Nature of Activated Manganese Oxide for Oxygen Evolution

View Author Information
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
§ Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
Cite this: J. Am. Chem. Soc. 2015, 137, 47, 14887–14904
Publication Date (Web):November 2, 2015
https://doi.org/10.1021/jacs.5b06382
Copyright © 2015 American Chemical Society
Article Views
13697
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (8 MB)
Supporting Info (1)»

Abstract

Electrodeposited manganese oxide films (MnOx) are promising stable oxygen evolution catalysts. They are able to catalyze the oxygen evolution reaction in acidic solutions but with only modest activity when prepared by constant anodic potential deposition. We now show that the performance of these catalysts is improved when they are “activated” by potential cycling protocols, as measured by Tafel analysis (where lower slope is better): upon activation the Tafel slope decreases from ∼120 to ∼70 mV/decade in neutral conditions and from ∼650 to ∼90 mV/decade in acidic solutions. Electrochemical, spectroscopic, and structural methods were employed to study the activation process and support a mechanism where the original birnessite-like MnOx (δ-MnO2) undergoes a phase change, induced by comproportionation with cathodically generated Mn(OH)2, to a hausmannite-like intermediate (α-Mn3O4). Subsequent anodic conditioning from voltage cycling or water oxidation produces a disordered birnessite-like phase, which is highly active for oxygen evolution. At pH 2.5, the current density of activated MnOx (at an overpotential of 600 mV) is 2 orders of magnitude higher than that of the original MnOx and begins to approach that of Ru and Ir oxides in acid.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b06382.

  • Figure S1, CV and Tafel plot (OER) of MnOx deposited by CV without buffer; Figure S2, Tafel plots (OER) of MP deposited MnOx, varying cathodic E; Figure S3, Faradaic efficiency of OER on activated MnOx by O2 sensor; Figure S4, OER stability of activated MnOx at pH 7.0, 2.5, and 0.3; Figure S5, Tafel plots of OER on activated MnOx before and after stability test; Figure S6, electrochemical surface area measurements of FTO and C cloth; Figure S7, electrochemical impedance spectroscopy of MnOx films; Figure S8, CV–QCM it plot of MnOx deposition in Mn2+ solution with KNO3; Figure S9, QCM plot of multipotential deposition of activated MnOx; Figure S10, CV–QCM plot in Mn2+-free KNO3 solution; Figure S11, CV–QCM plot in Mn2+ buffered by MePi at pH 8.0; Figure S12, QCM plot of cathodic deposition at −0.4 V and with anodic pulse; Figure S13, high-resolution XPS of manganese oxide control compounds; Figure S14, PXRD patterns of MnOx thin films; Figure S15, PXRD patterns of manganese oxide control compounds; Figure S16, PDF of manganese oxide control compounds; Figure S17, Tafel plot of as-deposited MnOx showing MnO4 region at high E; Table S1, fitting parameters for electrochemical impedance spectroscopy; Table S2, Pearson’s coefficients of PDF pairs between MnOx and control samples; and Table S3, summary of PDF fitting results for MnOx samples and control samples (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 272 publications.

  1. Anuj Bisht, Pradeep Kumar Yadav, Shikha Dhakar, Sudhanshu Sharma. Pt4+ as an Active Site for Oxygen Evolution Reaction in La1–xSrxCo1–yPtyO3. The Journal of Physical Chemistry C 2021, 125 (46) , 25488-25496. https://doi.org/10.1021/acs.jpcc.1c06426
  2. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
  3. Hongmin Seo, Sunghak Park, Kang Hee Cho, Seungwoo Choi, Changwan Ko, Hyacinthe Randriamahazaka, Ki Tae Nam. Complex Impedance Analysis on Charge Accumulation Step of Mn3O4 Nanoparticles during Water Oxidation. ACS Omega 2021, 6 (28) , 18404-18413. https://doi.org/10.1021/acsomega.1c02397
