Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts

View Author Information
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
Cite this: J. Am. Chem. Soc. 2016, 138, 12, 4229–4236
Publication Date (Web):February 24, 2016
https://doi.org/10.1021/jacs.6b00762
Copyright © 2016 American Chemical Society
Article Views
6076
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (3)»

Abstract

Differential electrochemical mass spectrometry (DEMS) analysis of the oxygen isotopologues produced by 18O-labeled Co-OEC in H216O reveals that water splitting catalysis proceeds by a mechanism that involves direct coupling between oxygens bound to dicobalt edge sites of Co-OEC. The edge site chemistry of Co-OEC has been probed by using a dinuclear cobalt complex. 17O NMR spectroscopy shows that ligand exchange of OH/OH2 at Co(III) edge sites is slow, which is also confirmed by DEMS experiments of Co-OEC. In borate (Bi) and phosphate (Pi) buffers, anions must be displaced to allow water to access the edge sites for an O–O bond coupling to occur. Anion exchange in Pi is slow, taking days to equilibrate at room temperature. Conversely, anion exchange in Bi is rapid (kassoc = 13.1 ± 0.4 M–1 s–1 at 25 °C), enabled by facile changes in boron coordination. These results are consistent with the OER activity of Co-OEC in Bi and Pi. The Pi binding kinetics are too slow to establish a pre-equilibrium sufficiently fast to influence the oxygen evolution reaction (OER), consistent with the zero-order dependence of Pi on the OER current density; in contrast, Bi exchange is sufficiently facile such that Bi has an inhibitory effect on OER. These complementary studies on Co-OEC and the dicobalt edge site mimic allow for a direct connection, at a molecular level, to be made between the mechanisms of heterogeneous and homogeneous OER.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b00762.

  • Full experimental details, further DEMS data, crystallographic summary, pH titration data, 1H NMR spectra, Job plot, and electrochemical data (PDF)

  • Crystallographic data (CIF)

  • Crystallographic data (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 124 publications.

  1. Alyssa A. DeLucia, Kimberly A. Kelly, Kevin A. Herrera, Danielle L. Gray, Lisa Olshansky. Intramolecular Hydrogen-Bond Interactions Tune Reactivity in Biomimetic Bis(μ-hydroxo)dicobalt Complexes. Inorganic Chemistry 2021, 60 (20) , 15599-15609. https://doi.org/10.1021/acs.inorgchem.1c02210
  2. Xialiang Li, Xue-Peng Zhang, Mian Guo, Bin Lv, Kai Guo, Xiaotong Jin, Wei Zhang, Yong-Min Lee, Shunichi Fukuzumi, Wonwoo Nam, Rui Cao. Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. Journal of the American Chemical Society 2021, 143 (36) , 14613-14621. https://doi.org/10.1021/jacs.1c05204
  3. Biao Zhu, Yang Qin, Jiawei Du, Fazhi Zhang, Xiaodong Lei. Ammonia Etching to Generate Oxygen Vacancies on CuMn2O4 for Highly Efficient Electrocatalytic Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering 2021, 9 (35) , 11790-11797. https://doi.org/10.1021/acssuschemeng.1c03256
  4. Jaruwan Amtawong, Bastian Bjerkem Skjelstad, Rex C. Handford, Benjamin A. Suslick, David Balcells, T. Don Tilley. C–H Activation by RuCo3O4 Oxo Cubanes: Effects of Oxyl Radical Character and Metal–Metal Cooperativity. Journal of the American Chemical Society 2021, 143 (31) , 12108-12119. https://doi.org/10.1021/jacs.1c04069
  5. Yao Yang, Yin Xiong, Rui Zeng, Xinyao Lu, Mihail Krumov, Xin Huang, Weixuan Xu, Hongsen Wang, Francis J. DiSalvo, Joel. D. Brock, David A. Muller, Héctor D. Abruña. Operando Methods in Electrocatalysis. ACS Catalysis 2021, 11 (3) , 1136-1178. https://doi.org/10.1021/acscatal.0c04789
