Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts

View Author Information
Technical University Berlin, Department of Chemistry, Chemical Engineering Division, Straße des 17. Juni 124, 10623 Berlin, Germany
Free University of Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
Cite this: J. Am. Chem. Soc. 2016, 138, 17, 5603–5614
Publication Date (Web):March 31, 2016
https://doi.org/10.1021/jacs.6b00332
Copyright © 2016 American Chemical Society
Article Views
15286
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Mixed Ni–Fe oxides are attractive anode catalysts for efficient water splitting in solar fuels reactors. Because of conflicting past reports, the catalytically active metal redox state of the catalyst has remained under debate. Here, we report an in operando quantitative deconvolution of the charge injected into the nanostructured Ni–Fe oxyhydroxide OER catalysts or into reaction product molecules. To achieve this, we explore the oxygen evolution reaction dynamics and the individual faradaic charge efficiencies using operando differential electrochemical mass spectrometry (DEMS). We further use X-ray absorption spectroscopy (XAS) under OER conditions at the Ni and Fe K-edges of the electrocatalysts to evaluate oxidation states and local atomic structure motifs. DEMS and XAS data consistently reveal that up to 75% of the Ni centers increase their oxidation state from +2 to +3, while up to 25% arrive in the +4 state for the NiOOH catalyst under OER catalysis. The Fe centers consistently remain in the +3 state, regardless of potential and composition. For mixed Ni100–xFex catalysts, where x exceeds 9 atomic %, the faradaic efficiency of O2 sharply increases from ∼30% to 90%, suggesting that Ni atoms largely remain in the oxidation state +2 under catalytic conditions. To reconcile the apparent low level of oxidized Ni in mixed Ni–Fe catalysts, we hypothesize that a kinetic competition between the (i) metal oxidation process and the (ii) metal reduction step during O2 release may account for an insignificant accumulation of detectable high-valent metal states if the reaction rate of process (ii) outweighs that of (i). We conclude that a discussion of the superior catalytic OER activity of Ni–FeOOH electrocatalysts in terms of surface catalysis and redox-inactive metal sites likely represents an oversimplification that fails to capture essential aspects of the synergisms at highly active Ni–Fe sites.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b00332.

  • Experimental details and additional electrochemical and structural characterization. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 608 publications.

  1. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
  2. Zhengguang Zou, Qian Wang. Synergistic Effect of Bimetallic Sulfide Synthesized by a Simple Solvothermal Method for High-Efficiency Oxygen Evolution Reaction. Energy & Fuels 2021, 35 (21) , 17869-17875. https://doi.org/10.1021/acs.energyfuels.1c02810
  3. Ranjith Bose, K. Karuppasamy, Paulraj Arunkumar, Ganesh Kumar Veerasubramani, Sampath Gayathri, P. Santhoshkumar, Dhanasekaran Vikraman, Jong Hun Han, Hyun-Seok Kim, Akram Alfantazi. Self-Supportive Bimetallic Selenide Heteronanostructures as High-Efficiency Electro(pre)catalysts for Water Oxidation. ACS Sustainable Chemistry & Engineering 2021, 9 (38) , 13114-13123. https://doi.org/10.1021/acssuschemeng.1c05728
  4. Caiyun Sun, Qiantong Song, Jinglei Lei, Dan Li, Lingjie Li, Fusheng Pan. Corrosion of Iron-Nickel Foam to In Situ Fabricate Amorphous FeNi (Oxy)hydroxide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (9) , 8791-8800. https://doi.org/10.1021/acsaem.1c00891
  5. Dan Wu, Xinyi Shen, Xiaokang Liu, Tong Liu, Qiquan Luo, Dong Liu, Tao Ding, Tao Chen, Lan Wang, Linlin Cao, Tao Yao. Insight into Fe Activating One-Dimensional α-Ni(OH)2 Nanobelts for Efficient Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2021, 125 (37) , 20301-20308. https://doi.org/10.1021/acs.jpcc.1c05148
