X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction

View Author Information
Chemical Sciences and Engineering Division and Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
§ Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
Cite this: J. Am. Chem. Soc. 2016, 138, 34, 11017–11030
Publication Date (Web):August 12, 2016
Copyright © 2016 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (1)»


The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co(III)4O4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the t2g-based redox-active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal–metal coupling across Co4O4. Guided by the data, calculations show that electron–hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E0 over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal–metal and antibonding interactions across the cluster.

Supporting Information

Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b04663.

  • Full experimental details, supporting tables and figures, and Cartesian coordinates of DFT-optimized geometries (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 76 publications.

  1. Anuj Bisht, Pradeep Kumar Yadav, Shikha Dhakar, Sudhanshu Sharma. Pt4+ as an Active Site for Oxygen Evolution Reaction in La1–xSrxCo1–yPtyO3. The Journal of Physical Chemistry C 2021, 125 (46) , 25488-25496. https://doi.org/10.1021/acs.jpcc.1c06426
  2. Jindou Yang, Hai T. Dong, Mi Sook Seo, Virginia A. Larson, Yong-Min Lee, Jason Shearer, Nicolai Lehnert, Wonwoo Nam. The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)–Oxo Complex. Journal of the American Chemical Society 2021, 143 (41) , 16943-16959. https://doi.org/10.1021/jacs.1c04919
  3. Alyssa A. DeLucia, Kimberly A. Kelly, Kevin A. Herrera, Danielle L. Gray, Lisa Olshansky. Intramolecular Hydrogen-Bond Interactions Tune Reactivity in Biomimetic Bis(μ-hydroxo)dicobalt Complexes. Inorganic Chemistry 2021, 60 (20) , 15599-15609. https://doi.org/10.1021/acs.inorgchem.1c02210
  4. Jun-Song Jia, Yan Cao, Tai-Xue Wu, Ye Tao, Ying-Ming Pan, Fu-Ping Huang, Hai-Tao Tang. Highly Regio- and Stereoselective Markovnikov Hydrosilylation of Alkynes Catalyzed by High-Nuclearity {Co14} Clusters. ACS Catalysis 2021, 11 (12) , 6944-6950. https://doi.org/10.1021/acscatal.1c01996
  5. Yueguang Chen, Xintian Liu, Renjie Wu, Jiabin Cui, Gaofei Hu, Leyu Wang. Dual Active Center-Assembled Cu31S16–Co9-xNixS8 Heterodimers: Coherent Interface Engineering Induces Multihole Accumulation for Light-Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2021, 13 (17) , 20094-20104. https://doi.org/10.1021/acsami.1c02353
  6. Yang Zong, Xiaohong Guan, Jun Xu, Yong Feng, Yunfeng Mao, Longqian Xu, Huaqiang Chu, Deli Wu. Unraveling the Overlooked Involvement of High-Valent Cobalt-Oxo Species Generated from the Cobalt(II)-Activated Peroxymonosulfate Process. Environmental Science & Technology 2020, 54 (24) , 16231-16239. https://doi.org/10.1021/acs.est.0c06808
  7. Jaruwan Amtawong, Bastian B. Skjelstad, David Balcells, T. Don Tilley. Concerted Proton–Electron Transfer Reactivity at a Multimetallic Co4O4 Cubane Cluster. Inorganic Chemistry 2020, 59 (20) , 15553-15560. https://doi.org/10.1021/acs.inorgchem.0c02625