  6. Pradip K. Das, Sarmistha Bhunia, Priyanka Chakraborty, Sudipta Chatterjee, Atanu Rana, Karthik Peramaiah, Merfat M. Alsabban, Indranil Dutta, Abhishek Dey, Kuo-Wei Huang. Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen O═PN3-Pincer Cobalt Complex. Inorganic Chemistry 2021, 60 (2) , 614-622. https://doi.org/10.1021/acs.inorgchem.0c02376
  7. Biswajit Mondal, Samir Chattopadhyay, Subal Dey, Atif Mahammed, Kaustuv Mittra, Atanu Rana, Zeev Gross, Abhishek Dey. Elucidation of Factors That Govern the 2e–/2H+ vs 4e–/4H+ Selectivity of Water Oxidation by a Cobalt Corrole. Journal of the American Chemical Society 2020, 142 (50) , 21040-21049. https://doi.org/10.1021/jacs.0c08654
  8. Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Guillermo Mínguez Espallargas, Fernando Rey, Avelino Corma, Pascual Oña-Burgos. Cobalt Metal–Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media. Journal of the American Chemical Society 2020, 142 (45) , 19198-19208. https://doi.org/10.1021/jacs.0c08882
  9. Addison N. Desnoyer, Amélie Nicolay, Pablo Rios, Micah S. Ziegler, T. Don Tilley. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Accounts of Chemical Research 2020, 53 (9) , 1944-1956. https://doi.org/10.1021/acs.accounts.0c00382
  10. Richard I. Sayler, Bryan M. Hunter, Wen Fu, Harry B. Gray, R. David Britt. EPR Spectroscopy of Iron- and Nickel-Doped [ZnAl]-Layered Double Hydroxides: Modeling Active Sites in Heterogeneous Water Oxidation Catalysts. Journal of the American Chemical Society 2020, 142 (4) , 1838-1845. https://doi.org/10.1021/jacs.9b10273
  11. Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Miguel Palomino, Guillermo Mínguez Espallargas, José L. Jordá, Fernando Rey, Pascual Oña-Burgos. Cobalt Metal–Organic Framework Based on Two Dinuclear Secondary Building Units for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2019, 11 (50) , 46658-46665. https://doi.org/10.1021/acsami.9b13655
  12. Kang-Gyu Lee, Mani Balamurugan, Sunghak Park, Heonjin Ha, Kyoungsuk Jin, Hongmin Seo, Ki Tae Nam. Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis. ACS Energy Letters 2019, 4 (8) , 1918-1929. https://doi.org/10.1021/acsenergylett.9b00541
  13. Thomas P. Keane, Daniel G. Nocera. Selective Production of Oxygen from Seawater by Oxidic Metallate Catalysts. ACS Omega 2019, 4 (7) , 12860-12864. https://doi.org/10.1021/acsomega.9b01751
  14. Luke D. Huelsenbeck, Shelby L. Hooe, Arian Ghorbanpour, Ashley M. Conley, Helge Heinrich, Charles W. Machan, Gaurav Giri. Metal–Organic Frameworks as Porous Templates for Enhanced Cobalt Oxide Electrocatalyst Performance. ACS Applied Energy Materials 2019, 2 (5) , 3306-3313. https://doi.org/10.1021/acsaem.9b00127
  15. Finn Reikowski, Fouad Maroun, Ivan Pacheco, Tim Wiegmann, Philippe Allongue, Jochim Stettner, Olaf M. Magnussen. Operando Surface X-ray Diffraction Studies of Structurally Defined Co3O4 and CoOOH Thin Films during Oxygen Evolution. ACS Catalysis 2019, 9 (5) , 3811-3821. https://doi.org/10.1021/acscatal.8b04823
  16. Thomas P. Keane, Casey N. Brodsky, Daniel G. Nocera. Oxidative Degradation of Multi-Carbon Substrates by an Oxidic Cobalt Phosphate Catalyst. Organometallics 2019, 38 (6) , 1200-1203. https://doi.org/10.1021/acs.organomet.8b00337
  17. Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Petko Chernev, Mohammad Reza Mohammadi, Leonardo Guidoni, Rodney D. L. Smith, Holger Dau. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society 2019, 141 (7) , 2938-2948. https://doi.org/10.1021/jacs.8b10002