  4. Hongmei Tang, Yin Yin, Yang Huang, Jiawei Wang, Lixiang Liu, Zhe Qu, Hua Zhang, Yang Li, Minshen Zhu, Oliver G. Schmidt. Battery-Everywhere Design Based on a Cathodeless Configuration with High Sustainability and Energy Density. ACS Energy Letters 2021, 6 (5) , 1859-1868. https://doi.org/10.1021/acsenergylett.1c00555
  5. Alain Manceau, Stephan N. Steinmann. Nature of High- and Low-Affinity Metal Surface Sites on Birnessite Nanosheets. ACS Earth and Space Chemistry 2021, 5 (1) , 66-76. https://doi.org/10.1021/acsearthspacechem.0c00278
  6. Paul Plate, Christian Höhn, Ulrike Bloeck, Peter Bogdanoff, Sebastian Fiechter, Fatwa F. Abdi, Roel van de Krol, Aafke C. Bronneberg. On the Origin of the OER Activity of Ultrathin Manganese Oxide Films. ACS Applied Materials & Interfaces 2021, 13 (2) , 2428-2436. https://doi.org/10.1021/acsami.0c15977
  7. Shun Tsunekawa, Futaba Yamamoto, Ke-Hsuan Wang, Masanari Nagasaka, Hayato Yuzawa, Satoru Takakusagi, Hiroshi Kondoh, Kiyotaka Asakura, Takeshi Kawai, Masaaki Yoshida. Operando Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2020, 124 (43) , 23611-23618. https://doi.org/10.1021/acs.jpcc.0c05571
  8. Shanfu Sun, Xin Zhou, Bowen Cong, Weizhao Hong, Gang Chen. Tailoring the d-Band Centers Endows (NixFe1–x)2P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catalysis 2020, 10 (16) , 9086-9097. https://doi.org/10.1021/acscatal.0c01273
  9. Mohammad Reza Mohammadi, Stefan Loos, Petko Chernev, Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Paul Kubella, Katharina Klingan, Rodney D. L. Smith, Holger Dau. Exploring the Limits of Self-Repair in Cobalt Oxide Films for Electrocatalytic Water Oxidation. ACS Catalysis 2020, 10 (14) , 7990-7999. https://doi.org/10.1021/acscatal.0c01944
  10. Kamalpreet Singh, Jose de Jesus Guillen Campos, Filip Dinic, Zhaomin Hao, Tiange Yuan, Oleksandr Voznyy. Manganese MOF Enables Efficient Oxygen Evolution in Acid. ACS Materials Letters 2020, 2 (7) , 798-800. https://doi.org/10.1021/acsmaterialslett.0c00123
  11. Tianchun Lang, Shuangqiang Fang, Tao Han, Mingguang Wang, Donglin Yang, Jun Wang, Shixiu Cao, Lingling Peng, Bitao Liu, Mingsheng Cai, Yang Zhong, Vladimir I. Korepanov, Aleksey N. Yakovlev. Phase Transformation of a K2GeF6 Polymorph for Phosphors Driven by a Simple Precipitation–Dissolution Equilibrium and Ion Exchange. Inorganic Chemistry 2020, 59 (12) , 8298-8307. https://doi.org/10.1021/acs.inorgchem.0c00701
  12. Katam Srinivas, Yingjiong Lu, Yuanfu Chen, Wanli Zhang, Dongxu Yang. FeNi3–Fe3O4 Heterogeneous Nanoparticles Anchored on 2D MOF Nanosheets/1D CNT Matrix as Highly Efficient Bifunctional Electrocatalysts for Water Splitting. ACS Sustainable Chemistry & Engineering 2020, 8 (9) , 3820-3831. https://doi.org/10.1021/acssuschemeng.9b07182
  13. Indroneil Roy, Qi Wang, Vidhya Chakrapani. Nature of Reaction Intermediates and Origin of Bifunctionality in Manganese Oxide. The Journal of Physical Chemistry C 2020, 124 (9) , 5286-5299. https://doi.org/10.1021/acs.jpcc.0c00714
  14. Qiuhua Liang, Geert Brocks, Xueqing Zhang, Anja Bieberle-Hütter. Monolayer Nitrides Doped with Transition Metals as Efficient Catalysts for Water Oxidation: The Singular Role of Nickel. The Journal of Physical Chemistry C 2019, 123 (43) , 26289-26298. https://doi.org/10.1021/acs.jpcc.9b06704
  15. Florian D. Speck, Pietro G. Santori, Frédéric Jaouen, Serhiy Cherevko. Mechanisms of Manganese Oxide Electrocatalysts Degradation during Oxygen Reduction and Oxygen Evolution Reactions. The Journal of Physical Chemistry C 2019, 123 (41) , 25267-25277. https://doi.org/10.1021/acs.jpcc.9b07751
  16. Prashant Kumar Gupta, Arihant Bhandari, Sulay Saha, Jishnu Bhattacharya, Raj Ganesh S. Pala. Modulating Oxygen Evolution Reactivity in MnO2 through Polymorphic Engineering. The Journal of Physical Chemistry C 2019, 123 (36) , 22345-22357. https://doi.org/10.1021/acs.jpcc.9b05823
  17. Kang-Gyu Lee, Mani Balamurugan, Sunghak Park, Heonjin Ha, Kyoungsuk Jin, Hongmin Seo, Ki Tae Nam. Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis. ACS Energy Letters 2019, 4 (8) , 1918-1929. https://doi.org/10.1021/acsenergylett.9b00541