  8. Yang Wang, Yuan Ma, Xu-Bing Li, Lei Gao, Xiao-Ya Gao, Xiang-Zhu Wei, Li-Ping Zhang, Chen-Ho Tung, Lijie Qiao, Li-Zhu Wu. Unveiling Catalytic Sites in a Typical Hydrogen Photogeneration System Consisting of Semiconductor Quantum Dots and 3d-Metal Ions. Journal of the American Chemical Society 2020, 142 (10) , 4680-4689. https://doi.org/10.1021/jacs.9b11768
  9. Hongfei Liu, Heinz Frei. Observation of O–O Bond Forming Step of Molecular Co4O4 Cubane Catalyst for Water Oxidation by Rapid-Scan FT-IR Spectroscopy. ACS Catalysis 2020, 10 (3) , 2138-2147. https://doi.org/10.1021/acscatal.9b03281
  10. Shiqiang Feng, Lanlan Yang, Zhenzhen Zhang, Qi Li, Dongsheng Xu. Au-Decorated CoOOH Nanoplate Hierarchical Hollow Structure for Plasmon-Enhanced Electrocatalytic Water Oxidation. ACS Applied Energy Materials 2020, 3 (1) , 943-950. https://doi.org/10.1021/acsaem.9b01976
  11. Yan Li, Suhashini Handunneththige, Erik R. Farquhar, Yisong Guo, Marat R. Talipov, Feifei Li, Dong Wang. Highly Reactive CoIII,IV2(μ-O)2 Diamond Core Complex That Cleaves C–H Bonds. Journal of the American Chemical Society 2019, 141 (51) , 20127-20136. https://doi.org/10.1021/jacs.9b09531
  12. Jia Yang, Pengfei Jiang, Zhengyang Zhou, Mufei Yue, Dingfeng Yang, Shijian Chen, Tao Yang. Regular Double-Cube [Cr7S8]5+ in [Cr7S8(SCN)4(NH3)14](HS): An Ideal Model Compound for Investigation of Geometrical Magnetic Frustration. Crystal Growth & Design 2019, 19 (11) , 6028-6032. https://doi.org/10.1021/acs.cgd.9b00984
  13. Heonjin Ha, Kyoungsuk Jin, Sunghak Park, Kang-Gyu Lee, Kang Hee Cho, Hongmin Seo, Hyo-Yong Ahn, Yoon Ho Lee, Ki Tae Nam. Highly Selective Active Chlorine Generation Electrocatalyzed by Co3O4 Nanoparticles: Mechanistic Investigation through in Situ Electrokinetic and Spectroscopic Analyses. The Journal of Physical Chemistry Letters 2019, 10 (6) , 1226-1233. https://doi.org/10.1021/acs.jpclett.9b00547
  14. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  15. Gihan Kwon, Hoyoung Jang, Jun-Sik Lee, Anil Mane, David J. Mandia, Sarah R. Soltau, Lisa M. Utschig, Alex B. F. Martinson, David M. Tiede, Hacksung Kim, Jungho Kim. Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts. Journal of the American Chemical Society 2018, 140 (34) , 10710-10720. https://doi.org/10.1021/jacs.8b02719
  16. Brian J. Cook, Maren Pink, Kuntal Pal, Kenneth G. Caulton. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment. Inorganic Chemistry 2018, 57 (10) , 6176-6185. https://doi.org/10.1021/acs.inorgchem.8b00816
  17. Lisa Olshansky, Raúl Huerta-Lavorie, Andy I. Nguyen, Jaicy Vallapurackal, Ariel Furst, T. Don Tilley, and A. S. Borovik . Artificial Metalloproteins Containing Co4O4 Cubane Active Sites. Journal of the American Chemical Society 2018, 140 (8) , 2739-2742. https://doi.org/10.1021/jacs.7b13052
  18. Dimitrios Maganas, Serena DeBeer, and Frank Neese . Pair Natural Orbital Restricted Open-Shell Configuration Interaction (PNO-ROCIS) Approach for Calculating X-ray Absorption Spectra of Large Chemical Systems. The Journal of Physical Chemistry A 2018, 122 (5) , 1215-1227. https://doi.org/10.1021/acs.jpca.7b10880
