00597
  33. Abdelilah El Arrassi, Zhibin Liu, Mathies V. Evers, Niclas Blanc, Georg Bendt, Sascha Saddeler, David Tetzlaff, Darius Pohl, Christine Damm, Stephan Schulz, Kristina Tschulik. Intrinsic Activity of Oxygen Evolution Catalysts Probed at Single CoFe2O4 Nanoparticles. Journal of the American Chemical Society 2019, 141 (23) , 9197-9201. https://doi.org/10.1021/jacs.9b04516
  34. Jin Zhang, Xinyue Cao, Min Guo, Haining Wang, Martin Saunders, Yan Xiang, San Ping Jiang, Shanfu Lu. Unique Ni Crystalline Core/Ni Phosphide Amorphous Shell Heterostructured Electrocatalyst for Hydrazine Oxidation Reaction of Fuel Cells. ACS Applied Materials & Interfaces 2019, 11 (21) , 19048-19055. https://doi.org/10.1021/acsami.9b00878
  35. Xiao Zhao, Takao Gunji, Takuma Kaneko, Yusuke Yoshida, Shinobu Takao, Kotaro Higashi, Tomoya Uruga, Wenxiang He, Jianguo Liu, Zhigang Zou. An Integrated Single-Electrode Method Reveals the Template Roles of Atomic Steps: Disturb Interfacial Water Networks and Thus Affect the Reactivity of Electrocatalysts. Journal of the American Chemical Society 2019, 141 (21) , 8516-8526. https://doi.org/10.1021/jacs.9b02049
  36. Yan Liu, Yiran Ying, Linfeng Fei, Yi Liu, Qingzhao Hu, Guoge Zhang, Sin Yi Pang, Wei Lu, Chee Leung Mak, Xin Luo, Limin Zhou, Mingdeng Wei, Haitao Huang. Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. Journal of the American Chemical Society 2019, 141 (20) , 8136-8145. https://doi.org/10.1021/jacs.8b13701
  37. Dandan Li, Congcong Wei, Qiang Wang, Lin Liu, Dazhong Zhong, Genyan Hao, Zhijun Zuo, Qiang Zhao. Oxygen Evolution on in Situ Selective Formation of AgO: Plane Is the Key Factor. The Journal of Physical Chemistry C 2019, 123 (17) , 10967-10973. https://doi.org/10.1021/acs.jpcc.9b00880
  38. Yin Xiong, Yao Yang, Xinran Feng, Francis J. DiSalvo, Héctor D. Abruña. A Strategy for Increasing the Efficiency of the Oxygen Reduction Reaction in Mn-Doped Cobalt Ferrites. Journal of the American Chemical Society 2019, 141 (10) , 4412-4421. https://doi.org/10.1021/jacs.8b13296
  39. Chakadola Panda, Prashanth W. Menezes, Min Zheng, Steven Orthmann, Matthias Driess. In Situ Formation of Nanostructured Core–Shell Cu3N–CuO to Promote Alkaline Water Electrolysis. ACS Energy Letters 2019, 4 (3) , 747-754. https://doi.org/10.1021/acsenergylett.9b00091
  40. Huafeng Fan, Jun Huang, Guangliang Chen, Wei Chen, Rui Zhang, Sijun Chu, Xingquan Wang, Chaorong Li, Kostya Ken Ostrikov. Hollow Ni–V–Mo Chalcogenide Nanopetals as Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 1622-1632. https://doi.org/10.1021/acssuschemeng.8b05378
  41. Xiaolin Xing, Rongji Liu, Kecheng Cao, Ute Kaiser, Guangjin Zhang, Carsten Streb. Manganese Vanadium Oxide–N-Doped Reduced Graphene Oxide Composites as Oxygen Reduction and Oxygen Evolution Electrocatalysts. ACS Applied Materials & Interfaces 2018, 10 (51) , 44511-44517. https://doi.org/10.1021/acsami.8b16578
  42. Ke Fan, Haiyuan Zou, Yue Lu, Hong Chen, Fusheng Li, Jinxuan Liu, Licheng Sun, Lianpeng Tong, Michael F. Toney, Manling Sui, Jiaguo Yu. Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. ACS Nano 2018, 12 (12) , 12369-12379. https://doi.org/10.1021/acsnano.8b06312