  18. Hyeon Jeong Lee, Seoin Back, Ji Hoon Lee, Sun Hee Choi, Yousung Jung, Jang Wook Choi. Mixed Transition Metal Oxide with Vacancy-Induced Lattice Distortion for Enhanced Catalytic Activity of Oxygen Evolution Reaction. ACS Catalysis 2019, 9 (8) , 7099-7108. https://doi.org/10.1021/acscatal.9b01298
  19. Thomas P. Keane, Daniel G. Nocera. Selective Production of Oxygen from Seawater by Oxidic Metallate Catalysts. ACS Omega 2019, 4 (7) , 12860-12864. https://doi.org/10.1021/acsomega.9b01751
  20. Alexandra V. Soldatova, Gurusamy Balakrishnan, Oyeyemi F. Oyerinde, Christine A. Romano, Bradley M. Tebo, Thomas G. Spiro. Biogenic and Synthetic MnO2 Nanoparticles: Size and Growth Probed with Absorption and Raman Spectroscopies and Dynamic Light Scattering. Environmental Science & Technology 2019, 53 (8) , 4185-4197. https://doi.org/10.1021/acs.est.8b05806
  21. Yun Li, Shanyu Wang, James R. Salvador, Jinpeng Wu, Bo Liu, Wanli Yang, Jiong Yang, Wenqing Zhang, Jun Liu, Jihui Yang. Reaction Mechanisms for Long-Life Rechargeable Zn/MnO2 Batteries. Chemistry of Materials 2019, 31 (6) , 2036-2047. https://doi.org/10.1021/acs.chemmater.8b05093
  22. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  23. Shanfu Sun, Chade Lv, Weizhao Hong, Xin Zhou, Fugui Wu, Gang Chen. Dual Tuning of Composition and Nanostructure of Hierarchical Hollow Nanopolyhedra Assembled by NiCo-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials 2019, 2 (1) , 312-319. https://doi.org/10.1021/acsaem.8b01318
  24. Ke Fan, Haiyuan Zou, Yue Lu, Hong Chen, Fusheng Li, Jinxuan Liu, Licheng Sun, Lianpeng Tong, Michael F. Toney, Manling Sui, Jiaguo Yu. Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. ACS Nano 2018, 12 (12) , 12369-12379. https://doi.org/10.1021/acsnano.8b06312
  25. Lan Zhou, Aniketa Shinde, Joseph H. Montoya, Arunima Singh, Sheraz Gul, Junko Yano, Yifan Ye, Ethan J. Crumlin, Matthias H. Richter, Jason K. Cooper, Helge S. Stein, Joel A. Haber, Kristin A. Persson, John M. Gregoire. Rutile Alloys in the Mn–Sb–O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid. ACS Catalysis 2018, 8 (12) , 10938-10948. https://doi.org/10.1021/acscatal.8b02689
  26. Mayada Sabri, Hannah J. King, Rosalind J. Gummow, Xunyu Lu, Chuan Zhao, Michael Oelgemöller, Shery L. Y. Chang, Rosalie K. Hocking. Oxidant or Catalyst for Oxidation? A Study of How Structure and Disorder Change the Selectivity for Direct versus Catalytic Oxidation Mediated by Manganese(III,IV) Oxides. Chemistry of Materials 2018, 30 (22) , 8244-8256. https://doi.org/10.1021/acs.chemmater.8b03661
  27. Johannes G. Vos, Tim A. Wezendonk, Adriaan W. Jeremiasse, Marc T. M. Koper. MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution. Journal of the American Chemical Society 2018, 140 (32) , 10270-10281. https://doi.org/10.1021/jacs.8b05382
  28. Jue Liu, Lei Yu, Enyuan Hu, Beth S. Guiton, Xiao-Qing Yang, Katharine Page. Large-Scale Synthesis and Comprehensive Structure Study of δ-MnO2. Inorganic Chemistry 2018, 57 (12) , 6873-6882. https://doi.org/10.1021/acs.inorgchem.8b00461
  29. Jared S. Mondschein, Kuldeep Kumar, Cameron F. Holder, Kriti Seth, Hojong Kim, Raymond E. Schaak. Intermetallic Ni2Ta Electrocatalyst for the Oxygen Evolution Reaction in Highly Acidic Electrolytes. Inorganic Chemistry 2018, 57 (10) , 6010-6015. https://doi.org/10.1021/acs.inorgchem.8b00503
  30. Rosalie K. Hocking, Rosalind J. Gummow, Hannah J. King, Mayada Sabri, Peter Kappen, Christian Dwyer, Shery L. Y. Chang. Direct Formation of 2D-MnOx under Conditions of Water Oxidation Catalysis. ACS Applied Nano Materials 2018, 1 (4) , 1603-1611. https://doi.org/10.1021/acsanm.8b00095
  31. Davide Barreca, Lorenzo Bigiani, Matteo Monai, Giorgio Carraro, Alberto Gasparotto, Cinzia Sada, Sara Martí-Sanchez, Albert Grau-Carbonell, Jordi Arbiol, Chiara Maccato, Paolo Fornasiero. Supported Mn3O4 Nanosystems for Hydrogen Production through Ethanol Photoreforming. Langmuir 2018, 34 (15) , 4568-4574. https://doi.org/10.1021/acs.langmuir.8b00642