  19. Fangyuan Song, René Moré, Mauro Schilling, Grigory Smolentsev, Nicolo Azzaroli, Thomas Fox, Sandra Luber, and Greta R. Patzke . {Co4O4} and {CoxNi4–xO4} Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. Journal of the American Chemical Society 2017, 139 (40) , 14198-14208. https://doi.org/10.1021/jacs.7b07361
  20. Dorota Koziej (Guest Editor) , Serena DeBeer (Guest Editor) . Application of Modern X-ray Spectroscopy in Chemistry—Beyond Studying the Oxidation State. Chemistry of Materials 2017, 29 (17) , 7051-7053. https://doi.org/10.1021/acs.chemmater.7b03455
  21. Chunzhen Yang, Christel Laberty-Robert, Dmitry Batuk, Giannantonio Cibin, Alan V. Chadwick, Vanessa Pimenta, Wei Yin, Leiting Zhang, Jean-Marie Tarascon, and Alexis Grimaud . Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction. The Journal of Physical Chemistry Letters 2017, 8 (15) , 3466-3472. https://doi.org/10.1021/acs.jpclett.7b01504
  22. Andy I. Nguyen, Daniel L. M. Suess, Lucy E. Darago, Paul H. Oyala, Daniel S. Levine, Micah S. Ziegler, R. David Britt, and T. Don Tilley . Manganese–Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts. Journal of the American Chemical Society 2017, 139 (15) , 5579-5587. https://doi.org/10.1021/jacs.7b01792
  23. Alexander H. Reath, Joseph W. Ziller, Charlene Tsay, Austin J. Ryan, and Jenny Y. Yang . Redox Potential and Electronic Structure Effects of Proximal Nonredox Active Cations in Cobalt Schiff Base Complexes. Inorganic Chemistry 2017, 56 (6) , 3713-3718. https://doi.org/10.1021/acs.inorgchem.6b03098
  24. Samantha N. MacMillan and Kyle M. Lancaster . X-ray Spectroscopic Interrogation of Transition-Metal-Mediated Homogeneous Catalysis: Primer and Case Studies. ACS Catalysis 2017, 7 (3) , 1776-1791. https://doi.org/10.1021/acscatal.6b02875
  25. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  26. Hanna Lyle, Suryansh Singh, Michael Paolino, Ilya Vinogradov, Tanja Cuk. The electron-transfer intermediates of the oxygen evolution reaction (OER) as polarons by in situ spectroscopy. Physical Chemistry Chemical Physics 2021, 23 (44) , 24984-25002. https://doi.org/10.1039/D1CP01760H
  27. Yusef Shari'ati, Josh Vura-Weis. Polymer thin films as universal substrates for extreme ultraviolet absorption spectroscopy of molecular transition metal complexes. Journal of Synchrotron Radiation 2021, 28 (6) , 1850-1857. https://doi.org/10.1107/S1600577521010596
  28. Shino Manabe, Yoshiki Yamaguchi. Antibody Glycoengineering and Homogeneous Antibody‐Drug Conjugate Preparation. The Chemical Record 2021, 21 (11) , 3005-3014. https://doi.org/10.1002/tcr.202100054
  29. Roman Ezhov, Alireza Karbakhsh Ravari, Gabriel Bury, Paul F. Smith, Yulia Pushkar. Do multinuclear 3d metal catalysts achieve O–O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co4O4]n+. Chem Catalysis 2021, 1 (2) , 407-422. https://doi.org/10.1016/j.checat.2021.03.013
  30. Rebeca G. Castillo, Anselm W. Hahn, Benjamin E. Van Kuiken, Justin T. Henthorn, Jeremy McGale, Serena DeBeer. Probing Physical Oxidation State by Resonant X‐ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angewandte Chemie 2021, 133 (18) , 10200-10209. https://doi.org/10.1002/ange.202015669