  43. Zonghuai Zhang, Beibei He, Liangjian Chen, Huanwen Wang, Rui Wang, Ling Zhao, Yansheng Gong. Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa0.5Sr0.5Co2O5+δ Nanorods. ACS Applied Materials & Interfaces 2018, 10 (44) , 38032-38041. https://doi.org/10.1021/acsami.8b12372
  44. Zhengcui Wu, Zexian Zou, Jiansong Huang, Feng Gao. NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Applied Materials & Interfaces 2018, 10 (31) , 26283-26292. https://doi.org/10.1021/acsami.8b07835
  45. Qinghe Zhao, Jinlong Yang, Mingqiang Liu, Rui Wang, Guangxing Zhang, Han Wang, Hanting Tang, Chaokun Liu, Zongwei Mei, Haibiao Chen, Feng Pan. Tuning Electronic Push/Pull of Ni-Based Hydroxides To Enhance Hydrogen and Oxygen Evolution Reactions for Water Splitting. ACS Catalysis 2018, 8 (6) , 5621-5629. https://doi.org/10.1021/acscatal.8b01567
  46. Tianqi Wang, Zhifeng Jiang, Taicheng An, Guiying Li, Huijun Zhao, Po Keung Wong. Enhanced Visible-Light-Driven Photocatalytic Bacterial Inactivation by Ultrathin Carbon-Coated Magnetic Cobalt Ferrite Nanoparticles. Environmental Science & Technology 2018, 52 (8) , 4774-4784. https://doi.org/10.1021/acs.est.7b06537
  47. Lu Xu, Fu-Tao Zhang, Jia-Hui Chen, Xian-Zhu Fu, Rong Sun, Ching-Ping Wong. Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting. ACS Applied Energy Materials 2018, 1 (3) , 1210-1217. https://doi.org/10.1021/acsaem.7b00313
  48. Wei Bian, Yichao Huang, Xiaobin Xu, Muhammad Aizaz Ud Din, Gang Xie, Xun Wang. Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces 2018, 10 (11) , 9407-9414. https://doi.org/10.1021/acsami.7b18875
  49. Ying Li, Fu-Min Li, Xin-Ying Meng, Shu-Ni Li, Jing-Hui Zeng, and Yu Chen . Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (3) , 1913-1920. https://doi.org/10.1021/acscatal.7b03949
  50. Kai-Ling Ng, Kuan-Ying Kok, Boon-Hoong Ong. Facile Synthesis of Self-Assembled Cobalt Oxide Supported on Iron Oxide as the Novel Electrocatalyst for Enhanced Electrochemical Water Electrolysis. ACS Applied Nano Materials 2018, 1 (1) , 401-409. https://doi.org/10.1021/acsanm.7b00250
  51. Heng Wang, Tingting Zhou, Pengli Li, Zhen Cao, Wei Xi, Yunfeng Zhao, and Yi Ding . Self-Supported Hierarchical Nanostructured NiFe-LDH and Cu3P Weaving Mesh Electrodes for Efficient Water Splitting. ACS Sustainable Chemistry & Engineering 2018, 6 (1) , 380-388. https://doi.org/10.1021/acssuschemeng.7b02654
  52. Jingfu He, David M. Weekes, Wei Cheng, Kevan E. Dettelbach, Aoxue Huang, Tengfei Li, and Curtis P. Berlinguette . Photodecomposition of Metal Nitrate and Chloride Compounds Yields Amorphous Metal Oxide Films. Journal of the American Chemical Society 2017, 139 (50) , 18174-18177. https://doi.org/10.1021/jacs.7b11064
  53. Robin W. Hughes, Dennis Y. Lu, and Robert T. Symonds . Improvement of Oxy-FBC Using Oxygen Carriers: Concept and Combustion Performance. Energy & Fuels 2017, 31 (9) , 10101-10115. https://doi.org/10.1021/acs.energyfuels.7b01556