  6. Jaeyun Ha, Moonsu Kim, Yong-Tae Kim, Jinsub Choi. Ni0.67Fe0.33 Hydroxide Incorporated with Oxalate for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (36) , 42870-42879. https://doi.org/10.1021/acsami.1c12155
  7. Peng Zhang, Ying-Rui Lu, Nian-Tzu Suen. Crystal and Electronic Structure Modification of Synthetic Perryite Minerals: A Facile Phase Transformation Strategy to Boost the Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (17) , 13607-13614. https://doi.org/10.1021/acs.inorgchem.1c01909
  8. Fuxi Bao, Erno Kemppainen, Iris Dorbandt, Fanxing Xi, Radu Bors, Natalia Maticiuc, Robert Wenisch, Rory Bagacki, Christian Schary, Ursula Michalczik, Peter Bogdanoff, Iver Lauermann, Roel van de Krol, Rutger Schlatmann, Sonya Calnan. Host, Suppressor, and Promoter—The Roles of Ni and Fe on Oxygen Evolution Reaction Activity and Stability of NiFe Alloy Thin Films in Alkaline Media. ACS Catalysis 2021, 11 (16) , 10537-10552. https://doi.org/10.1021/acscatal.1c01190
  9. Birhanu Bayissa Gicha, Lemma Teshome Tufa, Youngeun Choi, Jaebeom Lee. Amorphous Ni1–xFex Oxyhydroxide Nanosheets with Integrated Bulk and Surface Iron for a High and Stable Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (7) , 6833-6841. https://doi.org/10.1021/acsaem.1c00955
  10. Raina A. Krivina, Yingqing Ou, Qiucheng Xu, Liam P. Twight, T. Nathan Stovall, Shannon W. Boettcher. Oxygen Electrocatalysis on Mixed-Metal Oxides/Oxyhydroxides: From Fundamentals to Membrane Electrolyzer Technology. Accounts of Materials Research 2021, 2 (7) , 548-558. https://doi.org/10.1021/accountsmr.1c00087
  11. Yosuke Kageshima, Yurina Ojima, Hiromasa Wada, Sangho Koh, Masahiro Mizuno, Katsuya Teshima, Hiromasa Nishikiori. Insights into the Electrocatalytic Oxidation of Cellulose in Solution toward Applications in Direct Cellulose Fuel Cells. The Journal of Physical Chemistry C 2021, 125 (27) , 14576-14582. https://doi.org/10.1021/acs.jpcc.1c04357
  12. Shao-Xiong Lennon Luo, Richard Y. Liu, Sungsik Lee, Timothy M. Swager. Electrocatalytic Isoxazoline–Nanocarbon Metal Complexes. Journal of the American Chemical Society 2021, 143 (27) , 10441-10453. https://doi.org/10.1021/jacs.1c05439
  13. Yi Liu, Peng Liu, Yu-Long Men, Yibao Li, Chong Peng, Shibo Xi, Yun-Xiang Pan. Incorporating MoO3 Patches into a Ni Oxyhydroxide Nanosheet Boosts the Electrocatalytic Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (22) , 26064-26073. https://doi.org/10.1021/acsami.1c05660
  14. Cheng-Zong Yuan, Kwan San Hui, Hong Yin, Siqi Zhu, Jintao Zhang, Xi-Lin Wu, Xiaoting Hong, Wei Zhou, Xi Fan, Feng Bin, Fuming Chen, Kwun Nam Hui. Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. ACS Materials Letters 2021, 3 (6) , 752-780. https://doi.org/10.1021/acsmaterialslett.0c00549
  15. Shenghua Ye, Jingpeng Wang, Jing Hu, Zhida Chen, Lirong Zheng, Yonghuan Fu, Yaqi Lei, Xiangzhong Ren, Chuanxin He, Qianling Zhang, Jianhong Liu. Electrochemical Construction of Low-Crystalline CoOOH Nanosheets with Short-Range Ordered Grains to Improve Oxygen Evolution Activity. ACS Catalysis 2021, 11 (10) , 6104-6112. https://doi.org/10.1021/acscatal.1c01300
  16. Julia Linnemann, Kannasoot Kanokkanchana, Kristina Tschulik. Design Strategies for Electrocatalysts from an Electrochemist’s Perspective. ACS Catalysis 2021, 11 (9) , 5318-5346. https://doi.org/10.1021/acscatal.0c04118
  17. Jinlong Liu, Juanxiu Xiao, Zhenyu Wang, Huimin Yuan, Zhouguang Lu, Bingcheng Luo, Enke Tian, Geoffrey I. N. Waterhouse. Structural and Electronic Engineering of Ir-Doped Ni-(Oxy)hydroxide Nanosheets for Enhanced Oxygen Evolution Activity. ACS Catalysis 2021, 11 (9) , 5386-5395. https://doi.org/10.1021/acscatal.1c00110
  18. Yu Li, Hui Jiang, Zhenduo Cui, Shengli Zhu, Zhaoyang Li, Shuilin Wu, Lili Ma, Xiaopeng Han, Yanqin Liang. Spin State Tuning of the Octahedral Sites in Ni–Co-Based Spinel toward Highly Efficient Urea Oxidation Reaction. The Journal of Physical Chemistry C 2021, 125 (17) , 9190-9199. https://doi.org/10.1021/acs.jpcc.1c02116