  18. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  19. Cyrille Costentin, Daniel G. Nocera. Dual-Phase Molecular-like Charge Transport in Nanoporous Transition Metal Oxides. The Journal of Physical Chemistry C 2019, 123 (3) , 1966-1973. https://doi.org/10.1021/acs.jpcc.8b10948
  20. Noah D. McMillion, Amanda W. Wilson, McKenna K. Goetz, Mu-Chieh Chang, Chia-Cheng Lin, Wei-Jie Feng, Charles C. L. McCrory, John S. Anderson. Imidazole for Pyridine Substitution Leads to Enhanced Activity Under Milder Conditions in Cobalt Water Oxidation Electrocatalysis. Inorganic Chemistry 2019, 58 (2) , 1391-1397. https://doi.org/10.1021/acs.inorgchem.8b02942
  21. Gihan Kwon, Hoyoung Jang, Jun-Sik Lee, Anil Mane, David J. Mandia, Sarah R. Soltau, Lisa M. Utschig, Alex B. F. Martinson, David M. Tiede, Hacksung Kim, Jungho Kim. Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts. Journal of the American Chemical Society 2018, 140 (34) , 10710-10720. https://doi.org/10.1021/jacs.8b02719
  22. Matthias Schwarz, Firas Faisal, Susanne Mohr, Chantal Hohner, Kristin Werner, Tao Xu, Tomáš Skála, Nataliya Tsud, Kevin C. Prince, Vladimír Matolín, Yaroslava Lykhach, Jörg Libuda. Structure-Dependent Dissociation of Water on Cobalt Oxide. The Journal of Physical Chemistry Letters 2018, 9 (11) , 2763-2769. https://doi.org/10.1021/acs.jpclett.8b01033
  23. Joseph M. Barforoush, Tess E. Seuferling, Dylan T. Jantz, Kelly R. Song, Kevin C. Leonard. Insights into the Active Electrocatalytic Areas of Layered Double Hydroxide and Amorphous Nickel–Iron Oxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials 2018, 1 (4) , 1415-1423. https://doi.org/10.1021/acsaem.8b00190
  24. Lisa Olshansky, Raúl Huerta-Lavorie, Andy I. Nguyen, Jaicy Vallapurackal, Ariel Furst, T. Don Tilley, and A. S. Borovik . Artificial Metalloproteins Containing Co4O4 Cubane Active Sites. Journal of the American Chemical Society 2018, 140 (8) , 2739-2742. https://doi.org/10.1021/jacs.7b13052
  25. Jingjing Wang and Hua Chun Zeng . CoHPi Nanoflakes for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2018, 10 (7) , 6288-6298. https://doi.org/10.1021/acsami.7b17257
  26. Hao-Yi Du, Si-Cong Chen, Xiao-Jun Su, Lei Jiao, and Ming-Tian Zhang . Redox-Active Ligand Assisted Multielectron Catalysis: A Case of CoIII Complex as Water Oxidation Catalyst. Journal of the American Chemical Society 2018, 140 (4) , 1557-1565. https://doi.org/10.1021/jacs.8b00032
  27. Fangyuan Song, René Moré, Mauro Schilling, Grigory Smolentsev, Nicolo Azzaroli, Thomas Fox, Sandra Luber, and Greta R. Patzke . {Co4O4} and {CoxNi4–xO4} Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. Journal of the American Chemical Society 2017, 139 (40) , 14198-14208. https://doi.org/10.1021/jacs.7b07361
  28. Chunzhen Yang, Christel Laberty-Robert, Dmitry Batuk, Giannantonio Cibin, Alan V. Chadwick, Vanessa Pimenta, Wei Yin, Leiting Zhang, Jean-Marie Tarascon, and Alexis Grimaud . Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction. The Journal of Physical Chemistry Letters 2017, 8 (15) , 3466-3472. https://doi.org/10.1021/acs.jpclett.7b01504
  29. Shivaiah Vaddypally, Sandeep K. Kondaveeti, Santosh Karki, Megan M. Van Vliet, Robert J. Levis, and Michael J. Zdilla . Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex. Journal of the American Chemical Society 2017, 139 (13) , 4675-4681. https://doi.org/10.1021/jacs.6b05906
  30. Chunmei Ding, Jingying Shi, Zhiliang Wang, and Can Li . Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis 2017, 7 (1) , 675-688. https://doi.org/10.1021/acscatal.6b03107
  31. Penglin Xu, Ting Zhou, Nadia N. Intan, Shaojin Hu, Xiao Zheng. Rational Ligand Design for an Efficient Biomimetic Water Splitting Complex. The Journal of Physical Chemistry A 2016, 120 (50) , 10033-10042. https://doi.org/10.1021/acs.jpca.6b10154