  54. Anirudh Balram, Hanfei Zhang, and Sunand Santhanagopalan . Enhanced Oxygen Evolution Reaction Electrocatalysis via Electrodeposited Amorphous α-Phase Nickel-Cobalt Hydroxide Nanodendrite Forests. ACS Applied Materials & Interfaces 2017, 9 (34) , 28355-28365. https://doi.org/10.1021/acsami.7b05735
  55. Craig M. Lieberman, Matthew C. Barry, Zheng Wei, Andrey Yu. Rogachev, Xiaoping Wang, Jun-Liang Liu, Rodolphe Clérac, Yu-Sheng Chen, Alexander S. Filatov, and Evgeny V. Dikarev . Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials. Inorganic Chemistry 2017, 56 (16) , 9574-9584. https://doi.org/10.1021/acs.inorgchem.7b01032
  56. Qing Zhao, Zhenhua Yan, Chengcheng Chen, and Jun Chen . Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews 2017, 117 (15) , 10121-10211. https://doi.org/10.1021/acs.chemrev.7b00051
  57. Haidong Yang, Yang Liu, Sha Luo, Ziming Zhao, Xiang Wang, Yutong Luo, Zhixiu Wang, Jun Jin, and Jiantai Ma . Lateral-Size-Mediated Efficient Oxygen Evolution Reaction: Insights into the Atomically Thin Quantum Dot Structure of NiFe2O4. ACS Catalysis 2017, 7 (8) , 5557-5567. https://doi.org/10.1021/acscatal.7b00007
  58. Marco Favaro, Jinhui Yang, Silvia Nappini, Elena Magnano, Francesca M. Toma, Ethan J. Crumlin, Junko Yano, and Ian D. Sharp . Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 2017, 139 (26) , 8960-8970. https://doi.org/10.1021/jacs.7b03211
  59. Bharati Debnath, Hemant G. Salunke, Sonnada M. Shivaprasad, and Sayan Bhattacharyya . Surfactant-Mediated Resistance to Surface Oxidation in MnO Nanostructures. ACS Omega 2017, 2 (6) , 3028-3035. https://doi.org/10.1021/acsomega.7b00622
  60. Xiaohui Deng, Secil Öztürk, Claudia Weidenthaler, and Harun Tüysüz . Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (25) , 21225-21233. https://doi.org/10.1021/acsami.7b02571
  61. Shan Han, Suqin Liu, Rui Wang, Xuan Liu, Lu Bai, and Zhen He . One-Step Electrodeposition of Nanocrystalline ZnxCo3–xO4 Films with High Activity and Stability for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2017, 9 (20) , 17186-17194. https://doi.org/10.1021/acsami.7b04841
  62. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan . Co3O4−δ Quantum Dots As a Highly Efficient Oxygen Evolution Reaction Catalyst for Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (19) , 16159-16167. https://doi.org/10.1021/acsami.7b01591
  63. Hanfeng Liang, Appala N. Gandi, Chuan Xia, Mohamed N. Hedhili, Dalaver H. Anjum, Udo Schwingenschlögl, and Husam N. Alshareef . Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications. ACS Energy Letters 2017, 2 (5) , 1035-1042. https://doi.org/10.1021/acsenergylett.7b00206
  64. Yanping Tang, Fan Jing, Zhixiao Xu, Fan Zhang, Yiyong Mai, and Dongqing Wu . Highly Crumpled Hybrids of Nitrogen/Sulfur Dual-Doped Graphene and Co9S8 Nanoplates as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces 2017, 9 (14) , 12340-12347. https://doi.org/10.1021/acsami.6b15461
  65. Marco Favaro, Walter S. Drisdell, Matthew A. Marcus, John M. Gregoire, Ethan J. Crumlin, Joel A. Haber, and Junko Yano . An Operando Investigation of (Ni–Fe–Co–Ce)Ox System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (2) , 1248-1258. https://doi.org/10.1021/acscatal.6b03126