  19. Nishad G. Deshpande, Dong Su Kim, Cheol Hyoun Ahn, Sung Hyeon Jung, Young Been Kim, Ho Seong Lee, Hyung Koun Cho. β-like FeOOH Nanoswords Activated by Ni Foam and Encapsulated by rGO toward High Current Densities, Durability, and Efficient Oxygen Evolution. ACS Applied Materials & Interfaces 2021, 13 (16) , 18772-18783. https://doi.org/10.1021/acsami.1c01428
  20. Tanmay Bhowmik, Ranjit Mishra, Sudip Barman. Co1Al2(OH)m Layered Double Hydroxide/Graphitic Carbon Nitride Composite Nanostructure: An Efficient Water Oxidation Reaction Electrocatalyst in an Alkaline Electrolyte. Energy & Fuels 2021, 35 (6) , 5206-5216. https://doi.org/10.1021/acs.energyfuels.0c03613
  21. Fanhao Kong, Min Wang. Preparation of Sulfur-Modulated Nickel/Carbon Composites from Lignosulfonate for the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Applied Energy Materials 2021, 4 (2) , 1182-1188. https://doi.org/10.1021/acsaem.0c02418
  22. Nataraju Bodappa, Sarah Stepan, Rodney D. L. Smith. Analysis of Solid-State Reaction Mechanisms with Two-Dimensional Fourier Transform Infrared Correlation Spectroscopy. Inorganic Chemistry 2021, 60 (4) , 2304-2314. https://doi.org/10.1021/acs.inorgchem.0c03189
  23. Yao Yang, Yin Xiong, Rui Zeng, Xinyao Lu, Mihail Krumov, Xin Huang, Weixuan Xu, Hongsen Wang, Francis J. DiSalvo, Joel. D. Brock, David A. Muller, Héctor D. Abruña. Operando Methods in Electrocatalysis. ACS Catalysis 2021, 11 (3) , 1136-1178. https://doi.org/10.1021/acscatal.0c04789
  24. Janis Timoshenko, Beatriz Roldan Cuenya. In Situ/Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chemical Reviews 2021, 121 (2) , 882-961. https://doi.org/10.1021/acs.chemrev.0c00396
  25. Qiucheng Xu, Hao Jiang, Xuezhi Duan, Zheng Jiang, Yanjie Hu, Shannon W. Boettcher, Weiyu Zhang, Shaojun Guo, Chunzhong Li. Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano Letters 2021, 21 (1) , 492-499. https://doi.org/10.1021/acs.nanolett.0c03950
  26. Junwu Xiao, Alexandra M. Oliveira, Lan Wang, Yun Zhao, Teng Wang, Junhua Wang, Brian P. Setzler, Yushan Yan. Water-Fed Hydroxide Exchange Membrane Electrolyzer Enabled by a Fluoride-Incorporated Nickel–Iron Oxyhydroxide Oxygen Evolution Electrode. ACS Catalysis 2021, 11 (1) , 264-270. https://doi.org/10.1021/acscatal.0c04200
  27. Martin A. W. Schoen, Nicholas M. Randell, Oliver Calderon, Santiago Jimenez Villegas, Zachary Thomson, Roman Chernikov, Simon Trudel. Structural Evolution in Photodeposited Nickel (oxy)hydroxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials 2020, 3 (12) , 12407-12416. https://doi.org/10.1021/acsaem.0c02383
  28. Michael T. Bender, Yan Choi Lam, Sharon Hammes-Schiffer, Kyoung-Shin Choi. Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH. Journal of the American Chemical Society 2020, 142 (51) , 21538-21547. https://doi.org/10.1021/jacs.0c10924
  29. Sara E. Renfrew, David E. Starr, Peter Strasser. Electrochemical Approaches toward CO2 Capture and Concentration. ACS Catalysis 2020, 10 (21) , 13058-13074. https://doi.org/10.1021/acscatal.0c03639
  30. Wenchao Wan, Carlos A. Triana, Jinggang Lan, Jingguo Li, Christopher S. Allen, Yonggui Zhao, Marcella Iannuzzi, Greta R. Patzke. Bifunctional Single Atom Electrocatalysts: Coordination–Performance Correlations and Reaction Pathways. ACS Nano 2020, 14 (10) , 13279-13293. https://doi.org/10.1021/acsnano.0c05088
  31. Haoyang Gu, Guoshuai Shi, Hsiao-Chien Chen, Songhai Xie, Yingzhou Li, Haonan Tong, Chunlei Yang, Chenyuan Zhu, J. Tyler Mefford, Heyi Xia, William C. Chueh, Hao Ming Chen, Liming Zhang. Strong Catalyst–Support Interactions in Electrochemical Oxygen Evolution on Ni–Fe Layered Double Hydroxide. ACS Energy Letters 2020, 5 (10) , 3185-3194. https://doi.org/10.1021/acsenergylett.0c01584
  32. Anton Tsyganok, Paolo Ghigna, Alessandro Minguzzi, Alberto Naldoni, Vadim Murzin, Wolfgang Caliebe, Avner Rothschild, David S. Ellis. Operando X-ray Absorption Spectroscopy (XAS) Observation of Photoinduced Oxidation in FeNi (Oxy)hydroxide Overlayers on Hematite (α-Fe2O3) Photoanodes for Solar Water Splitting. Langmuir 2020, 36 (39) , 11564-11572. https://doi.org/10.1021/acs.langmuir.0c02065
