Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting

View Author Information
State Key Laboratory of Environmental Aquatic Chemistry, and Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
§ Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
University of Chinese Academy of Sciences, Beijing 100039, China
Cite this: J. Am. Chem. Soc. 2016, 138, 44, 14686–14693
Publication Date (Web):October 19, 2016
Copyright © 2016 American Chemical Society
Article Views
Read OnlinePDF (4 MB)
Supporting Info (1)»


Application of transition metal phosphide (TMP) catalysts for full water splitting has great potential to help relieve the energy crisis. Various methods have been investigated to obtain high catalytic activity, but the use of electronic structure regulation by incorporation of different elements is of particular simplicity and significance for development of a universal TMP synthesis method. We herein describe a novel approach for fabricating a series of TMPs by pyrolyzing phytic acid (PA) cross-linked metal complexes. The introduction of oxygen atoms into TMPs not only enhanced their intrinsic electrical conductivity, facilitating electron transfer, but activated active sites via elongating the M–P bond, favoring the hydrogen evolution reaction (HER) or oxygen evolution reaction (OER). MoP exhibited relative low HER overpotentials of 118 mV and 93 mV while supporting a current density of 20 mA·cm–2 in 0.5 M H2SO4 and 1 M KOH electrolytes, respectively. When CoP was applied as a catalyst for OER, only 280 mV overpotential was required to reach current density of 10 mA·cm–2. Additionally, PA-containing precursors enabled intimate embedding of TMPs onto a flexible substrate surface (carbon cloth), so that electron injection from substrate and transport to the active sites was facilitated. Remarkably, an alkaline electrolyzer was able to achieve a current density of 40 mA·cm–2 at the low voltage of 1.6 V, demonstrating its potential for practical overall water splitting without the use of noble metals.

Supporting Information

Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b08491.

  • Experimental and theoretical calculation details, instrumentation used, and supplementary figures and tables (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 503 publications.