  66. Li Song, Tao Wang, Yilin Wang, Hairong Xue, Xiaoli Fan, Hu Guo, Wei Xia, Hao Gong, and Jianping He . Porous Iron-Tungsten Carbide Electrocatalyst with High Activity and Stability toward Oxygen Reduction Reaction: From the Self-Assisted Synthetic Mechanism to Its Active-Species Probing. ACS Applied Materials & Interfaces 2017, 9 (4) , 3713-3722. https://doi.org/10.1021/acsami.6b14754
  67. Prashanth W. Menezes, Arindam Indra, Chittaranjan Das, Carsten Walter, Caren Göbel, Vitaly Gutkin, Dieter Schmeiβer, and Matthias Driess . Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting. ACS Catalysis 2017, 7 (1) , 103-109. https://doi.org/10.1021/acscatal.6b02666
  68. Xiaohui Deng, Candace K. Chan, and Harun Tüysüz . Spent Tea Leaf Templating of Cobalt-Based Mixed Oxide Nanocrystals for Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (47) , 32488-32495. https://doi.org/10.1021/acsami.6b12005
  69. Bryan M. Hunter, Harry B. Gray, and Astrid M. Müller . Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22) , 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
  70. Xuecheng Cao, Tao Hong, Ruizhi Yang, Jing-Hua Tian, Changrong Xia, Jin-Chao Dong, and Jian-Feng Li . Insights into the Catalytic Activity of Barium Carbonate for Oxygen Reduction Reaction. The Journal of Physical Chemistry C 2016, 120 (40) , 22895-22902. https://doi.org/10.1021/acs.jpcc.6b08267
  71. Yingxue Chang, Nai-En Shi, Shulin Zhao, Dongdong Xu, Chunyan Liu, Yu-Jia Tang, Zhihui Dai, Ya-Qian Lan, Min Han, and Jianchun Bao . Coralloid Co2P2O7 Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (34) , 22534-22544. https://doi.org/10.1021/acsami.6b07209
  72. Samiran Garain, Koushik Barman, Tridib Kumar Sinha, Sk Jasimuddin, Jörg Haeberle, Karsten Henkel, Dieter Schmeisser, and Dipankar Mandal . Cerium(III) Complex Modified Gold Electrode: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (33) , 21294-21301. https://doi.org/10.1021/acsami.6b05236
  73. Oluwaniyi Mabayoje, Ahmed Shoola, Bryan R. Wygant, and C. Buddie Mullins . The Role of Anions in Metal Chalcogenide Oxygen Evolution Catalysis: Electrodeposited Thin Films of Nickel Sulfide as “Pre-catalysts”. ACS Energy Letters 2016, 1 (1) , 195-201. https://doi.org/10.1021/acsenergylett.6b00084
  74. Xiaodong Yan, Lihong Tian, Samuel Atkins, Yan Liu, James Murowchick, and Xiaobo Chen . Converting CoMoO4 into CoO/MoOx for Overall Water Splitting by Hydrogenation. ACS Sustainable Chemistry & Engineering 2016, 4 (7) , 3743-3749. https://doi.org/10.1021/acssuschemeng.6b00383
  75. Bora Seo, Young Jin Sa, Jinwoo Woo, Kyungjung Kwon, Jongnam Park, Tae Joo Shin, Hu Young Jeong, and Sang Hoon Joo . Size-Dependent Activity Trends Combined with in Situ X-ray Absorption Spectroscopy Reveal Insights into Cobalt Oxide/Carbon Nanotube-Catalyzed Bifunctional Oxygen Electrocatalysis. ACS Catalysis 2016, 6 (7) , 4347-4355. https://doi.org/10.1021/acscatal.6b00553
  76. Jonathon W. Moir, Emma V. Sackville, Ulrich Hintermair, and Geoffrey A. Ozin . Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. The Journal of Physical Chemistry C 2016, 120 (24) , 12999-13012. https://doi.org/10.1021/acs.jpcc.6b00735