  32. Hsin-Yi Wang, Sung-Fu Hung, Ying-Ya Hsu, Lulu Zhang, Jianwei Miao, Ting-Shan Chan, Qihua Xiong, and Bin Liu . In Situ Spectroscopic Identification of μ-OO Bridging on Spinel Co3O4 Water Oxidation Electrocatalyst. The Journal of Physical Chemistry Letters 2016, 7 (23) , 4847-4853. https://doi.org/10.1021/acs.jpclett.6b02147
  33. David W. Shaffer, Yan Xie, David J. Szalda, and Javier J. Concepcion . Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes. Inorganic Chemistry 2016, 55 (22) , 12024-12035. https://doi.org/10.1021/acs.inorgchem.6b02193
  34. Bo You, Xuan Liu, Nan Jiang, and Yujie Sun . A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. Journal of the American Chemical Society 2016, 138 (41) , 13639-13646. https://doi.org/10.1021/jacs.6b07127
  35. Yingxue Chang, Nai-En Shi, Shulin Zhao, Dongdong Xu, Chunyan Liu, Yu-Jia Tang, Zhihui Dai, Ya-Qian Lan, Min Han, and Jianchun Bao . Coralloid Co2P2O7 Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. ACS Applied Materials & Interfaces 2016, 8 (34) , 22534-22544. https://doi.org/10.1021/acsami.6b07209
  36. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
  37. Xue-Feng Lu, Pei-Qin Liao, Jia-Wei Wang, Jun-Xi Wu, Xun-Wei Chen, Chun-Ting He, Jie-Peng Zhang, Gao-Ren Li, and Xiao-Ming Chen . An Alkaline-Stable, Metal Hydroxide Mimicking Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society 2016, 138 (27) , 8336-8339. https://doi.org/10.1021/jacs.6b03125
  38. Dazhong Zhong, Tan Li, Dong Wang, Lina Li, Jiancheng Wang, Genyan Hao, Guang Liu, Qiang Zhao, Jinping Li. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Research 2022, 15 (1) , 162-169. https://doi.org/10.1007/s12274-021-3451-7
  39. Erik J. Askins, Marija R. Zoric, Matthew Li, Zhengtang Luo, Khalil Amine, Ksenija D. Glusac. Toward a mechanistic understanding of electrocatalytic nanocarbon. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23486-1
  40. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  41. Fei Xie, Ming-Tian Zhang. Bimetallic water oxidation: One-site catalysis with two-sites oxidation. Journal of Energy Chemistry 2021, 63 , 1-7. https://doi.org/10.1016/j.jechem.2021.08.047
  42. Lichen Bai, Chia-Shuo Hsu, Duncan T. L. Alexander, Hao Ming Chen, Xile Hu. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nature Energy 2021, 6 (11) , 1054-1066. https://doi.org/10.1038/s41560-021-00925-3
  43. Xiaogang Yang, Yuanxing Wang, Chang Ming Li, Dunwei Wang. Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Research 2021, 14 (10) , 3446-3457. https://doi.org/10.1007/s12274-021-3607-5
  44. Dan Xiao, Jennifer Gregg, K. V. Lakshmi, Peter J. Bonitatibus. Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021, 11 (9) , 1068. https://doi.org/10.3390/catal11091068
  45. Feifei Li, Haoqiang Ai, Dong Liu, Kin Ho Lo, Hui Pan. An enhanced oxygen evolution reaction on 2D CoOOH via strain engineering: an insightful view from spin state transition. Journal of Materials Chemistry A 2021, 9 (33) , 17749-17759. https://doi.org/10.1039/D1TA03412J
  46. Chaochao Lang, Jingyi Li, Ke R. Yang, Yuanxing Wang, Da He, James E. Thorne, Seth Croslow, Qi Dong, Yanyan Zhao, Gabriela Prostko, Gary W. Brudvig, Victor S. Batista, Matthias M. Waegele, Dunwei Wang. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem 2021, 7 (8) , 2101-2117. https://doi.org/10.1016/j.chempr.2021.03.015
  47. Kaicai Fan, Porun Liu, Huijun Zhao. Distinctive O-O bond formation pathways at different electrode potentials. Matter 2021, 4 (8) , 2615-2617. https://doi.org/10.1016/j.matt.2021.07.004
