A Self-Healing Oxygen-Evolving Catalyst

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Cite this: J. Am. Chem. Soc. 2009, 131, 11, 3838–3839
Publication Date (Web):February 27, 2009
Copyright © 2009 American Chemical Society
Article Views
Read OnlinePDF (330 KB)
Supporting Info (1)»


A cobalt−phosphate water-oxidizing catalyst forms from the oxidation of Co2+ to Co3+ in the presence of phosphate. We have employed radioactive 57Co and 32P isotopes to probe the dynamics of this catalyst during water-oxidation catalysis. We show that the catalyst is self-healing and that phosphate is the crucial factor responsible for repair.

Supporting Information

Jump To

Full experimental details, photographs of electrode arrays, and elemental composition data for Na/K exchange experiments. This information is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 457 publications.

  1. Andraž Mavrič, Chunhua Cui. Advances and Challenges in Industrial-Scale Water Oxidation on Layered Double Hydroxides. ACS Applied Energy Materials 2021, 4 (11) , 12032-12055. https://doi.org/10.1021/acsaem.1c02604
  2. Peikun Zhang, Pai Wang, Wei Wang, Qianbao Wu, Mengjun Xiao, Roger Alberto, Yanning Zhang, Chunhua Cui. Efficient Alkaline Water Oxidation with a Regenerable Nickel Pseudo-Complex. ACS Applied Materials & Interfaces 2021, 13 (41) , 48661-48668. https://doi.org/10.1021/acsami.1c13609
  3. Zahra Abdi, S. Esmael Balaghi, Alla S. Sologubenko, Marc-Georg Willinger, Matthias Vandichel, Jian-Ren Shen, Suleyman I. Allakhverdiev, Greta R. Patzke, Mohammad Mahdi Najafpour. Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12. ACS Sustainable Chemistry & Engineering 2021, 9 (28) , 9494-9505. https://doi.org/10.1021/acssuschemeng.1c03539
  4. Biswajit Mondal, Samir Chattopadhyay, Subal Dey, Atif Mahammed, Kaustuv Mittra, Atanu Rana, Zeev Gross, Abhishek Dey. Elucidation of Factors That Govern the 2e–/2H+ vs 4e–/4H+ Selectivity of Water Oxidation by a Cobalt Corrole. Journal of the American Chemical Society 2020, 142 (50) , 21040-21049. https://doi.org/10.1021/jacs.0c08654
  5. Umesh Prasad, Jyoti Prakash, Xuan Shi, Sandeep K. Sharma, Xihong Peng, Arunachala M. Kannan. Role of Alkali Metal in BiVO4 Crystal Structure for Enhancing Charge Separation and Diffusion Length for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2020, 12 (47) , 52808-52818. https://doi.org/10.1021/acsami.0c16519
  6. Shivkanya Shinde, Pavel Majumdar, Sayantan Sil, Markus Löffler, Anamika Banerjee, Bernd Rellinghaus, Sahab Dass, Partha Pratim Ray, Snehangshu Patra. Energy-Inexpensive Galvanic Deposition of BiOI on Electrodes and Its Conversion to 3D Porous BiVO4-Based Photoanode. The Journal of Physical Chemistry C 2020, 124 (35) , 18930-18945. https://doi.org/10.1021/acs.jpcc.0c06059
  7. Anastasiya Bavykina, Nikita Kolobov, Il Son Khan, Jeremy A. Bau, Adrian Ramirez, Jorge Gascon. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chemical Reviews 2020, 120 (16) , 8468-8535. https://doi.org/10.1021/acs.chemrev.9b00685
  8. Mohammad Reza Mohammadi, Stefan Loos, Petko Chernev, Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Paul Kubella, Katharina Klingan, Rodney D. L. Smith, Holger Dau. Exploring the Limits of Self-Repair in Cobalt Oxide Films for Electrocatalytic Water Oxidation. ACS Catalysis 2020, 10 (14) , 7990-7999. https://doi.org/10.1021/acscatal.0c01944