  77. Zhe Xu, Shi-cheng Yan, Zhan Shi, Ying-fang Yao, Peng Zhou, Hao-yu Wang, and Zhi-gang Zou . Adjusting the Crystallinity of Mesoporous Spinel CoGa2O4 for Efficient Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (20) , 12887-12893. https://doi.org/10.1021/acsami.6b03890
  78. Jun Song Chen, Jiawen Ren, Menny Shalom, Tim Fellinger, and Markus Antonietti . Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (8) , 5509-5516. https://doi.org/10.1021/acsami.5b10099
  79. Yingying Feng, Jie Wei, and Yong Ding . Efficient Photochemical, Thermal, and Electrochemical Water Oxidation Catalyzed by a Porous Iron-Based Oxide Derived Metal–Organic Framework. The Journal of Physical Chemistry C 2016, 120 (1) , 517-526. https://doi.org/10.1021/acs.jpcc.5b11533
  80. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  81. Michaela S. Burke, Shihui Zou, Lisa J. Enman, Jaclyn E. Kellon, Christian A. Gabor, Erica Pledger, and Shannon W. Boettcher . Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media. The Journal of Physical Chemistry Letters 2015, 6 (18) , 3737-3742. https://doi.org/10.1021/acs.jpclett.5b01650
  82. Hongfei Liu, Mauro Schilling, Maxim Yulikov, Sandra Luber, and Greta R. Patzke . Homogeneous Photochemical Water Oxidation with Cobalt Chloride in Acidic Media. ACS Catalysis 2015, 5 (9) , 4994-4999. https://doi.org/10.1021/acscatal.5b01101
  83. Wei Chen, Haotian Wang, Yuzhang Li, Yayuan Liu, Jie Sun, Sanghan Lee, Jang-Soo Lee, and Yi Cui . In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation. ACS Central Science 2015, 1 (5) , 244-251. https://doi.org/10.1021/acscentsci.5b00227
  84. Alireza Kargar, Serdar Yavuz, Tae Kyoung Kim, Chin-Hung Liu, Cihan Kuru, Cyrus S. Rustomji, Sungho Jin, and Prabhakar R. Bandaru . Solution-Processed CoFe2O4 Nanoparticles on 3D Carbon Fiber Papers for Durable Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2015, 7 (32) , 17851-17856. https://doi.org/10.1021/acsami.5b04270
  85. Ahamed Irshad and Nookala Munichandraiah . High Catalytic Activity of Amorphous Ir-Pi for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2015, 7 (29) , 15765-15776. https://doi.org/10.1021/acsami.5b02601
  86. Hongfei Liu, Ying Zhou, René Moré, Rafael Müller, Thomas Fox, and Greta R. Patzke . Correlations among Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on Lithium Cobalt Oxides. ACS Catalysis 2015, 5 (6) , 3791-3800. https://doi.org/10.1021/acscatal.5b00078
  87. Prashanth W. Menezes, Arindam Indra, Diego González-Flores, Nastaran Ranjbar Sahraie, Ivelina Zaharieva, Michael Schwarze, Peter Strasser, Holger Dau, and Matthias Driess . High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity. ACS Catalysis 2015, 5 (4) , 2017-2027. https://doi.org/10.1021/cs501724v
  88. Yi-Wen Yang, Bing-Ye Song. A Novel Phosphide Derived From Metal-Organic Frameworks as Cost-Effective Electrocatalyst for Oxygen Evolution Reaction. Journal of Electrochemical Energy Conversion and Storage 2022, 19 (1) https://doi.org/10.1115/1.4051170