  48. Roman Ezhov, Alireza Karbakhsh Ravari, Gabriel Bury, Paul F. Smith, Yulia Pushkar. Do multinuclear 3d metal catalysts achieve O–O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co4O4]n+. Chem Catalysis 2021, 1 (2) , 407-422. https://doi.org/10.1016/j.checat.2021.03.013
  49. Agnes E. Thorarinsdottir, Daniel G. Nocera. Energy catalysis needs ligands with high oxidative stability. Chem Catalysis 2021, 1 (1) , 32-43. https://doi.org/10.1016/j.checat.2021.05.012
  50. Hong‐Tao Zhang, Xiao‐Jun Su, Fei Xie, Rong‐Zhen Liao, Ming‐Tian Zhang. Iron‐Catalyzed Water Oxidation: O–O Bond Formation via Intramolecular Oxo–Oxo Interaction. Angewandte Chemie International Edition 2021, 60 (22) , 12467-12474. https://doi.org/10.1002/anie.202100060
  51. Hong‐Tao Zhang, Xiao‐Jun Su, Fei Xie, Rong‐Zhen Liao, Ming‐Tian Zhang. Iron‐Catalyzed Water Oxidation: O–O Bond Formation via Intramolecular Oxo–Oxo Interaction. Angewandte Chemie 2021, 131 https://doi.org/10.1002/ange.202100060
  52. Wenbin Jiang, Shibin Wang, Jia Liu, Haiyang Zheng, Yu Gu, Wenwen Li, Huaijie Shi, Suiqin Li, Xing Zhong, Jianguo Wang. Lattice oxygen of PbO 2 induces crystal facet dependent electrochemical ozone production. Journal of Materials Chemistry A 2021, 9 (14) , 9010-9017. https://doi.org/10.1039/D0TA12277G
  53. Danilo González, Javier Heras-Domingo, Mariona Sodupe, Luis Rodríguez-Santiago, Xavier Solans-Monfort. Importance of the oxyl character on the IrO2 surface dependent catalytic activity for the oxygen evolution reaction. Journal of Catalysis 2021, 396 , 192-201. https://doi.org/10.1016/j.jcat.2021.02.026
  54. Corinna Stumm, Manon Bertram, Maximilian Kastenmeier, Florian D. Speck, Zhaozong Sun, Jonathan Rodríguez‐Fernández, Jeppe V. Lauritsen, Karl J. J. Mayrhofer, Serhiy Cherevko, Olaf Brummel, Jörg Libuda. Structural Dynamics of Ultrathin Cobalt Oxide Nanoislands under Potential Control. Advanced Functional Materials 2021, 31 (13) , 2009923. https://doi.org/10.1002/adfm.202009923
  55. J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews 2021, 50 (4) , 2444-2485. https://doi.org/10.1039/D0CS00978D
  56. Esteban Rojas-Gatjens, Christian Viales-Montero, Roberto Urcuyo, Diego González-Flores, Mavis L. Montero. Oxidative dissolution of synthetic vivianites as a method for the crystallization of molecular structural motifs. Structural Chemistry 2021, 32 (1) , 445-455. https://doi.org/10.1007/s11224-020-01644-3
  57. M.K. Goetz, J.S. Anderson. Cobalt-Oxo Complexes. 2021,,https://doi.org/10.1016/B978-0-08-102688-5.00046-5
  58. Sunghak Park, Kyoungsuk Jin, Hyung Kyu Lim, Jin Kim, Kang Hee Cho, Seungwoo Choi, Hongmin Seo, Moo Young Lee, Yoon Ho Lee, Sangmoon Yoon, Miyoung Kim, Hyungjun Kim, Sun Hee Kim, Ki Tae Nam. Spectroscopic capture of a low-spin Mn(IV)-oxo species in Ni–Mn3O4 nanoparticles during water oxidation catalysis. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19133-w
  59. Jan Niklas Hausmann, Stefan Mebs, Konstantin Laun, Ingo Zebger, Holger Dau, Prashanth W. Menezes, Matthias Driess. Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor. Energy & Environmental Science 2020, 13 (10) , 3607-3619. https://doi.org/10.1039/D0EE01912G
  60. Felix Bacher, James A. Isaac, Christian Philouze, David Flot, Aurore Thibon-Pourret, Catherine Belle. Synthesis of unsymmetrical 1,8-naphthyridine-based ligands for the assembly of tri-and tetra-nuclear copper( ii ) complexes. New Journal of Chemistry 2020, 44 (39) , 16713-16720. https://doi.org/10.1039/D0NJ02776F
  61. Qin Xie, Qiang Fu, Hai-Bin Cui, Bo-Hong Luo, Wei-Qiang Liu, Ran Qiao, Ya-Jie Ren, Fei Chen, Hua-Xin Zhang, Jin-Qiao Long. Influence of the flexible tetrapyridines on electrocatalytic water oxidation by cobalt complexes. Polyhedron 2020, 189 , 114731. https://doi.org/10.1016/j.poly.2020.114731