  32. Martin Davi, Markus Mann, Zili Ma, Felix Schrader, Andreas Drichel, Serhiy Budnyk, Anna Rokicinska, Piotr Kustrowski, Richard Dronskowski, Adam Slabon. An MnNCN-Derived Electrocatalyst for CuWO4 Photoanodes. Langmuir 2018, 34 (13) , 3845-3852. https://doi.org/10.1021/acs.langmuir.8b00149
  33. Laiquan Li, Jun Yang, Hongbin Yang, Liping Zhang, Jinjun Shao, Wei Huang, Bin Liu, Xiaochen Dong. Anchoring Mn3O4 Nanoparticles on Oxygen Functionalized Carbon Nanotubes as Bifunctional Catalyst for Rechargeable Zinc-Air Battery. ACS Applied Energy Materials 2018, 1 (3) , 963-969. https://doi.org/10.1021/acsaem.8b00009
  34. Ye-Fei Li and Zhi-Pan Liu . Active Site Revealed for Water Oxidation on Electrochemically Induced δ-MnO2: Role of Spinel-to-Layer Phase Transition. Journal of the American Chemical Society 2018, 140 (5) , 1783-1792. https://doi.org/10.1021/jacs.7b11393
  35. Kewei Liu, Changlin Zhang, Yuandong Sun, Guanghui Zhang, Xiaochen Shen, Feng Zou, Haichang Zhang, Zhenwei Wu, Evan C. Wegener, Clinton J. Taubert, Jeffrey T. Miller, Zhenmeng Peng, and Yu Zhu . High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano 2018, 12 (1) , 158-167. https://doi.org/10.1021/acsnano.7b04646
  36. Adam S. Batchellor, Gihan Kwon, Forrest A. L. Laskowski, David M. Tiede, and Shannon W. Boettcher . Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. The Journal of Physical Chemistry C 2017, 121 (45) , 25421-25429. https://doi.org/10.1021/acs.jpcc.7b10306
  37. Lifei Xi, Fuxian Wang, Christoph Schwanke, Fatwa F. Abdi, Ronny Golnak, Sebastian Fiechter, Klaus Ellmer, Roel van de Krol, and Kathrin M. Lange . In Situ Structural Study of MnPi-Modified BiVO4 Photoanodes by Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2017, 121 (36) , 19668-19676. https://doi.org/10.1021/acs.jpcc.7b06459
  38. Biaobiao Zhang, Hong Chen, Quentin Daniel, Bertrand Philippe, Fengshou Yu, Mario Valvo, Yuanyuan Li, Ram B. Ambre, Peili Zhang, Fei Li, Håkan Rensmo, and Licheng Sun . Defective and “c-Disordered” Hortensia-like Layered MnOx as an Efficient Electrocatalyst for Water Oxidation at Neutral pH. ACS Catalysis 2017, 7 (9) , 6311-6322. https://doi.org/10.1021/acscatal.7b00420
  39. Marcel Risch, Kelsey A. Stoerzinger, Binghong Han, Tom Z. Regier, Derek Peak, Sayed Youssef Sayed, Chao Wei, Zhichuan Xu, and Yang Shao-Horn . Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An in Situ Soft X-ray Absorption Spectroscopy Study. The Journal of Physical Chemistry C 2017, 121 (33) , 17682-17692. https://doi.org/10.1021/acs.jpcc.7b05592
  40. Lifei Xi, Christoph Schwanke, Jie Xiao, Fatwa F. Abdi, Ivelina Zaharieva, and Kathrin M. Lange . In Situ L-Edge XAS Study of a Manganese Oxide Water Oxidation Catalyst. The Journal of Physical Chemistry C 2017, 121 (22) , 12003-12009. https://doi.org/10.1021/acs.jpcc.7b02331
  41. Daniil A. Kitchaev, Stephen T. Dacek, Wenhao Sun, and Gerbrand Ceder . Thermodynamics of Phase Selection in MnO2 Framework Structures through Alkali Intercalation and Hydration. Journal of the American Chemical Society 2017, 139 (7) , 2672-2681. https://doi.org/10.1021/jacs.6b11301
  42. Kyoungsuk Jin, Hongmin Seo, Toru Hayashi, Mani Balamurugan, Donghyuk Jeong, Yoo Kyung Go, Jung Sug Hong, Kang Hee Cho, Hirotaka Kakizaki, Nadège Bonnet-Mercier, Min Gyu Kim, Sun Hee Kim, Ryuhei Nakamura, and Ki Tae Nam . Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. Journal of the American Chemical Society 2017, 139 (6) , 2277-2285. https://doi.org/10.1021/jacs.6b10657
  43. Jared S. Mondschein, Juan F. Callejas, Carlos G. Read, Jamie Y. C. Chen, Cameron F. Holder, Catherine K. Badding, and Raymond E. Schaak . Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chemistry of Materials 2017, 29 (3) , 950-957. https://doi.org/10.1021/acs.chemmater.6b02879