  31. Rebeca G. Castillo, Anselm W. Hahn, Benjamin E. Van Kuiken, Justin T. Henthorn, Jeremy McGale, Serena DeBeer. Probing Physical Oxidation State by Resonant X‐ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angewandte Chemie International Edition 2021, 60 (18) , 10112-10121. https://doi.org/10.1002/anie.202015669
  32. Fangming Liu, Le Zhang, Lei Wang, Fangyi Cheng. The Electrochemical Tuning of Transition Metal-Based Materials for Electrocatalysis. Electrochemical Energy Reviews 2021, 4 (1) , 146-168. https://doi.org/10.1007/s41918-020-00089-w
  33. Xochitl-Andrea Hernández-Contreras, Inti Zumeta-Dubé, Geonel Rodríguez Gattorno, Nicolás Cayetano Castro, José Luis Casas Espínola, Edilso Reguera. Unraveling amazing structural features of a highly efficient “oxo-Co/phosphate” catalyst for water oxidation. Applied Catalysis B: Environmental 2021, 282 , 119549. https://doi.org/10.1016/j.apcatb.2020.119549
  34. J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews 2021, 50 (4) , 2444-2485. https://doi.org/10.1039/D0CS00978D
  35. Jun-Ye Zhang, Ya Yan, Bingbao Mei, Ruijuan Qi, Ting He, Zhitong Wang, Wensheng Fang, Shahid Zaman, Yaqiong Su, Shujiang Ding, Bao Yu Xia. Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energy & Environmental Science 2021, 14 (1) , 365-373. https://doi.org/10.1039/D0EE03500A
  36. M.K. Goetz, J.S. Anderson. Cobalt-Oxo Complexes. 2021,,https://doi.org/10.1016/B978-0-08-102688-5.00046-5
  37. Katrin Warm, Jennifer Deutscher, Kallol Ray. Metal-Ligand Multiple Bonds With Group 9–11 Metals. 2021,,https://doi.org/10.1016/B978-0-08-102688-5.00064-7
  38. Yusef Shari'ati, Josh Vura-Weis. Ballistic Δ S = 2 intersystem crossing in a cobalt cubane following ligand-field excitation probed by extreme ultraviolet spectroscopy. Physical Chemistry Chemical Physics 2021, 185 https://doi.org/10.1039/D1CP04136C
  39. Shenlong Zhao, Chunhui Tan, Chun-Ting He, Pengfei An, Feng Xie, Shuai Jiang, Yanfei Zhu, Kuang-Hsu Wu, Binwei Zhang, Haijing Li, Jing Zhang, Yuan Chen, Shaoqin Liu, Juncai Dong, Zhiyong Tang. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy 2020, 5 (11) , 881-890. https://doi.org/10.1038/s41560-020-00709-1
  40. Dalvin D. Méndez-Hernández, Amgalanbaatar Baldansuren, Vidmantas Kalendra, Philip Charles, Brian Mark, William Marshall, Brian Molnar, Thomas A. Moore, K.V. Lakshmi, Ana L. Moore. HYSCORE and DFT Studies of Proton-Coupled Electron Transfer in a Bioinspired Artificial Photosynthetic Reaction Center. iScience 2020, 23 (8) , 101366. https://doi.org/10.1016/j.isci.2020.101366
  41. Mickaël G. Delcey, Rafael Carvalho Couto, Lasse Kragh Sørensen, Ignacio Fdez. Galván, Meiyuan Guo, Roland Lindh, Marcus Lundberg. Exact semi-classical light–matter interaction operator applied to two-photon processes with strong relativistic effects. The Journal of Chemical Physics 2020, 153 (2) , 024114. https://doi.org/10.1063/5.0007833
  42. David M. Tiede, Gihan Kwon, Xiang He, Karen L. Mulfort, Alex B. F. Martinson. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 2020, 12 (25) , 13276-13296. https://doi.org/10.1039/D0NR02350G
  43. Qi Hu, Xiaowan Huang, Ziyu Wang, Guomin Li, Zhen Han, Hengpan Yang, Peng Liao, XiangZhong Ren, Qianling Zhang, Jianhong Liu, Chuanxin He. Slower Removing Ligands of Metal Organic Frameworks Enables Higher Electrocatalytic Performance of Derived Nanomaterials. Small 2020, 16 (25) , 2002210. https://doi.org/10.1002/smll.202002210