  62. Zhiguo Chen, Xiaoli Fan, Zihan Shen, Xiaopeng Ruan, Lan Wang, Hanghang Zeng, Jiahui Wang, Yurong An, Yan Hu. Cu Anchored Ti 2 NO 2 as High Performance Electrocatalyst for Oxygen Evolution Reaction: A Density Functional Theory Study. ChemCatChem 2020, 12 (16) , 4059-4066. https://doi.org/10.1002/cctc.202000591
  63. Wenlong Zhen, Xu Yuan, Xiangyan Shi, Can Xue. Grafting Molecular Cobalt‐oxo Cubane Catalyst on Polymeric Carbon Nitride for Efficient Photocatalytic Water Oxidation. Chemistry – An Asian Journal 2020, 15 (16) , 2480-2486. https://doi.org/10.1002/asia.202000583
  64. David M. Tiede, Gihan Kwon, Xiang He, Karen L. Mulfort, Alex B. F. Martinson. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 2020, 12 (25) , 13276-13296. https://doi.org/10.1039/D0NR02350G
  65. Jiangquan Lv, Xiangfeng Guan, Muxin Yu, Xiaoyan Li, Yunlong Yu, Dagui Chen. Boosting water oxidation activity by tuning the proton transfer process of cobalt phosphonates in neutral solution. Physical Chemistry Chemical Physics 2020, 22 (25) , 14255-14260. https://doi.org/10.1039/D0CP02194F
  66. Chiara Pasquini, Luca D’Amario, Ivelina Zaharieva, Holger Dau. Operando Raman spectroscopy tracks oxidation-state changes in an amorphous Co oxide material for electrocatalysis of the oxygen evolution reaction. The Journal of Chemical Physics 2020, 152 (19) , 194202. https://doi.org/10.1063/5.0006306
  67. Antton Curutchet, Pauline Colinet, Carine Michel, Stephan N. Steinmann, Tangui Le Bahers. Two-sites are better than one: revisiting the OER mechanism on CoOOH by DFT with electrode polarization. Physical Chemistry Chemical Physics 2020, 22 (13) , 7031-7038. https://doi.org/10.1039/D0CP00281J
  68. Simon Clark, Niklas Borchers, Zenonas Jusys, R. Jürgen Behm, Birger Horstmann. Aqueous Zinc Batteries. 2020,,, 1-54. https://doi.org/10.1002/9783527610426.bard110022
  69. Jing Shi, Yu‐Hua Guo, Fei Xie, Qi‐Fa Chen, Ming‐Tian Zhang. Redox‐Active Ligand Assisted Catalytic Water Oxidation by a Ru IV =O Intermediate. Angewandte Chemie International Edition 2020, 59 (10) , 4000-4008. https://doi.org/10.1002/anie.201910614
  70. Jing Shi, Yu‐Hua Guo, Fei Xie, Qi‐Fa Chen, Ming‐Tian Zhang. Redox‐Active Ligand Assisted Catalytic Water Oxidation by a Ru IV =O Intermediate. Angewandte Chemie 2020, 132 (10) , 4029-4037. https://doi.org/10.1002/ange.201910614
  71. Qiaoqiao Zhang, Zhiyao Duan, Min Li, Jingqi Guan. Atomic cobalt catalysts for the oxygen evolution reaction. Chemical Communications 2020, 56 (5) , 794-797. https://doi.org/10.1039/C9CC09007J
  72. Elisa Musella, Isacco Gualandi, Erika Scavetta, Massimo Gazzano, Arianna Rivalta, Elisabetta Venuti, Meganne Christian, Vittorio Morandi, Domenica Tonelli. Electrochemical Approach for the Production of Layered Double Hydroxides with a Well‐Defined Co/Me III Ratio. Chemistry – A European Journal 2019, 25 (71) , 16301-16310. https://doi.org/10.1002/chem.201903288
  73. Hong Jiang, Hao Zhang, Qiaoling Kang, Haifeng Ma, Yinlin Tong, Feng Gao, Qingyi Lu. Rapid solvent-evaporation strategy for three-dimensional cobalt-based complex hierarchical architectures as catalysts for water oxidation. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-51979-z
  74. Mohammad Ali Kamyabi, Fatemeh Soleymani‐Bonoti, Fariba Alirezaei, Rahman Bikas, Nader Noshiranzadeh, Marzieh Emami, Marta S. Krawczyk, Tadeusz Lis. Electrocatalytic properties of a dinuclear cobalt(III) coordination compound in molecular oxygen reduction reaction. Applied Organometallic Chemistry 2019, 33 (12) https://doi.org/10.1002/aoc.5214