  9. Shicong Zhang, Luze Shen, Ting Ye, Kangyi Kong, Haonan Ye, Haoran Ding, Yue Hu, Jianli Hua. Noble-Metal-Free Perovskite–BiVO4 Tandem Device with Simple Preparation Method for Unassisted Solar Water Splitting. Energy & Fuels 2020, 34 (4) , 5016-5023. https://doi.org/10.1021/acs.energyfuels.0c00432
  10. Sourav Bhowmick, Ankit Dhankhar, Tushar Kanta Sahu, Rohan Jena, Devipriya Gogoi, Nageswara R. Peela, Shane Ardo, Mohammad Qureshi. Low Overpotential and Stable Electrocatalytic Oxygen Evolution Reaction Utilizing Doped Perovskite Oxide, La0.7Sr0.3MnO3, Modified by Cobalt Phosphate. ACS Applied Energy Materials 2020, 3 (2) , 1279-1285. https://doi.org/10.1021/acsaem.9b02167
  11. Li-Fen Li, Ye-Fei Li, Zhi-Pan Liu. Oxygen Evolution Activity on NiOOH Catalysts: Four-Coordinated Ni Cation as the Active Site and the Hydroperoxide Mechanism. ACS Catalysis 2020, 10 (4) , 2581-2590. https://doi.org/10.1021/acscatal.9b04975
  12. Lu Chen, Yi Zhao, Jingyao Yang, Dan Liu, Xiaofeng Wei, Xuxu Wang, Yuanhui Zheng. New Versatile Synthetic Route for the Preparation of Metal Phosphate Decorated Hydrogen Evolution Photocatalysts. Inorganic Chemistry 2020, 59 (2) , 1566-1575. https://doi.org/10.1021/acs.inorgchem.9b03475
  13. Qianbao Wu, Mengjun Xiao, Wei Wang, Chunhua Cui. In Situ Coordination Environment Tuning of Cobalt Sites for Efficient Water Oxidation. ACS Catalysis 2019, 9 (12) , 11734-11742. https://doi.org/10.1021/acscatal.9b03762
  14. Nathaly Ortiz Peña, Dris Ihiawakrim, Madeleine Han, Benedikt Lassalle-Kaiser, Sophie Carenco, Clément Sanchez, Christel Laberty-Robert, David Portehault, Ovidiu Ersen. Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation. ACS Nano 2019, 13 (10) , 11372-11381. https://doi.org/10.1021/acsnano.9b04745
  15. Jingfu He, Aoxue Huang, Noah J. J. Johnson, Kevan E. Dettelbach, David M. Weekes, Yang Cao, Curtis P. Berlinguette. Stabilizing Copper for CO2 Reduction in Low-Grade Electrolyte. Inorganic Chemistry 2018, 57 (23) , 14624-14631. https://doi.org/10.1021/acs.inorgchem.8b02311
  16. Mayada Sabri, Hannah J. King, Rosalind J. Gummow, Xunyu Lu, Chuan Zhao, Michael Oelgemöller, Shery L. Y. Chang, Rosalie K. Hocking. Oxidant or Catalyst for Oxidation? A Study of How Structure and Disorder Change the Selectivity for Direct versus Catalytic Oxidation Mediated by Manganese(III,IV) Oxides. Chemistry of Materials 2018, 30 (22) , 8244-8256. https://doi.org/10.1021/acs.chemmater.8b03661
  17. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  18. Rosalie K. Hocking, Rosalind J. Gummow, Hannah J. King, Mayada Sabri, Peter Kappen, Christian Dwyer, Shery L. Y. Chang. Direct Formation of 2D-MnOx under Conditions of Water Oxidation Catalysis. ACS Applied Nano Materials 2018, 1 (4) , 1603-1611. https://doi.org/10.1021/acsanm.8b00095
  19. Kelsey K. Sakimoto, Nikolay Kornienko, Stefano Cestellos-Blanco, Jongwoo Lim, Chong Liu, and Peidong Yang . Physical Biology of the Materials–Microorganism Interface. Journal of the American Chemical Society 2018, 140 (6) , 1978-1985. https://doi.org/10.1021/jacs.7b11135
  20. Kazuhiro Takanabe . Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catalysis 2017, 7 (11) , 8006-8022. https://doi.org/10.1021/acscatal.7b02662
  21. Jann Odrobina, Julius Scholz, Marcel Risch, Sebastian Dechert, Christian Jooss, and Franc Meyer . Chasing the Achilles’ Heel in Hybrid Systems of Diruthenium Water Oxidation Catalysts Anchored on Indium Tin Oxide: The Stability of the Anchor. ACS Catalysis 2017, 7 (9) , 6235-6244. https://doi.org/10.1021/acscatal.7b01883