  44. Erik Källman, Meiyuan Guo, Mickaël G. Delcey, Drew A. Meyer, Kelly J. Gaffney, Roland Lindh, Marcus Lundberg. Simulations of valence excited states in coordination complexes reached through hard X-ray scattering. Physical Chemistry Chemical Physics 2020, 22 (16) , 8325-8335. https://doi.org/10.1039/D0CP01003K
  45. Marcus Lundberg, Philippe Wernet. Resonant Inelastic X-ray Scattering (RIXS) Studies in Chemistry: Present and Future. 2020,,, 2315-2366. https://doi.org/10.1007/978-3-030-23201-6_74
  46. Peng Guo, Zhaojie Wang, Tian Zhang, Chen Chen, Yalan Chen, Haijun Liu, Minglei Hua, Shuxian Wei, Xiaoqing Lu. Initiating an efficient electrocatalyst for water splitting via valence configuration of cobalt-iron oxide. Applied Catalysis B: Environmental 2019, 258 , 117968. https://doi.org/10.1016/j.apcatb.2019.117968
  47. Amanda Grass, Duleeka Wannipurage, Richard L. Lord, Stanislav Groysman. Group-transfer chemistry at transition metal centers in bulky alkoxide ligand environments. Coordination Chemistry Reviews 2019, 400 , 213044. https://doi.org/10.1016/j.ccr.2019.213044
  48. Meng-si Li, Zhi-yu Lin, Qian-wang Chen. Metal-organic frameworks derived Ag-CoSO 4 nanohybrids as efficient electrocatalyst for oxygen evolution reaction. Chinese Journal of Chemical Physics 2019, 32 (6) , 731-738. https://doi.org/10.1063/1674-0068/cjcp1805104
  49. Yulia Budnikova, Olga Bochkova, Mikhail Khrizanforov, Irek Nizameev, Kirill Kholin, Tatyana Gryaznova, Artem Laskin, Yulia Dudkina, Sofia Strekalova, Svetlana Fedorenko, Aleksandr Kononov, Asia Mustafina. Selective C(sp 2 )‐H Amination Catalyzed by High‐Valent Cobalt(III)/(IV)‐bpy Complex Immobilized on Silica Nanoparticles. ChemCatChem 2019, 11 (22) , 5615-5624. https://doi.org/10.1002/cctc.201901391
  50. Yifan Zhang, Soo-Jin Park. Stabilizing CuPd bimetallic alloy nanoparticles deposited on holey carbon nitride for selective hydroxylation of benzene to phenol. Journal of Catalysis 2019, 379 , 154-163. https://doi.org/10.1016/j.jcat.2019.09.032
  51. Yuxiao Ding, Robert Schlögl, Saskia Heumann. The Role of Supported Atomically Distributed Metal Species in Electrochemistry and How to Create Them. ChemElectroChem 2019, 6 (15) , 3860-3877. https://doi.org/10.1002/celc.201900598
  52. Jun Chai, Zhaoyang Zheng, Hui Pan, Shengbai Zhang, K. V. Lakshmi, Yi-Yang Sun. Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective. Physical Chemistry Chemical Physics 2019, 21 (17) , 8721-8728. https://doi.org/10.1039/C9CP00868C
  53. Biaobiao Zhang, Licheng Sun. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews 2019, 48 (7) , 2216-2264. https://doi.org/10.1039/C8CS00897C
  54. Marcus Lundberg, Philippe Wernet. Resonant Inelastic X-ray Scattering (RIXS) Studies in Chemistry: Present and Future. 2019,,, 1-52. https://doi.org/10.1007/978-3-319-04507-8_74-1
  55. Julio Lloret-Fillol, Miquel Costas. Water oxidation at base metal molecular catalysts. 2019,,, 1-52. https://doi.org/10.1016/bs.adomc.2019.02.003