  75. Yury Kutin, Nicholas Cox, Wolfgang Lubitz, Alexander Schnegg, Olaf Rüdiger. In Situ EPR Characterization of a Cobalt Oxide Water Oxidation Catalyst at Neutral pH. Catalysts 2019, 9 (11) , 926. https://doi.org/10.3390/catal9110926
  76. Ibbi Y. Ahmet, Yimeng Ma, Ji-Wook Jang, Tobias Henschel, Bernd Stannowski, Tânia Lopes, António Vilanova, Adélio Mendes, Fatwa F. Abdi, Roel van de Krol. Demonstration of a 50 cm 2 BiVO 4 tandem photoelectrochemical-photovoltaic water splitting device. Sustainable Energy & Fuels 2019, 3 (9) , 2366-2379. https://doi.org/10.1039/C9SE00246D
  77. Byunghoon Kim, Ju Seong Kim, Hyunah Kim, Inchul Park, Won Mo Seong, Kisuk Kang. Amorphous multinary phyllosilicate catalysts for electrochemical water oxidation. Journal of Materials Chemistry A 2019, 7 (31) , 18380-18387. https://doi.org/10.1039/C9TA05599A
  78. Jin‐Miao Wang, Ya‐Rong Liu, Xue‐Yang Mao, Ning‐Ning Shi, Xia Zhang, Hui‐Sheng Wang, Yu‐Hua Fan, Mei Wang. Two Trinuclear Cu II Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chemistry – An Asian Journal 2019, 14 (15) , 2685-2693. https://doi.org/10.1002/asia.201900531
  79. Xia Zhong, Yuan Zhang, Zhibin Geng, Fangbing Shi, Mengpei Jiang, Yu Sun, Xiaofeng Wu, Keke Huang, Shouhua Feng. Engineering Cu 2 O/[email protected] hierarchical nanospheres: synergetic effect of fast charge transfer cores and active shells for enhanced oxygen evolution reaction. Inorganic Chemistry Frontiers 2019, 6 (7) , 1660-1666. https://doi.org/10.1039/C9QI00400A
  80. Javier Villalobos, Diego González-Flores, Katharina Klingan, Petko Chernev, Paul Kubella, Roberto Urcuyo, Chiara Pasquini, Mohammad Reza Mohammadi, Rodney D. L. Smith, Mavis L. Montero, Holger Dau. Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials. Physical Chemistry Chemical Physics 2019, 21 (23) , 12485-12493. https://doi.org/10.1039/C9CP01754B
  81. Andy I. Nguyen, Kurt M. Van Allsburg, Maxwell W. Terban, Michal Bajdich, Julia Oktawiec, Jaruwan Amtawong, Micah S. Ziegler, James P. Dombrowski, K. V. Lakshmi, Walter S. Drisdell, Junko Yano, Simon J. L. Billinge, T. Don Tilley. Stabilization of reactive Co 4 O 4 cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Sciences 2019, 20 , 201815013. https://doi.org/10.1073/pnas.1815013116
  82. Vijayendran K. K. Praneeth, Mio Kondo, Masaya Okamura, Takuya Akai, Hitoshi Izu, Shigeyuki Masaoka. Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials. Chemical Science 2019, 10 (17) , 4628-4639. https://doi.org/10.1039/C9SC00678H
  83. Mirco Natali, Francesco Nastasi, Fausto Puntoriero, Andrea Sartorel. Mechanistic Insights into Light‐Activated Catalysis for Water Oxidation. European Journal of Inorganic Chemistry 2019, 2019 (15) , 2027-2039. https://doi.org/10.1002/ejic.201801236
  84. Tobias Wähler, Chantal Hohner, Zhaozong Sun, Ralf Schuster, Jonathan Rodríguez-Fernández, Jeppe Vang Lauritsen, Jörg Libuda. Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO. Journal of Materials Research 2019, 34 (3) , 379-393. https://doi.org/10.1557/jmr.2018.388
  85. Holger Dau, Chiara Pasquini. Modelling the (Essential) Role of Proton Transport by Electrolyte Bases for Electrochemical Water Oxidation at Near-Neutral pH. Inorganics 2019, 7 (2) , 20. https://doi.org/10.3390/inorganics7020020
  86. Michelle P. Browne, Zdeněk Sofer, Martin Pumera. Layered and two dimensional metal oxides for electrochemical energy conversion. Energy & Environmental Science 2019, 12 (1) , 41-58. https://doi.org/10.1039/C8EE02495B
  87. Julio Lloret-Fillol, Miquel Costas. Water oxidation at base metal molecular catalysts. 2019,,, 1-52. https://doi.org/10.1016/bs.adomc.2019.02.003