  22. Fabrizio Sordello, Manuel Ghibaudo, and Claudio Minero . Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst. ACS Applied Materials & Interfaces 2017, 9 (28) , 23800-23809. https://doi.org/10.1021/acsami.7b05901
  23. Daniel S. Cook, Yue Wu, Karla Lienau, René Moré, Reza J. Kashtiban, Oxana V. Magdysyuk, Greta R. Patzke, and Richard I. Walton . Time-Resolved Powder X-ray Diffraction of the Solvothermal Crystallization of Cobalt Gallate Spinel Photocatalyst Reveals Transient Layered Double Hydroxides. Chemistry of Materials 2017, 29 (12) , 5053-5057. https://doi.org/10.1021/acs.chemmater.7b01761
  24. Lijuan Han, Pengyi Tang, Álvaro Reyes-Carmona, Bárbara Rodríguez-García, Mabel Torréns, Joan Ramon Morante, Jordi Arbiol, and Jose Ramon Galan-Mascaros . Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching. Journal of the American Chemical Society 2016, 138 (49) , 16037-16045. https://doi.org/10.1021/jacs.6b09778
  25. James R. McKone, Debbie C. Crans, Cheryl Martin, John Turner, Anil R. Duggal, and Harry B. Gray . Translational Science for Energy and Beyond. Inorganic Chemistry 2016, 55 (18) , 9131-9143. https://doi.org/10.1021/acs.inorgchem.6b01097
  26. Jonathan D. Herr and Ryan P. Steele . Ion–Radical Pair Separation in Larger Oxidized Water Clusters, (H2O)+n=6–21. The Journal of Physical Chemistry A 2016, 120 (36) , 7225-7239. https://doi.org/10.1021/acs.jpca.6b07465
  27. Justin J. Talbot, Xiaolu Cheng, Jonathan D. Herr, and Ryan P. Steele . Vibrational Signatures of Electronic Properties in Oxidized Water: Unraveling the Anomalous Spectrum of the Water Dimer Cation. Journal of the American Chemical Society 2016, 138 (36) , 11936-11945. https://doi.org/10.1021/jacs.6b07182
  28. Yingxue Chang, Nai-En Shi, Shulin Zhao, Dongdong Xu, Chunyan Liu, Yu-Jia Tang, Zhihui Dai, Ya-Qian Lan, Min Han, and Jianchun Bao . Coralloid Co2P2O7 Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (34) , 22534-22544. https://doi.org/10.1021/acsami.6b07209
  29. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
  30. Dongha Kim, Dong Ryeol Whang, and Soo Young Park . Self-Healing of Molecular Catalyst and Photosensitizer on Metal–Organic Framework: Robust Molecular System for Photocatalytic H2 Evolution from Water. Journal of the American Chemical Society 2016, 138 (28) , 8698-8701. https://doi.org/10.1021/jacs.6b04552
  31. Zaki N. Zahran, Eman A. Mohamed, and Yoshinori Naruta . Kinetics and Mechanism of Heterogeneous Water Oxidation by α-Mn2O3 Sintered on an FTO Electrode. ACS Catalysis 2016, 6 (7) , 4470-4476. https://doi.org/10.1021/acscatal.6b00413
  32. Satnam Singh Gujral, Alexandr N. Simonov, Masanobu Higashi, Xi-Ya Fang, Ryu Abe, and Leone Spiccia . Highly Dispersed Cobalt Oxide on TaON as Efficient Photoanodes for Long-Term Solar Water Splitting. ACS Catalysis 2016, 6 (5) , 3404-3417. https://doi.org/10.1021/acscatal.6b00629
  33. Xavier Elias, Quan Liu, Carolina Gimbert-Suriñach, Roc Matheu, Paola Mantilla-Perez, Alberto Martinez-Otero, Xavier Sala, Jordi Martorell, and Antoni Llobet . Neutral Water Splitting Catalysis with a High FF Triple Junction Polymer Cell. ACS Catalysis 2016, 6 (5) , 3310-3316. https://doi.org/10.1021/acscatal.6b01036