  33. Manabu Ishizaki, Hiroya Tanno, Hikaru Sutoh, Tomohiro Katsuki, Taichi Hayasaka, Masayuki Yagi, Yuta Tsubonouchi, Kazuki Tajima, Tohru Kawamoto, Yusuke Sakuda, Masato Kurihara. FeNi-Layered Double-Hydroxide Nanoflakes with Potential for Intrinsically High Water-Oxidation Catalytic Activity. ACS Applied Energy Materials 2020, 3 (9) , 9040-9050. https://doi.org/10.1021/acsaem.0c01439
  34. Fei Xu, Guangfu Qian, Wei Chen, Lin Luo, Fang Shen, Shibin Yin. Copper–Iron Selenides Ultrafine Nanowires as Cost-Effective Catalysts for the Oxygen Evolution Reaction at Large-Current-Density. The Journal of Physical Chemistry C 2020, 124 (36) , 19595-19602. https://doi.org/10.1021/acs.jpcc.0c04625
  35. Ebtesam H. Eladgham, Dylan D. Rodene, Rajib Sarkar, Indika U. Arachchige, Ram B. Gupta. Electrocatalytic Activity of Bimetallic Ni–Mo–P Nanocrystals for Hydrogen Evolution Reaction. ACS Applied Nano Materials 2020, 3 (8) , 8199-8207. https://doi.org/10.1021/acsanm.0c01624
  36. Aaron D. Proctor, Bart M. Bartlett. Hydroxyl Radical Suppression during Photoelectrocatalytic Water Oxidation on WO3|FeOOH. The Journal of Physical Chemistry C 2020, 124 (33) , 17957-17963. https://doi.org/10.1021/acs.jpcc.0c04820
  37. Zhaohui Xiao, Yu-Cheng Huang, Chung-Li Dong, Chao Xie, Zhijuan Liu, Shiqian Du, Wei Chen, Dafeng Yan, Li Tao, Zhiwen Shu, Guanhua Zhang, Huigao Duan, Yanyong Wang, Yuqin Zou, Ru Chen, Shuangyin Wang. Operando Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co3O4 for Oxygen Evolution Reaction. Journal of the American Chemical Society 2020, 142 (28) , 12087-12095. https://doi.org/10.1021/jacs.0c00257
  38. Mahesh Datt Bhatt, Jin Yong Lee. Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels 2020, 34 (6) , 6634-6695. https://doi.org/10.1021/acs.energyfuels.0c00953
  39. Yecheng Zhou, Núria López. The Role of Fe Species on NiOOH in Oxygen Evolution Reactions. ACS Catalysis 2020, 10 (11) , 6254-6261. https://doi.org/10.1021/acscatal.0c00304
  40. Xin Bo, Yibing Li, Xianjue Chen, Chuan Zhao. Operando Raman Spectroscopy Reveals Cr-Induced-Phase Reconstruction of NiFe and CoFe Oxyhydroxides for Enhanced Electrocatalytic Water Oxidation. Chemistry of Materials 2020, 32 (10) , 4303-4311. https://doi.org/10.1021/acs.chemmater.0c01067
  41. Qianqian Ji, Yuan Kong, Chao Wang, Hao Tan, Hengli Duan, Wei Hu, Guinan Li, Ying Lu, Na Li, Yao Wang, Jie Tian, Zeming Qi, Zhihu Sun, Fengchun Hu, Wensheng Yan. Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction. ACS Catalysis 2020, 10 (10) , 5691-5697. https://doi.org/10.1021/acscatal.0c00989
  42. Wenjamin Moschkowitsch, Kapil Dhaka, Shmuel Gonen, Rinat Attias, Yoed Tsur, Maytal Caspary Toroker, Lior Elbaz. Ternary NiFeTiOOH Catalyst for the Oxygen Evolution Reaction: Study of the Effect of the Addition of Ti at Different Loadings. ACS Catalysis 2020, 10 (9) , 4879-4887. https://doi.org/10.1021/acscatal.0c00105
  43. Yanna Guo, Jing Tang, Joel Henzie, Bo Jiang, Wei Xia, Tao Chen, Yoshio Bando, Yong-Mook Kang, Md. Shahriar A. Hossain, Yoshiyuki Sugahara, Yusuke Yamauchi. Mesoporous Iron-doped MoS2/CoMo2S4 Heterostructures through Organic–Metal Cooperative Interactions on Spherical Micelles for Electrochemical Water Splitting. ACS Nano 2020, 14 (4) , 4141-4152. https://doi.org/10.1021/acsnano.9b08904
  44. Chao Feng, M. Bilal Faheem, Jie Fu, Yequan Xiao, Changli Li, Yanbo Li. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis 2020, 10 (7) , 4019-4047. https://doi.org/10.1021/acscatal.9b05445
  45. Lejing Li, Zhuofeng Hu, Li Tao, Jianbin Xu, Jimmy C. Yu. Efficient Electronic Transport in Partially Disordered Co3O4 Nanosheets for Electrocatalytic Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (3) , 3071-3081. https://doi.org/10.1021/acsaem.0c00190