  56. Atif Ali, Waseem Akram, Hai-Yang Liu. Reactive Cobalt–Oxo Complexes of Tetrapyrrolic Macrocycles and N-based Ligand in Oxidative Transformation Reactions. Molecules 2019, 24 (1) , 78. https://doi.org/10.3390/molecules24010078
  57. Andy I. Nguyen, Ryan K. Spencer, Christopher L. Anderson, Ronald N. Zuckermann. A bio-inspired approach to ligand design: folding single-chain peptoids to chelate a multimetallic cluster. Chemical Science 2018, 9 (47) , 8806-8813. https://doi.org/10.1039/C8SC04240C
  58. Tania Rodenas, Sebastian Beeg, Ioannis Spanos, Sebastian Neugebauer, Frank Girgsdies, Gerardo Algara‐Siller, Peter Philipp Maria Schleker, Peter Jakes, Norbert Pfänder, Marc Willinger, Mark Greiner, Gonzalo Prieto, Robert Schlögl, Saskia Heumann. 2D Metal Organic Framework‐Graphitic Carbon Nanocomposites as Precursors for High‐Performance O 2 ‐Evolution Electrocatalysts. Advanced Energy Materials 2018, 8 (35) , 1802404. https://doi.org/10.1002/aenm.201802404
  59. Youqi Zhu, Wenming Sun, Jun Luo, Wenxing Chen, Tai Cao, Lirong Zheng, Juncai Dong, Jian Zhang, Maolin Zhang, Yunhu Han, Chen Chen, Qing Peng, Dingsheng Wang, Yadong Li. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06296-w
  60. Zhuo Xing, Hengyi Wu, Liang Wu, Xuening Wang, Huizhou Zhong, Feng Li, Jinchao Shi, Dengyuan Song, Wei Xiao, Changzhong Jiang, Feng Ren. A multifunctional vanadium-doped cobalt oxide layer on silicon photoanodes for efficient and stable photoelectrochemical water oxidation. Journal of Materials Chemistry A 2018, 6 (42) , 21167-21177. https://doi.org/10.1039/C8TA07552B
  61. Lisa J. Enman, Michaela Burke Stevens, Meir Haim Dahan, Michael R. Nellist, Maytal Caspary Toroker, Shannon W. Boettcher. Operando X‐Ray Absorption Spectroscopy Shows Iron Oxidation Is Concurrent with Oxygen Evolution in Cobalt–Iron (Oxy)hydroxide Electrocatalysts. Angewandte Chemie 2018, 130 (39) , 13022-13026. https://doi.org/10.1002/ange.201808818
  62. Lisa J. Enman, Michaela Burke Stevens, Meir Haim Dahan, Michael R. Nellist, Maytal Caspary Toroker, Shannon W. Boettcher. Operando X‐Ray Absorption Spectroscopy Shows Iron Oxidation Is Concurrent with Oxygen Evolution in Cobalt–Iron (Oxy)hydroxide Electrocatalysts. Angewandte Chemie International Edition 2018, 57 (39) , 12840-12844. https://doi.org/10.1002/anie.201808818
  63. Shanshan Zhang, Yuyang Sun, Fan Liao, Yuwei Shen, Huixian Shi, Mingwang Shao. Co9S8-CuS-FeS trimetal sulfides for excellent oxygen evolution reaction electrocatalysis. Electrochimica Acta 2018, 283 , 1695-1701. https://doi.org/10.1016/j.electacta.2018.07.133
  64. Kaikai Nan, Hongfang Du, Lan Su, Chang Ming Li. Directly Electrodeposited Cobalt Sulfide Nanosheets as Advanced Catalyst for Oxygen Evolution Reaction. ChemistrySelect 2018, 3 (25) , 7081-7088. https://doi.org/10.1002/slct.201801482
  65. Linzhou Zhuang, Yi Jia, Tianwei He, Aijun Du, Xuecheng Yan, Lei Ge, Zhonghua Zhu, Xiangdong Yao. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Research 2018, 11 (6) , 3509-3518. https://doi.org/10.1007/s12274-018-2050-8
  66. Yuxiao Ding, Alexander Klyushin, Xing Huang, Travis Jones, Detre Teschner, Frank Girgsdies, Tania Rodenas, Robert Schlögl, Saskia Heumann. Ein aktiver und stabiler Cobaltkatalysator für die Sauerstoffentwicklungsreaktion: Polymerisation einer ionischen Flüssigkeit. Angewandte Chemie 2018, 130 (13) , 3573-3577. https://doi.org/10.1002/ange.201711688