  34. Mauro Schilling, Greta R. Patzke, Jürg Hutter, and Sandra Luber . Computational Investigation and Design of Cobalt Aqua Complexes for Homogeneous Water Oxidation. The Journal of Physical Chemistry C 2016, 120 (15) , 7966-7975. https://doi.org/10.1021/acs.jpcc.6b00712
  35. Andrew M. Ullman, Casey N. Brodsky, Nancy Li, Shao-Liang Zheng, and Daniel G. Nocera . Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. Journal of the American Chemical Society 2016, 138 (12) , 4229-4236. https://doi.org/10.1021/jacs.6b00762
  36. Mohammad Mahdi Najafpour, Gernot Renger, Małgorzata Hołyńska, Atefeh Nemati Moghaddam, Eva-Mari Aro, Robert Carpentier, Hiroshi Nishihara, Julian J. Eaton-Rye, Jian-Ren Shen, and Suleyman I. Allakhverdiev . Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews 2016, 116 (5) , 2886-2936. https://doi.org/10.1021/acs.chemrev.5b00340
  37. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
  38. Dennis L. Ashford, Melissa K. Gish, Aaron K. Vannucci, M. Kyle Brennaman, Joseph L. Templeton, John M. Papanikolas, and Thomas J. Meyer . Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews 2015, 115 (23) , 13006-13049. https://doi.org/10.1021/acs.chemrev.5b00229
  39. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  40. Isolda Roger and Mark D. Symes . Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations. Journal of the American Chemical Society 2015, 137 (43) , 13980-13988. https://doi.org/10.1021/jacs.5b08139
  41. Michaela S. Burke, Shihui Zou, Lisa J. Enman, Jaclyn E. Kellon, Christian A. Gabor, Erica Pledger, and Shannon W. Boettcher . Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media. The Journal of Physical Chemistry Letters 2015, 6 (18) , 3737-3742. https://doi.org/10.1021/acs.jpclett.5b01650
  42. Hongfei Liu, Mauro Schilling, Maxim Yulikov, Sandra Luber, and Greta R. Patzke . Homogeneous Photochemical Water Oxidation with Cobalt Chloride in Acidic Media. ACS Catalysis 2015, 5 (9) , 4994-4999. https://doi.org/10.1021/acscatal.5b01101
  43. Tatsuya Shinagawa and Kazuhiro Takanabe . Electrocatalytic Hydrogen Evolution under Densely Buffered Neutral pH Conditions. The Journal of Physical Chemistry C 2015, 119 (35) , 20453-20458. https://doi.org/10.1021/acs.jpcc.5b05295
  44. Masaaki Yoshida, Yosuke Mitsutomi, Takehiro Mineo, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Direct Observation of Active Nickel Oxide Cluster in Nickel–Borate Electrocatalyst for Water Oxidation by In Situ O K-Edge X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (33) , 19279-19286. https://doi.org/10.1021/acs.jpcc.5b06102
  45. Alireza Kargar, Serdar Yavuz, Tae Kyoung Kim, Chin-Hung Liu, Cihan Kuru, Cyrus S. Rustomji, Sungho Jin, and Prabhakar R. Bandaru . Solution-Processed CoFe2O4 Nanoparticles on 3D Carbon Fiber Papers for Durable Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2015, 7 (32) , 17851-17856. https://doi.org/10.1021/acsami.5b04270
  46. YuPing Liu, Si-Xuan Guo, Liang Ding, C. André Ohlin, Alan M. Bond, and Jie Zhang . Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts. ACS Applied Materials & Interfaces 2015, 7 (30) , 16632-16644. https://doi.org/10.1021/acsami.5b04219
  47. Ahamed Irshad and Nookala Munichandraiah . High Catalytic Activity of Amorphous Ir-Pi for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2015, 7 (29) , 15765-15776. https://doi.org/10.1021/acsami.5b02601
  48. Prashanth W. Menezes, Arindam Indra, Diego González-Flores, Nastaran Ranjbar Sahraie, Ivelina Zaharieva, Michael Schwarze, Peter Strasser, Holger Dau, and Matthias Driess . High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity. ACS Catalysis 2015, 5 (4) , 2017-2027. https://doi.org/10.1021/cs501724v