  44. Qing Kang, Loranne Vernisse, Richard C. Remsing, Akila C. Thenuwara, Samantha L. Shumlas, Ian G. McKendry, Michael L. Klein, Eric Borguet, Michael J. Zdilla, and Daniel R. Strongin . Effect of Interlayer Spacing on the Activity of Layered Manganese Oxide Bilayer Catalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 2017, 139 (5) , 1863-1870. https://doi.org/10.1021/jacs.6b09184
  45. Han Xu, Jin-Xian Feng, Ye-Xiang Tong, and Gao-Ren Li . Cu2O–Cu Hybrid Foams as High-Performance Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ACS Catalysis 2017, 7 (2) , 986-991. https://doi.org/10.1021/acscatal.6b02911
  46. Masaaki Yoshida, Sho Onishi, Yosuke Mitsutomi, Futaba Yamamoto, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Integration of Active Nickel Oxide Clusters by Amino Acids for Water Oxidation. The Journal of Physical Chemistry C 2017, 121 (1) , 255-260. https://doi.org/10.1021/acs.jpcc.6b08796
  47. Stephanie L. Candelaria, Nicholas M. Bedford, Taylor J. Woehl, Nikki S. Rentz, Allison R. Showalter, Svitlana Pylypenko, Bruce A. Bunker, Sungsik Lee, Benjamin Reinhart, Yang Ren, S. Piril Ertem, E. Bryan Coughlin, Nicholas A. Sather, James L. Horan, Andrew M. Herring, and Lauren F. Greenlee . Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catalysis 2017, 7 (1) , 365-379. https://doi.org/10.1021/acscatal.6b02552
  48. Ran Miao, Junkai He, Sanjubala Sahoo, Zhu Luo, Wei Zhong, Sheng-Yu Chen, Curtis Guild, Tahereh Jafari, Biswanath Dutta, Shaylin A. Cetegen, Mingchao Wang, S. Pamir Alpay, and Steven L. Suib . Reduced Graphene Oxide Supported Nickel–Manganese–Cobalt Spinel Ternary Oxide Nanocomposites and Their Chemically Converted Sulfide Nanocomposites as Efficient Electrocatalysts for Alkaline Water Splitting. ACS Catalysis 2017, 7 (1) , 819-832. https://doi.org/10.1021/acscatal.6b02650
  49. Huayang Zhang, Wenjie Tian, Xiaochen Guo, Li Zhou, Hongqi Sun, Moses O. Tadé, and Shaobin Wang . Flower-like Cobalt Hydroxide/Oxide on Graphitic Carbon Nitride for Visible-Light-Driven Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (51) , 35203-35212. https://doi.org/10.1021/acsami.6b10918
  50. Lijuan Han, Pengyi Tang, Álvaro Reyes-Carmona, Bárbara Rodríguez-García, Mabel Torréns, Joan Ramon Morante, Jordi Arbiol, and Jose Ramon Galan-Mascaros . Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching. Journal of the American Chemical Society 2016, 138 (49) , 16037-16045. https://doi.org/10.1021/jacs.6b09778
  51. Shannon A. Bonke, Alan M. Bond, Leone Spiccia, and Alexandr N. Simonov . Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society 2016, 138 (49) , 16095-16104. https://doi.org/10.1021/jacs.6b10304
  52. Bryan M. Hunter, Harry B. Gray, and Astrid M. Müller . Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22) , 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
  53. Ian G. McKendry, Akila C. Thenuwara, Jianwei Sun, Haowei Peng, John P. Perdew, Daniel R. Strongin, and Michael J. Zdilla . Water Oxidation Catalyzed by Cobalt Oxide Supported on the Mattagamite Phase of CoTe2. ACS Catalysis 2016, 6 (11) , 7393-7397. https://doi.org/10.1021/acscatal.6b01878
  54. Akila C. Thenuwara, Samantha L. Shumlas, Nuwan H. Attanayake, Yaroslav V. Aulin, Ian G. McKendry, Qiao Qiao, Yimei Zhu, Eric Borguet, Michael J. Zdilla, and Daniel R. Strongin . Intercalation of Cobalt into the Interlayer of Birnessite Improves Oxygen Evolution Catalysis. ACS Catalysis 2016, 6 (11) , 7739-7743. https://doi.org/10.1021/acscatal.6b01980
  55. Bo You, Xuan Liu, Nan Jiang, and Yujie Sun . A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. Journal of the American Chemical Society 2016, 138 (41) , 13639-13646. https://doi.org/10.1021/jacs.6b07127
  56. Xiao Li, Guan-Qun Han, Yan-Ru Liu, Bin Dong, Wen-Hui Hu, Xiao Shang, Yong-Ming Chai, and Chen-Guang Liu . [email protected] Core–Shell Hyacinth-like Nanostructures on Nickel Foam Synthesized by in Situ Electrochemical Oxidation as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (31) , 20057-20066. https://doi.org/10.1021/acsami.6b05597