  89. Yi Zhang, Qiong Tang, Yifan Sun, Chenxu Yao, Zhen Yang, Weiben Yang. Improved utilization of active sites for phosphorus adsorption in FeOOH/anion exchanger nanocomposites via a glycol-solvothermal synthesis strategy. Journal of Environmental Sciences 2022, 111 , 313-323. https://doi.org/10.1016/j.jes.2021.04.018
  90. Jingfeng Liu, Xiaoying Shi, Rongjun Zhang, Miaomiao Zhang, Juan He, Jian Chen, Zheng Wang, Qingwen Wang. CoFe2O4-Quantum Dots for Synergistic Photothermal/Photodynamic Therapy of Non-small-Cell Lung Cancer Via Triggering Apoptosis by Regulating PI3K/AKT Pathway. Nanoscale Research Letters 2021, 16 (1) https://doi.org/10.1186/s11671-021-03580-5
  91. Zi-Xiao Shi, Jia-Wei Zhao, Cheng-Fei Li, Han Xu, Gao-Ren Li. Fully exposed edge/corner active sites in Fe substituted-Ni(OH)2 tube-in-tube arrays for efficient electrocatalytic oxygen evolution. Applied Catalysis B: Environmental 2021, 298 , 120558. https://doi.org/10.1016/j.apcatb.2021.120558
  92. Yi Wang, Xiang Liu. Enhanced catalytic performance of cobalt ferrite by a facile reductive treatment for H2 release from ammonia borane. Journal of Molecular Liquids 2021, 343 , 117697. https://doi.org/10.1016/j.molliq.2021.117697
  93. Ashalatha Vazhayil, Linsha Vazhayal, Jasmine Thomas, Shyamli Ashok C, Nygil Thomas. A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction. Applied Surface Science Advances 2021, 6 , 100184. https://doi.org/10.1016/j.apsadv.2021.100184
  94. Yanying Liu, Daojin Zhou, Tianyin Deng, Guangli He, Aibing Chen, Xiaoming Sun, Yuhua Yang, Ping Miao. Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. ChemSusChem 2021, 12 https://doi.org/10.1002/cssc.202101898
  95. Hui Wu, Zhongshui Li, Ying Liu, Xiaohuan Zou, Longwei Yin, Shen Lin. A cost-effective indium/carbon catalyst for highly efficient electrocatalytic reduction of CO 2 to HCOOH. Sustainable Energy & Fuels 2021, 5 (22) , 5798-5803. https://doi.org/10.1039/D1SE01164B
  96. Arjeta Rushiti, Christof Hättig. Activation of Molecular O 2 on CoFe 2 O 4 (001) Surfaces: An Embedded Cluster Study. Chemistry – A European Journal 2021, 8 https://doi.org/10.1002/chem.202102784
  97. Tingting Zhang, Jiemin Chen, Huiyan Xiong, Zongdi Yuan, Yuling Zhu, Baowei Hu. Constructing new [email protected] with 3D hollow structure for efficient recovery of uranium from simulated seawater. Chemosphere 2021, 283 , 131241. https://doi.org/10.1016/j.chemosphere.2021.131241
  98. Baghendra Singh, Amrendra Singh, Abhimanyu Yadav, Arindam Indra. Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coordination Chemistry Reviews 2021, 447 , 214144. https://doi.org/10.1016/j.ccr.2021.214144
  99. Ahmed Zaki Alhakemy, Ahmed Mourtada Elseman, Moataz G. Fayed, Abu Bakr Ahmed Amine Nassr, Abd El-Hady Kashyout, Zhenhai Wen. Hybrid electrocatalyst of CoFe2O4 decorating carbon spheres for alkaline oxygen evolution reaction. Ceramics International 2021, 3 https://doi.org/10.1016/j.ceramint.2021.11.088
  100. Hao Zhang, Peng Li, Shengli Chen, Fang Xie, D. Jason Riley. Anodic Transformation of a Core‐Shell Prussian Blue Analogue to a Bifunctional Electrocatalyst for Water Splitting. Advanced Functional Materials 2021, 31 (48) , 2106835. https://doi.org/10.1002/adfm.202106835
Load more citations