  49. Michaela S. Burke, Matthew G. Kast, Lena Trotochaud, Adam M. Smith, and Shannon W. Boettcher . Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society 2015, 137 (10) , 3638-3648. https://doi.org/10.1021/jacs.5b00281
  50. Mohammad Mahdi Najafpour, Monika Fekete, Davood Jafarian Sedigh, Eva-Mari Aro, Robert Carpentier, Julian J. Eaton-Rye, Hiroshi Nishihara, Jian-Ren Shen, Suleyman I. Allakhverdiev, and Leone Spiccia . Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catalysis 2015, 5 (3) , 1499-1512. https://doi.org/10.1021/cs5015157
  51. Chunmei Ding, Xin Zhou, Jingying Shi, Pengli Yan, Zhiliang Wang, Guiji Liu, and Can Li . Abnormal Effects of Cations (Li+, Na+, and K+) on Photoelectrochemical and Electrocatalytic Water Splitting. The Journal of Physical Chemistry B 2015, 119 (8) , 3560-3566. https://doi.org/10.1021/acs.jpcb.5b00713
  52. Jonathan D. Herr, Justin Talbot, and Ryan P. Steele . Structural Progression in Clusters of Ionized Water, (H2O)n=1–5+. The Journal of Physical Chemistry A 2015, 119 (4) , 752-766. https://doi.org/10.1021/jp509698y
  53. Robert H. Crabtree . Deactivation in Homogeneous Transition Metal Catalysis: Causes, Avoidance, and Cure. Chemical Reviews 2015, 115 (1) , 127-150. https://doi.org/10.1021/cr5004375
  54. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  55. Arindam Indra, Prashanth W. Menezes, Nastaran Ranjbar Sahraie, Arno Bergmann, Chittaranjan Das, Massimo Tallarida, Dieter Schmeißer, Peter Strasser, and Matthias Driess . Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. Journal of the American Chemical Society 2014, 136 (50) , 17530-17536. https://doi.org/10.1021/ja509348t
  56. Xiaohui Deng and Harun Tüysüz . Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges. ACS Catalysis 2014, 4 (10) , 3701-3714. https://doi.org/10.1021/cs500713d
  57. Xin Yang, Janitha Walpita, Ekaterina Mirzakulova, Shameema Oottikkal, Christopher M. Hadad, and Ksenija D. Glusac . Mechanistic Studies of Electrode-Assisted Catalytic Oxidation by Flavinium and Acridinium Cations. ACS Catalysis 2014, 4 (8) , 2635-2644. https://doi.org/10.1021/cs5005135
  58. Pauline Bornoz, Fatwa F. Abdi, S. David Tilley, Bernard Dam, Roel van de Krol, Michael Graetzel, and Kevin Sivula . A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting. The Journal of Physical Chemistry C 2014, 118 (30) , 16959-16966. https://doi.org/10.1021/jp500441h
  59. Yi Liu and Daniel G. Nocera . Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. The Journal of Physical Chemistry C 2014, 118 (30) , 17060-17066. https://doi.org/10.1021/jp5008347
  60. Sara Goberna-Ferrón, Willinton Y. Hernández, Barbara Rodríguez-García, and José Ramón Galán-Mascarós . Light-Driven Water Oxidation with Metal Hexacyanometallate Heterogeneous Catalysts. ACS Catalysis 2014, 4 (6) , 1637-1641. https://doi.org/10.1021/cs500298e
  61. Michele Orlandi, Stefano Caramori, Federico Ronconi, Carlo A. Bignozzi, Zakaria El Koura, Nicola Bazzanella, Laura Meda, and Antonio Miotello . Pulsed-Laser Deposition of Nanostructured Iron Oxide Catalysts for Efficient Water Oxidation. ACS Applied Materials & Interfaces 2014, 6 (9) , 6186-6190. https://doi.org/10.1021/am501021e