  57. Zhishan Luo, Erdem Irtem, Maria Ibáñez, Raquel Nafria, Sara Martı́-Sánchez, Aziz Genç, Maria de la Mata, Yu Liu, Doris Cadavid, Jordi Llorca, Jordi Arbiol, Teresa Andreu, Joan Ramon Morante, and Andreu Cabot . [email protected]–CoxOy Nanoparticles: Partial Cation Exchange Synthesis and Electrocatalytic Properties toward the Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces 2016, 8 (27) , 17435-17444. https://doi.org/10.1021/acsami.6b02786
  58. Lun Yang, Xiaobin Zhu, Shijie Xiong, Xinglong Wu, Yun Shan, and Paul K. Chu . Synergistic WO3·2H2O Nanoplates/WS2 Hybrid Catalysts for High-Efficiency Hydrogen Evolution. ACS Applied Materials & Interfaces 2016, 8 (22) , 13966-13972. https://doi.org/10.1021/acsami.6b04045
  59. Shi-Hua Chen, Jun-Jian Zhu, Pei-Hua Li, Yu-Feng Sun, Meng Yang, Xing-Jiu Huang. In-situ growth of zero-valent iron in FeOx/Mn3O4 to improve the surficial redox for high-efficient electrocatalysis of Pb(II). Chemical Engineering Journal 2022, 430 , 132959. https://doi.org/10.1016/j.cej.2021.132959
  60. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  61. Ashalatha Vazhayil, Linsha Vazhayal, Jasmine Thomas, Shyamli Ashok C, Nygil Thomas. A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction. Applied Surface Science Advances 2021, 6 , 100184. https://doi.org/10.1016/j.apsadv.2021.100184
  62. Suyang Feng, Junli Wang, Wenbin Wang, Xuanbing Wang, Yang Zhang, Chenchen, Ao Ju, Junqing Pan, Ruidong Xu. The Ni‐Mo‐S Catalyst @Copper Foams with Excellent Stability and 1.5 V Drive Electrolytic Water. Advanced Materials Interfaces 2021, 35 , 2100500. https://doi.org/10.1002/admi.202100500
  63. David L. Burnett, Enrico Petrucco, Reza J. Kashtiban, Stewart F. Parker, Jonathan D. B. Sharman, Richard I. Walton. Exploiting the flexibility of the pyrochlore composition for acid-resilient iridium oxide electrocatalysts in proton exchange membranes. Journal of Materials Chemistry A 2021, 9 (44) , 25114-25127. https://doi.org/10.1039/D1TA05457K
  64. Ramesh J. Deokate, Harish S. Chavan, Suraj C. Bulakhe, Sachin B. Tanwade, Sarfraj H. Mujawar, Sawanta S. Mali, Chang Kook Hong, Hyunsik Im, Akbar I. Inamdar. Electrodeposited bimetallic microporous MnCu oxide electrode as a highly stable electrocatalyst for oxygen evolution reaction. International Journal of Energy Research 2021, 14 https://doi.org/10.1002/er.7457
  65. F. Ahmadian, V. Salarvand, M. Saghafi, M.T. Noghani, A. Yousefifar. Production and characterization of high-performance cobalt–nickel selenide catalyst with excellent activity in HER. Journal of Materials Research and Technology 2021, 15 , 3942-3950. https://doi.org/10.1016/j.jmrt.2021.09.151
  66. Chuyen Van Pham, Daniel Escalera‐López, Karl Mayrhofer, Serhiy Cherevko, Simon Thiele. Essentials of High Performance Water Electrolyzers – From Catalyst Layer Materials to Electrode Engineering. Advanced Energy Materials 2021, 11 (44) , 2101998. https://doi.org/10.1002/aenm.202101998
  67. Hongxing Liang, Min Xu, Edouard Asselin. Corrosion of monometallic iron- and nickel-based electrocatalysts for the alkaline oxygen evolution reaction: A review. Journal of Power Sources 2021, 510 , 230387. https://doi.org/10.1016/j.jpowsour.2021.230387
  68. Tong Wang, Xiaohui Zhu, Serguei V. Savilov, Sergey M. Aldoshin, Hui Xia. Reinforced birnessite derived from spinel Mn 3 O 4 for sustainable energy storage. Functional Materials Letters 2021, 14 (07) https://doi.org/10.1142/S1793604721300139
  69. Yingdong Chen, Shujiao Yang, Hongfei Liu, Wei Zhang, Rui Cao. An unusual network of α-MnO2 nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis. Chinese Journal of Catalysis 2021, 42 (10) , 1724-1731. https://doi.org/10.1016/S1872-2067(21)63793-2
  70. Yan Li, Xinfa Wei, Shuhe Han, Lisong Chen, Jianlin Shi. MnO 2 Electrocatalysts Coordinating Alcohol Oxidation for Ultra‐Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie International Edition 2021, 60 (39) , 21464-21472. https://doi.org/10.1002/anie.202107510