  46. Matthias Steimecke, Gerda Seiffarth, Christian Schneemann, Florian Oehler, Stefan Förster, Michael Bron. Higher-Valent Nickel Oxides with Improved Oxygen Evolution Activity and Stability in Alkaline Media Prepared by High-Temperature Treatment of Ni(OH)2. ACS Catalysis 2020, 10 (6) , 3595-3603. https://doi.org/10.1021/acscatal.9b04788
  47. Qian Chen, Rong Ding, Huan Liu, Lingxi Zhou, Yi Wang, Yun Zhang, Guangyin Fan. Flexible Active-Site Engineering of Monometallic Co-Layered Double Hydroxides for Achieving High-Performance Bifunctional Electrocatalyst toward Oxygen Evolution and H2O2 Reduction. ACS Applied Materials & Interfaces 2020, 12 (11) , 12919-12929. https://doi.org/10.1021/acsami.0c01315
  48. Yan Ma, ZiAng Lu, Siwei Li, Jie Wu, Jing Wang, Yunchen Du, Jianmin Sun, Ping Xu. In Situ Growth of Amorphous Fe(OH)3 on Nickel Nitrate Hydroxide Nanoarrays for Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2020, 12 (11) , 12668-12676. https://doi.org/10.1021/acsami.9b19437
  49. John Mark P. Martirez, Emily A. Carter. Noninnocent Influence of Host β-NiOOH Redox Activity on Transition-Metal Dopants’ Efficacy as Active Sites in Electrocatalytic Water Oxidation. ACS Catalysis 2020, 10 (4) , 2720-2734. https://doi.org/10.1021/acscatal.9b05092
  50. Ananth Govind Rajan, John Mark P. Martirez, Emily A. Carter. Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials. Journal of the American Chemical Society 2020, 142 (7) , 3600-3612. https://doi.org/10.1021/jacs.9b13708
  51. Elise Duquesne, Stéphanie Betelu, Cyrille Bazin, Alain Seron, Ioannis Ignatiadis, Hubert Perrot, Ozlem Sel, Catherine Debiemme-Chouvy. Insights into Redox Reactions and Ionic Transfers in Nickel/Iron Layered Double Hydroxide in Potassium Hydroxide. The Journal of Physical Chemistry C 2020, 124 (5) , 3037-3049. https://doi.org/10.1021/acs.jpcc.9b09699
  52. Dongting Yue, Xuan Yan, Chao Guo, Xufang Qian, Yixin Zhao. NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts with Fe as Electron Transfer Mediator for Enhanced Persulfate Activation. The Journal of Physical Chemistry Letters 2020, 11 (3) , 968-973. https://doi.org/10.1021/acs.jpclett.9b03597
  53. Massimo Rosa, Victor Costa Bassetto, Hubert H. Girault, Andreas Lesch, Vincenzo Esposito. Assembling Ni–Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes. ACS Applied Energy Materials 2020, 3 (1) , 1017-1026. https://doi.org/10.1021/acsaem.9b02055
  54. Bowei Zhang, Chongqin Zhu, Zishan Wu, Eli Stavitski, Yu Hui Lui, Tae-Hoon Kim, Huan Liu, Ling Huang, Xuechen Luan, Lin Zhou, Kun Jiang, Wenyu Huang, Shan Hu, Hailiang Wang, Joseph S. Francisco. Integrating Rh Species with NiFe-Layered Double Hydroxide for Overall Water Splitting. Nano Letters 2020, 20 (1) , 136-144. https://doi.org/10.1021/acs.nanolett.9b03460
  55. Sung Yul Lim, Sunghak Park, Sang Won Im, Heonjin Ha, Hongmin Seo, Ki Tae Nam. Chemically Deposited Amorphous Zn-Doped NiFeOxHy for Enhanced Water Oxidation. ACS Catalysis 2020, 10 (1) , 235-244. https://doi.org/10.1021/acscatal.9b03544
  56. Qiaoqiao Zhang, Ning Liu, Jingqi Guan. Charge-Transfer Effects in Fe–Co and Fe–Co–Y Oxides for Electrocatalytic Water Oxidation Reaction. ACS Applied Energy Materials 2019, 2 (12) , 8903-8911. https://doi.org/10.1021/acsaem.9b01938
  57. Zihao Xu, Ronglei Fan, Xiaoxue Zhou, Guanping Huang, Xi Wu, Mingrong Shen. Coating of Ni on Fe (oxy)hydroxide: Superior Catalytic Activity for Oxygen-Involved Reaction During Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 19832-19838. https://doi.org/10.1021/acssuschemeng.9b05176
  58. Hao Ren, Xiaoli Sun, Chengfeng Du, Jin Zhao, Daobin Liu, Wei Fang, Sonal Kumar, Rodney Chua, Shize Meng, Pinit Kidkhunthod, Li Song, Shuiqing Li, Srinivasan Madhavi, Qingyu Yan. Amorphous Fe–Ni–P–B–O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano 2019, 13 (11) , 12969-12979. https://doi.org/10.1021/acsnano.9b05571
  59. Xiaolei Li, Qingqing Zha, Yonghong Ni. Ni–Fe Phosphate/Ni Foam Electrode: Facile Hydrothermal Synthesis and Ultralong Oxygen Evolution Reaction Durability. ACS Sustainable Chemistry & Engineering 2019, 7 (22) , 18332-18340. https://doi.org/10.1021/acssuschemeng.9b03711