  62. Michael Huynh, D. Kwabena Bediako, and Daniel G. Nocera . A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society 2014, 136 (16) , 6002-6010. https://doi.org/10.1021/ja413147e
  63. Min-Rui Gao, Xuan Cao, Qiang Gao, Yun-Fei Xu, Ya-Rong Zheng, Jun Jiang, and Shu-Hong Yu . Nitrogen-Doped Graphene Supported CoSe2 Nanobelt Composite Catalyst for Efficient Water Oxidation. ACS Nano 2014, 8 (4) , 3970-3978. https://doi.org/10.1021/nn500880v
  64. Jordan J. Stracke and Richard G. Finke . Distinguishing Homogeneous from Heterogeneous Water Oxidation Catalysis when Beginning with Polyoxometalates. ACS Catalysis 2014, 4 (3) , 909-933. https://doi.org/10.1021/cs4011716
  65. Chengyu He, Xinglong Wu, and Zhiqiang He . Amorphous Nickel-Based Thin Film As a Janus Electrocatalyst for Water Splitting. The Journal of Physical Chemistry C 2014, 118 (9) , 4578-4584. https://doi.org/10.1021/jp408153b
  66. Leanne G. Bloor, Pedro I. Molina, Mark D. Symes, and Leroy Cronin . Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ. Journal of the American Chemical Society 2014, 136 (8) , 3304-3311. https://doi.org/10.1021/ja5003197
  67. James D. Blakemore, Harry B. Gray, Jay R. Winkler, and Astrid M. Müller . Co3O4 Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids. ACS Catalysis 2013, 3 (11) , 2497-2500. https://doi.org/10.1021/cs400639b
  68. Andrew M. Ullman and Daniel G. Nocera . Mechanism of Cobalt Self-Exchange Electron Transfer. Journal of the American Chemical Society 2013, 135 (40) , 15053-15061. https://doi.org/10.1021/ja404469y
  69. Joseph DePasquale, Ismael Nieto, Lauren E. Reuther, Corey J. Herbst-Gervasoni, Jared J. Paul, Vadym Mochalin, Matthias Zeller, Christine M. Thomas, Anthony W. Addison, and Elizabeth T. Papish . Iridium Dihydroxybipyridine Complexes Show That Ligand Deprotonation Dramatically Speeds Rates of Catalytic Water Oxidation. Inorganic Chemistry 2013, 52 (16) , 9175-9183. https://doi.org/10.1021/ic302448d
  70. D. Kwabena Bediako, Cyrille Costentin, Evan C. Jones, Daniel G. Nocera, and Jean-Michel Savéant . Proton–Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst. Journal of the American Chemical Society 2013, 135 (28) , 10492-10502. https://doi.org/10.1021/ja403656w
  71. Christopher L. Farrow, D. Kwabena Bediako, Yogesh Surendranath, Daniel G. Nocera, and Simon J. L. Billinge . Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst. Journal of the American Chemical Society 2013, 135 (17) , 6403-6406. https://doi.org/10.1021/ja401276f
  72. Ahamed Irshad and Nookala Munichandraiah . EQCM Investigation of Electrochemical Deposition and Stability of Co–Pi Oxygen Evolution Catalyst of Solar Energy Storage. The Journal of Physical Chemistry C 2013, 117 (16) , 8001-8008. https://doi.org/10.1021/jp312752q
  73. Shannon C. Riha, Benjamin M. Klahr, Eric C. Tyo, Sönke Seifert, Stefan Vajda, Michael J. Pellin, Thomas W. Hamann, and Alex B. F. Martinson . Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite. ACS Nano 2013, 7 (3) , 2396-2405. https://doi.org/10.1021/nn305639z
  74. D. Kwabena Bediako, Yogesh Surendranath, and Daniel G. Nocera . Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. Journal of the American Chemical Society 2013, 135 (9) , 3662-3674. https://doi.org/10.1021/ja3126432
  75. Garett G. W. Lee and Shelley D. Minteer . Greener Method to a Manganese Oxygen Reduction Reaction Electrocatalyst: Anion Electrolyte Effects on Electrocatalytic Performance. ACS Sustainable Chemistry & Engineering 2013, 1 (3) , 359-363. https://doi.org/10.1021/sc300162d