  88. Zoel Codolá, Julio Lloret-Fillol, Miquel Costas. Catalytic Water Oxidation: Water Oxidation to O 2 Mediated by 3d Transition Metal Complexes. 2018,,, 425-451. https://doi.org/10.1002/9783527699087.ch16
  89. Zhuo Xing, Hengyi Wu, Liang Wu, Xuening Wang, Huizhou Zhong, Feng Li, Jinchao Shi, Dengyuan Song, Wei Xiao, Changzhong Jiang, Feng Ren. A multifunctional vanadium-doped cobalt oxide layer on silicon photoanodes for efficient and stable photoelectrochemical water oxidation. Journal of Materials Chemistry A 2018, 6 (42) , 21167-21177. https://doi.org/10.1039/C8TA07552B
  90. Jie Zhang, Chaoqun Dong, Zhenbin Wang, Chi Zhang, Hui Gao, Jiazheng Niu, Zhonghua Zhang. Flexible, self-supported hexagonal β-Co(OH)2 nanosheet arrays as integrated electrode catalyzing oxygen evolution reaction. Electrochimica Acta 2018, 284 , 495-503. https://doi.org/10.1016/j.electacta.2018.07.182
  91. Arno Bergmann, Travis E. Jones, Elias Martinez Moreno, Detre Teschner, Petko Chernev, Manuel Gliech, Tobias Reier, Holger Dau, Peter Strasser. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nature Catalysis 2018, 1 (9) , 711-719. https://doi.org/10.1038/s41929-018-0141-2
  92. Hai Xiao, Hyeyoung Shin, William A. Goddard. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proceedings of the National Academy of Sciences 2018, 115 (23) , 5872-5877. https://doi.org/10.1073/pnas.1722034115
  93. Ju Seong Kim, Byunghoon Kim, Hyunah Kim, Kisuk Kang. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials 2018, 8 (11) , 1702774. https://doi.org/10.1002/aenm.201702774
  94. Juzhe Liu, Jianwei Nai, Tingting You, Pengfei An, Jing Zhang, Guanshui Ma, Xiaogang Niu, Chaoying Liang, Shihe Yang, Lin Guo. The Flexibility of an Amorphous Cobalt Hydroxide Nanomaterial Promotes the Electrocatalysis of Oxygen Evolution Reaction. Small 2018, 14 (17) , 1703514. https://doi.org/10.1002/smll.201703514
  95. Yanyan Zhao, Ke R. Yang, Zechao Wang, Xingxu Yan, Sufeng Cao, Yifan Ye, Qi Dong, Xizi Zhang, James E. Thorne, Lei Jin, Kelly L. Materna, Antonios Trimpalis, Hongye Bai, Sirine C. Fakra, Xiaoyan Zhong, Peng Wang, Xiaoqing Pan, Jinghua Guo, Maria Flytzani-Stephanopoulos, Gary W. Brudvig, Victor S. Batista, Dunwei Wang. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proceedings of the National Academy of Sciences 2018, 115 (12) , 2902-2907. https://doi.org/10.1073/pnas.1722137115
  96. Deepak Kumar Tiwari, Apurba Ray, Atanu Roy, Sachindranath Das. Water Splitting by Using Electrochemical Properties of Material. 2018,,, 135-153. https://doi.org/10.1007/978-981-10-7551-3_8
  97. Dmytro S. Nesterov, Oksana V. Nesterova, Armando J.L. Pombeiro. Homo- and heterometallic polynuclear transition metal catalysts for alkane C H bonds oxidative functionalization: Recent advances. Coordination Chemistry Reviews 2018, 355 , 199-222. https://doi.org/10.1016/j.ccr.2017.08.009
  98. Peter Strasser, Manuel Gliech, Stefanie Kuehl, Tim Moeller. Electrochemical processes on solid shaped nanoparticles with defined facets. Chemical Society Reviews 2018, 47 (3) , 715-735. https://doi.org/10.1039/C7CS00759K
  99. Erin J. Viere, Ashley E. Kuhn, Margaret H. Roeder, Nicholas A. Piro, W. Scott Kassel, Timothy J. Dudley, Jared J. Paul. Spectroelectrochemical studies of a ruthenium complex containing the pH sensitive 4,4′-dihydroxy-2,2′-bipyridine ligand. Dalton Transactions 2018, 47 (12) , 4149-4161. https://doi.org/10.1039/C7DT04554A
  100. Penglin Xu, Shaojin Hu, Hou-Dao Zhang, Xiao Zheng. Theoretical insights into the reactivity of Fe-based catalysts for water oxidation: the role of electron-withdrawing groups. Physical Chemistry Chemical Physics 2018, 20 (21) , 14919-14926. https://doi.org/10.1039/C8CP00687C
Load all citations