  71. Yan Li, Xinfa Wei, Shuhe Han, Lisong Chen, Jianlin Shi. MnO 2 Electrocatalysts Coordinating Alcohol Oxidation for Ultra‐Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie 2021, 133 (39) , 21634-21642. https://doi.org/10.1002/ange.202107510
  72. Hongxia Wang, Kelvin H. L. Zhang, Jan P. Hofmann, Victor A. de la Peña O'Shea, Freddy E. Oropeza. The electronic structure of transition metal oxides for oxygen evolution reaction. Journal of Materials Chemistry A 2021, 9 (35) , 19465-19488. https://doi.org/10.1039/D1TA03732C
  73. Juzhe Liu, Lin Guo. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4 (9) , 2850-2873. https://doi.org/10.1016/j.matt.2021.05.025
  74. Adil Amin Wani, Murtaza Manzoor Bhat, Feroz Ahmad Sofi, Sajad Ahmad Bhat, Pravin P. Ingole, Nusrat Rashid, Mohsin Ahmad Bhat. Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H 2 O 2. New Journal of Chemistry 2021, 45 (34) , 15544-15554. https://doi.org/10.1039/D1NJ02383G
  75. Shuairu Zhu, Jiabo Le, Jianming Li, Deyu Liu, Yongbo Kuang. Tungsten doped manganese silicate films as stable and efficient oxygen evolution catalysts in near-neutral media. Journal of Materials Chemistry A 2021, 9 (33) , 17893-17904. https://doi.org/10.1039/D1TA01524A
  76. Gabriel M.S. Salvador, Ana Luisa Silva, Ludmila P.C. Silva, Fabio B. Passos, Nakédia M.F. Carvalho. Enhanced activity of Pd/α-MnO2 for electrocatalytic oxygen evolution reaction. International Journal of Hydrogen Energy 2021, 46 (53) , 26976-26988. https://doi.org/10.1016/j.ijhydene.2021.05.168
  77. Jiajian Gao, Huabing Tao, Bin Liu. Progress of Nonprecious‐Metal‐Based Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials 2021, 33 (31) , 2003786. https://doi.org/10.1002/adma.202003786
  78. Justus Heese‐Gärtlein, Anna Rabe, Malte Behrens. Challenges in the Application of Manganese Oxide Powders as OER Electrocatalysts: Synthesis, Characterization, Activity and Stability of Nine Different Mn x O y Compounds. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (13) , 1363-1372. https://doi.org/10.1002/zaac.202000180
  79. Zhao Li, Ming Song, Wenyou Zhu, Wenchang Zhuang, Xihua Du, Lin Tian. MOF-derived hollow heterostructures for advanced electrocatalysis. Coordination Chemistry Reviews 2021, 439 , 213946. https://doi.org/10.1016/j.ccr.2021.213946
  80. Junup Yang, Hyun Ook Seo, Ketack Kim. Neutral red paired with metal sulfates for redox flow batteries. Journal of Electroanalytical Chemistry 2021, 893 , 115333. https://doi.org/10.1016/j.jelechem.2021.115333
  81. Victor Charles, Abdulraheem Okehi Anumah, Kayode Adesina Adegoke, Morenike Oluwabunmi Adesina, Ikegwuonu P. Ebuka, Ndepana A. Gaya, Sunday Ogwuche, Mary Ohunene Yakubu. Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustainable Materials and Technologies 2021, 28 , e00252. https://doi.org/10.1016/j.susmat.2021.e00252
  82. Cheng Wang, Liujun Jin, Hongyuan Shang, Hui Xu, Yukihide Shiraishi, Yukou Du. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chinese Chemical Letters 2021, 32 (7) , 2108-2116. https://doi.org/10.1016/j.cclet.2020.11.051
  83. Shujiao Yang, Shanhong Wan, Fanfan Shang, Dandan Chen, Wei Zhang, Rui Cao. Autologous manganese phosphates with different Mn sites for electrocatalytic water oxidation. Chemical Communications 2021, 57 (50) , 6165-6168. https://doi.org/10.1039/D1CC01004B
  84. Sen Yang, Ting Li, Yiwei Tan. Manganese phosphoxide/Ni 5 P 4 hybrids as an anode material for high energy density and rate potassium-ion storage. Journal of Materials Chemistry A 2021, 9 (24) , 13936-13949. https://doi.org/10.1039/D1TA02189C
  85. Xian Sun, Jiuwu Wang, Biyu Chen, Guodong Dai, Yue Situ, Hong Huang. High-performance adjustable manganese oxides hybrid nanostructure for supercapacitors. Electrochimica Acta 2021, 381 , 138213. https://doi.org/10.1016/j.electacta.2021.138213
  86. Agnes E. Thorarinsdottir, Daniel G. Nocera. Energy catalysis needs ligands with high oxidative stability. Chem Catalysis 2021, 1 (1) , 32-43. https://doi.org/10.1016/j.checat.2021.05.012