  76. Xiao Liang Hu, Simone Piccinin, Alessandro Laio, and Stefano Fabris . Atomistic Structure of Cobalt-Phosphate Nanoparticles for Catalytic Water Oxidation. ACS Nano 2012, 6 (12) , 10497-10504. https://doi.org/10.1021/nn3044325
  77. Seif Yusuf and Feng Jiao . Effect of the Support on the Photocatalytic Water Oxidation Activity of Cobalt Oxide Nanoclusters. ACS Catalysis 2012, 2 (12) , 2753-2760. https://doi.org/10.1021/cs300581k
  78. Lucas C. C. Ferraz, Waldemir M. Carvalho, Jr., Denise Criado, and Flavio L. Souza . Vertically Oriented Iron Oxide Films Produced by Hydrothermal Process: Effect of Thermal Treatment on the Physical Chemical Properties. ACS Applied Materials & Interfaces 2012, 4 (10) , 5515-5523. https://doi.org/10.1021/am301425e
  79. Seung Woo Lee, Christopher Carlton, Marcel Risch, Yogesh Surendranath, Shuo Chen, Sho Furutsuki, Atsuo Yamada, Daniel G. Nocera, and Yang Shao-Horn . The Nature of Lithium Battery Materials under Oxygen Evolution Reaction Conditions. Journal of the American Chemical Society 2012, 134 (41) , 16959-16962. https://doi.org/10.1021/ja307814j
  80. Benjamin Klahr, Sixto Gimenez, Francisco Fabregat-Santiago, Juan Bisquert, and Thomas W. Hamann . Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with “Co–Pi”-Coated Hematite Electrodes. Journal of the American Chemical Society 2012, 134 (40) , 16693-16700. https://doi.org/10.1021/ja306427f
  81. Rony S. Khnayzer, Michael W. Mara, Jier Huang, Megan L. Shelby, Lin X. Chen, and Felix N. Castellano . Structure and Activity of Photochemically Deposited “CoPi” Oxygen Evolving Catalyst on Titania. ACS Catalysis 2012, 2 (10) , 2150-2160. https://doi.org/10.1021/cs3005192
  82. Sandeep K. Kondaveeti, Shivaiah Vaddypally, Carol Lam, Daigorou Hirai, Ni Ni, Robert J. Cava, and Michael J. Zdilla . Synthesis, Structure, and Magnetic Studies of Manganese–Oxygen Clusters of Reduced Coordination Number, Featuring an Unchelated, 5-Coordinate Octanuclear Manganese Cluster with Water-Derived Oxo Ligands. Inorganic Chemistry 2012, 51 (19) , 10095-10104. https://doi.org/10.1021/ic202448c
  83. Tomer Zidki, Lihua Zhang, Vladimir Shafirovich, and Sergei V. Lymar . Water Oxidation Catalyzed by Cobalt(II) Adsorbed on Silica Nanoparticles. Journal of the American Chemical Society 2012, 134 (35) , 14275-14278. https://doi.org/10.1021/ja304030y
  84. James Landon, Ethan Demeter, Nilay İnoğlu, Chris Keturakis, Israel E. Wachs, Relja Vasić, Anatoly I. Frenkel, and John R. Kitchin . Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis 2012, 2 (8) , 1793-1801. https://doi.org/10.1021/cs3002644
  85. Yabo Wang, Yongsheng Wang, Rongrong Jiang, and Rong Xu . Cobalt Phosphate–ZnO Composite Photocatalysts for Oxygen Evolution from Photocatalytic Water Oxidation. Industrial & Engineering Chemistry Research 2012, 51 (30) , 9945-9951. https://doi.org/10.1021/ie2027469
  86. C. J. Dibble, S. T. Akin, S. Ard, C. P. Fowler, and M. A. Duncan . Photodissociation of Cobalt and Nickel Oxide Cluster Cations. The Journal of Physical Chemistry A 2012, 116 (22) , 5398-5404. https://doi.org/10.1021/jp302560p
  87. Daniel G. Nocera . The Artificial Leaf. Accounts of Chemical Research 2012, 45 (5) , 767-776. https://doi.org/10.1021/ar2003013