  67. Yuxiao Ding, Alexander Klyushin, Xing Huang, Travis Jones, Detre Teschner, Frank Girgsdies, Tania Rodenas, Robert Schlögl, Saskia Heumann. Cobalt-Bridged Ionic Liquid Polymer on a Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity. Angewandte Chemie International Edition 2018, 57 (13) , 3514-3518. https://doi.org/10.1002/anie.201711688
  68. Mohammad Usman, Farukh Arjmand, Rais Ahmad Khan, Ali Alsalme, Musheer Ahmad, Mousumi Sen Bishwas, Sartaj Tabassum. Tetranuclear cubane Cu4O4 complexes as prospective anticancer agents: Design, synthesis, structural elucidation, magnetism, computational and cytotoxicity studies. Inorganica Chimica Acta 2018, 473 , 121-132. https://doi.org/10.1016/j.ica.2017.12.039
  69. Michael L. Baker, Michael W. Mara, James J. Yan, Keith O. Hodgson, Britt Hedman, Edward I. Solomon. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coordination Chemistry Reviews 2017, 345 , 182-208. https://doi.org/10.1016/j.ccr.2017.02.004
  70. Casey N. Brodsky, Ryan G. Hadt, Dugan Hayes, Benjamin J. Reinhart, Nancy Li, Lin X. Chen, Daniel G. Nocera. In situ characterization of cofacial Co(IV) centers in Co 4 O 4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proceedings of the National Academy of Sciences 2017, 114 (15) , 3855-3860. https://doi.org/10.1073/pnas.1701816114
  71. Bin Wang, Yong-Min Lee, Woon-Young Tcho, Samat Tussupbayev, Seoung-Tae Kim, Yujeong Kim, Mi Sook Seo, Kyung-Bin Cho, Yavuz Dede, Brenna C. Keegan, Takashi Ogura, Sun Hee Kim, Takehiro Ohta, Mu-Hyun Baik, Kallol Ray, Jason Shearer, Wonwoo Nam. Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms14839
  72. J. Li, R. Güttinger, R. Moré, F. Song, W. Wan, G. R. Patzke. Frontiers of water oxidation: the quest for true catalysts. Chemical Society Reviews 2017, 46 (20) , 6124-6147. https://doi.org/10.1039/C7CS00306D
  73. Sang A Lee, Seokjae Oh, Jae-Yeol Hwang, Minseok Choi, Chulmin Youn, Ji Woong Kim, Seo Hyoung Chang, Sungmin Woo, Jong-Seong Bae, Sungkyun Park, Young-Min Kim, Suyoun Lee, Taekjib Choi, Sung Wng Kim, Woo Seok Choi. Enhanced electrocatalytic activity via phase transitions in strongly correlated SrRuO 3 thin films. Energy & Environmental Science 2017, 10 (4) , 924-930. https://doi.org/10.1039/C7EE00628D
  74. Andy I. Nguyen, Jianing Wang, Daniel S. Levine, Micah S. Ziegler, T. Don Tilley. Synthetic control and empirical prediction of redox potentials for Co 4 O 4 cubanes over a 1.4 V range: implications for catalyst design and evaluation of high-valent intermediates in water oxidation. Chemical Science 2017, 8 (6) , 4274-4284. https://doi.org/10.1039/C7SC00627F
  75. Changlong Xiao, Shuni Li, Xinyi Zhang, Douglas R. MacFarlane. MnO 2 /MnCo 2 O 4 /Ni heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation. Journal of Materials Chemistry A 2017, 5 (17) , 7825-7832. https://doi.org/10.1039/C7TA00980A
  76. Edwin B. Clatworthy, Xiaobo Li, Anthony F. Masters, Thomas Maschmeyer. Electrochemical investigation of [Co 4 (μ 3 -O) 4 (μ-OAc) 4 (py) 4 ] and peroxides by cyclic voltammetry. Chemical Communications 2016, 52 (100) , 14412-14415. https://doi.org/10.1039/C6CC08412E