  60. Rajender Boddula, Beidou Guo, Akbar Ali, Guancai Xie, Yawen Dai, Chang Zhao, Yuxuan Wei, Saad Ullah Jan, Jian Ru Gong. Synergetic Effects of Dual Electrocatalysts for High-Performance Solar-Driven Water Oxidation. ACS Applied Energy Materials 2019, 2 (10) , 7256-7262. https://doi.org/10.1021/acsaem.9b01209
  61. Zixia Wan, Dandan Yang, Judan Chen, Jianniao Tian, Tayirjan Taylor Isimjan, Xiulin Yang. Oxygen-Evolution Catalysts Based on Iron-Mediated Nickel Metal–Organic Frameworks. ACS Applied Nano Materials 2019, 2 (10) , 6334-6342. https://doi.org/10.1021/acsanm.9b01330
  62. Mustafa Al Samarai, Anselm W. Hahn, Abbas Beheshti Askari, Yi-Tao Cui, Kosuke Yamazoe, Jun Miyawaki, Yoshihisa Harada, Olaf Rüdiger, Serena DeBeer. Elucidation of Structure–Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering. ACS Applied Materials & Interfaces 2019, 11 (42) , 38595-38605. https://doi.org/10.1021/acsami.9b06752
  63. Prashant Acharya, Zachary J. Nelson, Mourad Benamara, Ryan H. Manso, Sergio I. Perez Bakovic, Mojtaba Abolhassani, Sungsik Lee, Benjamin Reinhart, Jingyi Chen, Lauren F. Greenlee. Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega 2019, 4 (17) , 17209-17222. https://doi.org/10.1021/acsomega.9b01692
  64. Hao Sun, Yuxiang Min, Wenjuan Yang, Yuebin Lian, Ling Lin, Kun Feng, Zhao Deng, Muzi Chen, Jun Zhong, Lai Xu, Yang Peng. Morphological and Electronic Tuning of Ni2P through Iron Doping toward Highly Efficient Water Splitting. ACS Catalysis 2019, 9 (10) , 8882-8892. https://doi.org/10.1021/acscatal.9b02264
  65. Elif Pınar Alsaç, Alexander Whittingham, Yutong Liu, Rodney D. L. Smith. Probing the Role of Internalized Geometric Strain on Heterogeneous Electrocatalysis. Chemistry of Materials 2019, 31 (18) , 7522-7530. https://doi.org/10.1021/acs.chemmater.9b02234
  66. Jie Zhang, Yanwen Bai, Chi Zhang, Hui Gao, Jiazheng Niu, Yujun Shi, Ying Zhang, Meijia Song, Zhonghua Zhang. Hybrid Ni(OH)2/[email protected] Nanosheet Catalysts toward Highly Efficient Oxygen Evolution Reaction with Ultralong Stability over 1000 Hours. ACS Sustainable Chemistry & Engineering 2019, 7 (17) , 14601-14610. https://doi.org/10.1021/acssuschemeng.9b02296
  67. Qingbo Wa, Wei Xiong, Ran Zhao, Zuyun He, Yan Chen, Xinwei Wang. Nanoscale Ni(OH)x Films on Carbon Cloth Prepared by Atomic Layer Deposition and Electrochemical Activation for Glucose Sensing. ACS Applied Nano Materials 2019, 2 (7) , 4427-4434. https://doi.org/10.1021/acsanm.9b00824
  68. Qinghua Liang, Lixiang Zhong, Chengfeng Du, Yubo Luo, Jin Zhao, Yun Zheng, Jianwei Xu, Jianmin Ma, Chuntai Liu, Shuzhou Li, Qingyu Yan. Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano 2019, 13 (7) , 7975-7984. https://doi.org/10.1021/acsnano.9b02510
  69. Chunguang Kuai, Yan Zhang, Deyao Wu, Dimosthenis Sokaras, Linqin Mu, Stephanie Spence, Dennis Nordlund, Feng Lin, Xi-Wen Du. Fully Oxidized Ni–Fe Layered Double Hydroxide with 100% Exposed Active Sites for Catalyzing Oxygen Evolution Reaction. ACS Catalysis 2019, 9 (7) , 6027-6032. https://doi.org/10.1021/acscatal.9b01935
  70. Hongmin Seo, Kyoungsuk Jin, Sunghak Park, Kang Hee Cho, Heonjin Ha, Kang-Gyu Lee, Yoon Ho Lee, Dang Thanh Nguyen, Hyacinthe Randriamahazaka, Jong-Sook Lee, Ki Tae Nam. Mechanistic Investigation with Kinetic Parameters on Water Oxidation Catalyzed by Manganese Oxide Nanoparticle Film. ACS Sustainable Chemistry & Engineering 2019, 7 (12) , 10595-10604. https://doi.org/10.1021/acssuschemeng.9b01159
  71. Zhi Tan, Lekha Sharma, Rita Kakkar, Tao Meng, Yan Jiang, Minhua Cao. Arousing the Reactive Fe Sites in Pyrite (FeS2) via Integration of Electronic Structure Reconfiguration and in Situ Electrochemical Topotactic Transformation for Highly Efficient Oxygen Evolution Reaction. Inorganic Chemistry 2019, 58 (11) , 7615-7627. https://doi.org/10.1021/acs.inorgchem.9b01017