  87. Cheng Wang, Hongyuan Shang, Liujun Jin, Hui Xu, Yukou Du. Advances in hydrogen production from electrocatalytic seawater splitting. Nanoscale 2021, 13 (17) , 7897-7912. https://doi.org/10.1039/D1NR00784J
  88. Mingming Yin, He Miao, Ruigan Hu, Zixu Sun, Hong Li. Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. Journal of Power Sources 2021, 494 , 229779. https://doi.org/10.1016/j.jpowsour.2021.229779
  89. Li An, Chao Wei, Min Lu, Hanwen Liu, Yubo Chen, Günther G. Scherer, Adrian C. Fisher, Pinxian Xi, Zhichuan J. Xu, Chun‐Hua Yan. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. Advanced Materials 2021, 33 (20) , 2006328. https://doi.org/10.1002/adma.202006328
  90. Zhuwen Chen, Min Ju, Mingzi Sun, Li Jin, Rongming Cai, Zheng Wang, Lei Dong, Luming Peng, Xia Long, Bolong Huang, Shihe Yang. TM LDH Meets Birnessite: A 2D‐2D Hybrid Catalyst with Long‐Term Stability for Water Oxidation at Industrial Operating Conditions. Angewandte Chemie 2021, 133 (17) , 9785-9791. https://doi.org/10.1002/ange.202016064
  91. Zhuwen Chen, Min Ju, Mingzi Sun, Li Jin, Rongming Cai, Zheng Wang, Lei Dong, Luming Peng, Xia Long, Bolong Huang, Shihe Yang. TM LDH Meets Birnessite: A 2D‐2D Hybrid Catalyst with Long‐Term Stability for Water Oxidation at Industrial Operating Conditions. Angewandte Chemie International Edition 2021, 60 (17) , 9699-9705. https://doi.org/10.1002/anie.202016064
  92. J.P. Hughes, J. Clipsham, H. Chavushoglu, S.J. Rowley-Neale, C.E. Banks. Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts. Renewable and Sustainable Energy Reviews 2021, 139 , 110709. https://doi.org/10.1016/j.rser.2021.110709
  93. Xiyang Wang, Xinbo Li, Xuefeng Chu, Rui Cao, Jingyu Qian, Yingge Cong, Keke Huang, Jiaao Wang, Carl Redshaw, Ritimukta Sarangi, Guangshe Li, Shouhua Feng. Manipulating Surface Termination of Perovskite Manganate for Oxygen Activation. Advanced Functional Materials 2021, 31 (14) , 2006439. https://doi.org/10.1002/adfm.202006439
  94. Shin Nakamura, Matteo Capone, Giuseppe Mattioli, Leonardo Guidoni. Early-stage formation of (hydr)oxo bridges in transition-metal catalysts for photosynthetic processes. Catalysis Science & Technology 2021, 11 (5) , 1801-1813. https://doi.org/10.1039/D0CY02227F
  95. Prashanth W. Menezes, Carsten Walter, Biswarup Chakraborty, Jan Niklas Hausmann, Ivelina Zaharieva, Achidi Frick, Elizabeth Hauff, Holger Dau, Matthias Driess. Combination of Highly Efficient Electrocatalytic Water Oxidation with Selective Oxygenation of Organic Substrates using Manganese Borophosphates. Advanced Materials 2021, 33 (9) , 2004098. https://doi.org/10.1002/adma.202004098
  96. Fernando L.G. Silva, Amanda G. Veiga, Nakédia M.F. Carvalho. Manganese oxides treated with organic compounds as catalysts for water oxidation reaction. International Journal of Hydrogen Energy 2021, 46 (21) , 11677-11687. https://doi.org/10.1016/j.ijhydene.2021.01.039
  97. Sulay Saha, Prashant Kumar Gupta, Raj Ganesh S. Pala. Stabilization of non‐native polymorphs for electrocatalysis and energy storage systems. WIREs Energy and Environment 2021, 10 (2) https://doi.org/10.1002/wene.389
  98. Kang Hee Cho, Sunghak Park, Hongmin Seo, Seungwoo Choi, Moo Young Lee, Changwan Ko, Ki Tae Nam. Capturing Manganese Oxide Intermediates in Electrochemical Water Oxidation at Neutral pH by In Situ Raman Spectroscopy. Angewandte Chemie 2021, 133 (9) , 4723-4731. https://doi.org/10.1002/ange.202014551
  99. Kang Hee Cho, Sunghak Park, Hongmin Seo, Seungwoo Choi, Moo Young Lee, Changwan Ko, Ki Tae Nam. Capturing Manganese Oxide Intermediates in Electrochemical Water Oxidation at Neutral pH by In Situ Raman Spectroscopy. Angewandte Chemie International Edition 2021, 60 (9) , 4673-4681. https://doi.org/10.1002/anie.202014551
  100. Santosh K. Singh, Kotaro Takeyasu, Bappi Paul, Sachin K. Sharma, Junji Nakamura. CoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction. Sustainable Energy & Fuels 2021, 5 (3) , 820-827. https://doi.org/10.1039/D0SE01285H
Load more citations