  88. Timothy R. Cook, Brian D. McCarthy, Daniel A. Lutterman, and Daniel G. Nocera . Halogen Oxidation and Halogen Photoelimination Chemistry of a Platinum–Rhodium Heterobimetallic Core. Inorganic Chemistry 2012, 51 (9) , 5152-5163. https://doi.org/10.1021/ic300004x
  89. D. Kwabena Bediako, Benedikt Lassalle-Kaiser, Yogesh Surendranath, Junko Yano, Vittal K. Yachandra, and Daniel G. Nocera . Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst. Journal of the American Chemical Society 2012, 134 (15) , 6801-6809. https://doi.org/10.1021/ja301018q
  90. Yogesh Surendranath, Daniel A. Lutterman, Yi Liu, and Daniel G. Nocera . Nucleation, Growth, and Repair of a Cobalt-Based Oxygen Evolving Catalyst. Journal of the American Chemical Society 2012, 134 (14) , 6326-6336. https://doi.org/10.1021/ja3000084
  91. Donge Wang, Rengui Li, Jian Zhu, Jingying Shi, Jingfeng Han, Xu Zong, and Can Li . Photocatalytic Water Oxidation on BiVO4 with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst. The Journal of Physical Chemistry C 2012, 116 (8) , 5082-5089. https://doi.org/10.1021/jp210584b
  92. Min-Rui Gao, Yun-Fei Xu, Jun Jiang, Ya-Rong Zheng, and Shu-Hong Yu . Water Oxidation Electrocatalyzed by an Efficient Mn3O4/CoSe2 Nanocomposite. Journal of the American Chemical Society 2012, 134 (6) , 2930-2933. https://doi.org/10.1021/ja211526y
  93. Diane K. Zhong, Sujung Choi, and Daniel R. Gamelin . Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO4. Journal of the American Chemical Society 2011, 133 (45) , 18370-18377. https://doi.org/10.1021/ja207348x
  94. J. Gregory McAlpin, Troy A. Stich, C. André Ohlin, Yogesh Surendranath, Daniel G. Nocera, William H. Casey, and R. David Britt . Electronic Structure Description of a [Co(III)3Co(IV)O4] Cluster: A Model for the Paramagnetic Intermediate in Cobalt-Catalyzed Water Oxidation. Journal of the American Chemical Society 2011, 133 (39) , 15444-15452. https://doi.org/10.1021/ja202320q
  95. James B. Gerken, J. Gregory McAlpin, Jamie Y. C. Chen, Matthew L. Rigsby, William H. Casey, R. David Britt, and Shannon S. Stahl . Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0–14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity. Journal of the American Chemical Society 2011, 133 (36) , 14431-14442. https://doi.org/10.1021/ja205647m
  96. Lee-Ping Wang and Troy Van Voorhis . Direct-Coupling O2 Bond Forming a Pathway in Cobalt Oxide Water Oxidation Catalysts. The Journal of Physical Chemistry Letters 2011, 2 (17) , 2200-2204. https://doi.org/10.1021/jz201021n
  97. Heechang Ye, Hyun S. Park, and Allen J. Bard . Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO4 Photocatalysts by Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C 2011, 115 (25) , 12464-12470. https://doi.org/10.1021/jp200852c
  98. Dilek K. Dogutan, Robert McGuire, Jr., and Daniel G. Nocera . Electocatalytic Water Oxidation by Cobalt(III) Hangman β-Octafluoro Corroles. Journal of the American Chemical Society 2011, 133 (24) , 9178-9180. https://doi.org/10.1021/ja202138m
  99. Mark D. Symes, Yogesh Surendranath, Daniel A. Lutterman, and Daniel G. Nocera . Bidirectional and Unidirectional PCET in a Molecular Model of a Cobalt-Based Oxygen-Evolving Catalyst. Journal of the American Chemical Society 2011, 133 (14) , 5174-5177. https://doi.org/10.1021/ja110908v
  100. Kenneth J. McDonald and Kyoung-Shin Choi . Photodeposition of Co-Based Oxygen Evolution Catalysts on α-Fe2O3 Photoanodes. Chemistry of Materials 2011, 23 (7) , 1686-1693. https://doi.org/10.1021/cm1020614
Load more citations