  72. Siqi Niu, Yanchun Sun, Guoji Sun, Dmitrii Rakov, Yuzhi Li, Yan Ma, Jiayu Chu, Ping Xu. Stepwise Electrochemical Construction of FeOOH/Ni(OH)2 on Ni Foam for Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials 2019, 2 (5) , 3927-3935. https://doi.org/10.1021/acsaem.9b00785
  73. Jingying Tao, Yijie Zhang, Shengping Wang, Ge Wang, Fei Hu, Xiaojun Yan, Lifeng Hao, Zhijun Zuo, Xiaowei Yang. Activating Three-Dimensional Networks of [email protected] Nanofibers via Fast Surface Modification for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (20) , 18342-18348. https://doi.org/10.1021/acsami.9b01431
  74. Xi Cao, Emily Johnson, Manashi Nath. Expanding Multinary Selenide Based High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition: Case Study with Fe–Cu–Co Selenides. ACS Sustainable Chemistry & Engineering 2019, 7 (10) , 9588-9600. https://doi.org/10.1021/acssuschemeng.9b01095
  75. Xiang Wang, Zhen-Feng Cai, Dong Wang, Li-Jun Wan. Molecular Evidence for the Catalytic Process of Cobalt Porphyrin Catalyzed Oxygen Evolution Reaction in Alkaline Solution. Journal of the American Chemical Society 2019, 141 (19) , 7665-7669. https://doi.org/10.1021/jacs.9b01229
  76. Yong-Sheng Wei, Mei Zhang, Mitsunori Kitta, Zheng Liu, Satoshi Horike, Qiang Xu. A Single-Crystal Open-Capsule Metal–Organic Framework. Journal of the American Chemical Society 2019, 141 (19) , 7906-7916. https://doi.org/10.1021/jacs.9b02417
  77. Sören Dresp, Fabio Dionigi, Malte Klingenhof, Peter Strasser. Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Letters 2019, 4 (4) , 933-942. https://doi.org/10.1021/acsenergylett.9b00220
  78. Shaoyun Hao, Luchuan Chen, Chunlin Yu, Bin Yang, Zhongjian Li, Yang Hou, Lecheng Lei, Xingwang Zhang. NiCoMo Hydroxide Nanosheet Arrays Synthesized via Chloride Corrosion for Overall Water Splitting. ACS Energy Letters 2019, 4 (4) , 952-959. https://doi.org/10.1021/acsenergylett.9b00333
  79. Bae-Jung Kim, Emiliana Fabbri, Daniel F. Abbott, Xi Cheng, Adam H. Clark, Maarten Nachtegaal, Mario Borlaf, Ivano E. Castelli, Thomas Graule, Thomas J. Schmidt. Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society 2019, 141 (13) , 5231-5240. https://doi.org/10.1021/jacs.8b12101
  80. Fang Song, Michael M. Busch, Benedikt Lassalle-Kaiser, Chia-Shuo Hsu, Elitsa Petkucheva, Michaël Bensimon, Hao Ming Chen, Clemence Corminboeuf, Xile Hu. An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science 2019, 5 (3) , 558-568. https://doi.org/10.1021/acscentsci.9b00053
  81. Kaili Yan, Meili Sheng, Xiaodong Sun, Chang Song, Zhi Cao, Yujie Sun. Microwave Synthesis of Ultrathin Nickel Hydroxide Nanosheets with Iron Incorporation for Electrocatalytic Water Oxidation. ACS Applied Energy Materials 2019, 2 (3) , 1961-1968. https://doi.org/10.1021/acsaem.8b02067
  82. Mingquan Yu, Gunhee Moon, Eckhard Bill, Harun Tüysüz. Optimizing Ni–Fe Oxide Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Applied Energy Materials 2019, 2 (2) , 1199-1209. https://doi.org/10.1021/acsaem.8b01769
  83. Muqing Ren, Jibo Zhang, James M. Tour. Laser-Induced Graphene Hybrid Catalysts for Rechargeable Zn-Air Batteries. ACS Applied Energy Materials 2019, 2 (2) , 1460-1468. https://doi.org/10.1021/acsaem.8b02011
  84. Suchada Sirisomboonchai, Shasha Li, Akihiro Yoshida, Xiumin Li, Chanatip Samart, Abuliti Abudula, Guoqing Guan. Fabrication of NiO [email protected] Nanosheet Heterostructure Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2327-2334. https://doi.org/10.1021/acssuschemeng.8b05088
  85. Bowei Zhang, Kun Jiang, Haotian Wang, Shan Hu. Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst. Nano Letters 2019, 19 (1) , 530-537. https://doi.org/10.1021/acs.nanolett.8b04466
  86. John Mark P. Martirez, Emily A. Carter. Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites. Journal of the American Chemical Society 2019, 141 (1) , 693-705. https://doi.org/10.1021/jacs.8b12386
  87. Brandon J. Taitt, Do-Hwan Nam, Kyoung-Shin Choi. A Comparative Study of Nickel, Cobalt, and Iron Oxyhydroxide Anodes for the Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Catalysis 2019, 9 (1) , 660-670. https://doi.org/10.1021/acscatal.8b04003
  88. Chunzhen Yang, Maria Batuk, Quentin Jacquet, Gwenaëlle Rousse, Wei Yin, Leiting Zhang, Joke Hadermann, Artem M. Abakumov, Giannantonio Cibin, Alan Chadwick, Jean-Marie Tarascon, Alexis Grimaud. Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction. ACS Energy Letters 2018, 3 (12) , 2884-2890. https://doi.org/10.1021/acsenergylett.8b01818
  89. Lizhou Fan, Peili Zhang, Biaobiao Zhang, Quentin Daniel, Brian J.J. Timmer, Fuguo Zhang, Licheng Sun. 3D Core–Shell NiFeCr Catalyst on a Cu Nanoarray for Water Oxidation: Synergy between Structural and Electronic Modulation. ACS Energy Letters 2018, 3 (12) , 2865-2874. https://doi.org/10.1021/acsenergylett.8b01897
  90. Jiande Chen, Feng Zheng, Shao-Jian Zhang, Adrian Fisher, Yao Zhou, Zeyu Wang, Yuyang Li, Bin-Bin Xu, Jun-Tao Li, Shi-Gang Sun. Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catalysis 2018, 8 (12) , 11342-11351. https://doi.org/10.1021/acscatal.8b03489
  91. Chenglong Lai, Jie Wang, Wen Lei, Cuijuan Xuan, Weiping Xiao, Tonghui Zhao, Ting Huang, Lingxuan Chen, Ye Zhu, Deli Wang. Restricting Growth of Ni3Fe Nanoparticles on Heteroatom-Doped Carbon Nanotube/Graphene Nanosheets as Air-Electrode Electrocatalyst for Zn–Air Battery. ACS Applied Materials & Interfaces 2018, 10 (44) , 38093-38100. https://doi.org/10.1021/acsami.8b13751
  92. Raphaël Poulain, Andreas Klein, Joris Proost. Electrocatalytic Properties of (100)-, (110)-, and (111)-Oriented NiO Thin Films toward the Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2018, 122 (39) , 22252-22263. https://doi.org/10.1021/acs.jpcc.8b05790
  93. Jingjing Wang, Hua Chun Zeng. Three-Dimensional Hierarchical Multimetal-LDH Nanoflakes and Their Derived Spinel Oxides for Efficient Oxygen Evolution. ACS Applied Energy Materials 2018, 1 (9) , 4998-5007. https://doi.org/10.1021/acsaem.8b00990
  94. Xi Xu, Chaojiang Li, Jiahao Gwendolyn Lim, Yanqing Wang, Aaron Ong, Xinwei Li, Erwin Peng, Jun Ding. Hierarchical Design of [email protected] Ni–P Bilayer on a 3D Mesh Substrate for High-Efficiency Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2018, 10 (36) , 30273-30282. https://doi.org/10.1021/acsami.8b06730
  95. Yelena Gershinsky, David Zitoun. Direct Chemical Synthesis of Lithium Sub-Stochiometric Olivine Li0.7Co0.75Fe0.25PO4 Coated with Reduced Graphene Oxide as Oxygen Evolution Reaction Electrocatalyst. ACS Catalysis 2018, 8 (9) , 8715-8725. https://doi.org/10.1021/acscatal.8b00119
  96. Xi Cao, Yu Hong, Ning Zhang, Qingzhi Chen, Jahangir Masud, Mohsen Asle Zaeem, Manashi Nath. Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis 2018, 8 (9) , 8273-8289. https://doi.org/10.1021/acscatal.8b01977
  97. Majid Asnavandi, Yichun Yin, Yibing Li, Chenghua Sun, Chuan Zhao. Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe–OOH Catalysts. ACS Energy Letters 2018, 3 (7) , 1515-1520. https://doi.org/10.1021/acsenergylett.8b00696
  98. Fang Song, Lichen Bai, Aliki Moysiadou, Seunghwa Lee, Chao Hu, Laurent Liardet, Xile Hu. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society 2018, 140 (25) , 7748-7759. https://doi.org/10.1021/jacs.8b04546
  99. Xiuju Wu, Yanli Niu, Bomin Feng, Yanan Yu, Xiaoqin Huang, Changyin Zhong, Weihua Hu, Chang Ming Li. Mesoporous Hollow Nitrogen-Doped Carbon Nanospheres with Embedded MnFe2O4/Fe Hybrid Nanoparticles as Efficient Bifunctional Oxygen Electrocatalysts in Alkaline Media. ACS Applied Materials & Interfaces 2018, 10 (24) , 20440-20447. https://doi.org/10.1021/acsami.8b04012
  100. Qinghe Zhao, Jinlong Yang, Mingqiang Liu, Rui Wang, Guangxing Zhang, Han Wang, Hanting Tang, Chaokun Liu, Zongwei Mei, Haibiao Chen, Feng Pan. Tuning Electronic Push/Pull of Ni-Based Hydroxides To Enhance Hydrogen and Oxygen Evolution Reactions for Water Splitting. ACS Catalysis 2018, 8 (6) , 5621-5629. https://doi.org/10.1021/acscatal.8b01567
Load more citations