  1. Junheng Huang, Soren B. Scott, Ib Chorkendorff, Zhenhai Wen. Online Electrochemistry–Mass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. ACS Catalysis 2021, 11 (20) , 12745-12753. https://doi.org/10.1021/acscatal.1c03430
  2. Chao Wang, Le Chai, Xian Cui, Zixiang Zhou, Shuling Liu. Amorphous/Crystalline Heterostructured Nickel Phosphide Nanospheres for Electrocatalytic Water and Methanol Oxidation Reactions. The Journal of Physical Chemistry C 2021, 125 (39) , 21443-21452. https://doi.org/10.1021/acs.jpcc.1c05899
  3. Weimo Li, Lusi Zhao, Ce Wang, Xiaofeng Lu, Wei Chen. Interface Engineering of Heterogeneous CeO2–CoO Nanofibers with Rich Oxygen Vacancies for Enhanced Electrocatalytic Oxygen Evolution Performance. ACS Applied Materials & Interfaces 2021, 13 (39) , 46998-47009. https://doi.org/10.1021/acsami.1c11101
  4. Zichen Liu, Gong Zhang, Huachun Lan, Huijuan Liu, Jiuhui Qu. Optimization of a Hierarchical Porous-Structured Reactor to Mitigate Mass Transport Limitations for Efficient Electrocatalytic Ammonia Oxidation through a Three-Electron-Transfer Pathway. Environmental Science & Technology 2021, 55 (18) , 12596-12606. https://doi.org/10.1021/acs.est.1c02825
  5. Peng Zhang, Ying-Rui Lu, Nian-Tzu Suen. Crystal and Electronic Structure Modification of Synthetic Perryite Minerals: A Facile Phase Transformation Strategy to Boost the Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (17) , 13607-13614. https://doi.org/10.1021/acs.inorgchem.1c01909
  6. Lu Zhang, Guojun Yuan, Xinyu Wang, Jianliang Bai, Yaqing Zhu, Lili Ren. Non-Negligible Oxygen Atoms in Transition Metal Phosphides: Research on the Role of Oxygen in Hydrodechlorination. The Journal of Physical Chemistry C 2021, 125 (29) , 15967-15975. https://doi.org/10.1021/acs.jpcc.1c04163
  7. Tong Zhang, Fuzhan Song, Yuqin Qian, Hong Gao, Jeremy Shaw, Yi Rao. Elemental Engineering of High-Charge-Density Boron in Nickel as Multifunctional Electrocatalysts for Hydrogen Oxidation and Water Splitting. ACS Applied Energy Materials 2021, 4 (6) , 5434-5442. https://doi.org/10.1021/acsaem.0c03179
  8. Mengting Lin, Ruihu Lu, Wen Luo, Nuo Xu, Yan Zhao, Liqiang Mai. Active Site Identification and Interfacial Design of a MoP/N-Doped Carbon Catalyst for Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (6) , 5486-5492. https://doi.org/10.1021/acsaem.1c00121
  9. Yaguang Peng, Yuxi Zhang, Qiang Tan, Hongliang Huang. Bioinspired Construction of Uranium Ion Trap with Abundant Phosphate Functional Groups. ACS Applied Materials & Interfaces 2021, 13 (23) , 27049-27056. https://doi.org/10.1021/acsami.1c04892
  10. Sayed M. El-Refaei, Patrícia A. Russo, Nicola Pinna. Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values. ACS Applied Materials & Interfaces 2021, 13 (19) , 22077-22097. https://doi.org/10.1021/acsami.1c02129
  11. Yongsheng Wei, Peichao Zou, Yuanchao Yue, Maosen Wang, Wenying Fu, Si Si, Lu Wei, Xinsheng Zhao, Guangzhou Hu, Huolin L. Xin. One-Pot Synthesis of B/P-Codoped Co-Mo Dual-Nanowafer Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces 2021, 13 (17) , 20024-20033. https://doi.org/10.1021/acsami.1c01341
  12. Jin-Jian Zhou, Meng Zhang, Jie Lu, Meng-Xuan Gu, Yu-Xia Li, Xiao-Qin Liu, Lin-Bing Sun. Controllable Microporous Framework Isomerism within Continuous Mesoporous Channels: Hierarchically Porous Structure for Capture of Bulky Molecules. Inorganic Chemistry 2021, 60 (9) , 6633-6640. https://doi.org/10.1021/acs.inorgchem.1c00438
  13. G. Shiva Shanker, Satishchandra Ogale. Faceted Colloidal Metallic Ni3N Nanocrystals: Size-Controlled Solution-Phase Synthesis and Electrochemical Overall Water Splitting. ACS Applied Energy Materials 2021, 4 (3) , 2165-2173. https://doi.org/10.1021/acsaem.0c02674
  14. Fangyou Meng, Yuan Yu, Dongfeng Sun, Songmin Lin, Xudong Zhang, Ting Xi, Chaoming Xu, Huican OuYang, Wenhui Chu, Lin Shang, Qingmei Su, Bingshe Xu. Three-Dimensional Needle Branch-like PANI/CoNiP Hybrid Electrocatalysts for Hydrogen Evolution Reaction in Acid Media. ACS Applied Energy Materials 2021, 4 (3) , 2471-2480. https://doi.org/10.1021/acsaem.0c03033
  15. Chenchen Qiang, Min Liu, Liang Zhang, Zheng Chen, Zhen Fang. In Situ Growth of Ni-Based Metal–Organic Framework Nanosheets on Carbon Nanotube Films for Efficient Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (5) , 3439-3446. https://doi.org/10.1021/acs.inorgchem.1c00026
  16. Jie Sun, Jianmin Lu, Cunping Huang, Qiang Wu, Ligang Xia, Qunjie Xu, Weifeng Yao. Modification of Ni3N with a Cobalt-Doped Carbon Shell for High-Performance Hydrogen Evolution in Alkaline Media. ACS Sustainable Chemistry & Engineering 2021, 9 (5) , 1994-2002. https://doi.org/10.1021/acssuschemeng.0c04127
  17. Yu-Lan Meng, Yanqiang Li, Zhenquan Tan, Xi Chen, Lan-Lan Wu, Li-Wei Ji, Qi-Shun Wang, Xue-Zhi Song, Shuyan Song. Hierarchical MoO42– Intercalating α-Co(OH)2 Nanosheet Assemblies: Green Synthesis and Ultrafast Reconstruction for Boosting Electrochemical Oxygen Evolution. Energy & Fuels 2021, 35 (3) , 2775-2784. https://doi.org/10.1021/acs.energyfuels.0c03836
  18. Ying Li, Liman Xing, Dengbin Yu, Alberto Libanori, Kerong Yang, Junwei Sun, Ardo Nashalian, Zhijun Zhu, Zhaoli Ma, Yanling Zhai, Jun Chen. Hollow IrCo Nanoparticles for High-Performance Overall Water Splitting in an Acidic Medium. ACS Applied Nano Materials 2020, 3 (12) , 11916-11922. https://doi.org/10.1021/acsanm.0c02485
  19. Dengyu Xie, Guang Yang, Deshuang Yu, Yanan Hao, Silin Han, Yafei Cheng, Feng Hu, Linlin Li, Huaixin Wei, Changchun Ji, Shengjie Peng. MoS2 Nanosheets Functionalized Multichannel Hollow Mo2N/Carbon Nanofibers as a Robust Bifunctional Catalyst for Water Electrolysis. ACS Sustainable Chemistry & Engineering 2020, 8 (37) , 14179-14189. https://doi.org/10.1021/acssuschemeng.0c05006
  20. Alagan Muthurasu, Bipeen Dahal, Tanka Mukhiya, Kisan Chhetri, Hak Yong Kim. Fabrication of Nonmetal-Modulated Dual Metal–Organic Platform for Overall Water Splitting and Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces 2020, 12 (37) , 41704-41717. https://doi.org/10.1021/acsami.0c09794
  21. Chuang Yang, Tianwei He, Weizhong Zhou, Rongrong Deng, Qibo Zhang. Iron-Tuned 3D Cobalt–Phosphate Catalysts for Efficient Hydrogen and Oxygen Evolution Reactions Over a Wide pH Range. ACS Sustainable Chemistry & Engineering 2020, 8 (36) , 13793-13804. https://doi.org/10.1021/acssuschemeng.0c04966
  22. Rui Ma, Tianxing Yang, Junxian Gao, Jiajing Kou, Johnny Zhu Chen, Yufei He, Jeffrey T. Miller, Dianqing Li. Composition Tuning of Ru-Based Phosphide for Enhanced Propane Selective Dehydrogenation. ACS Catalysis 2020, 10 (17) , 10243-10252. https://doi.org/10.1021/acscatal.0c01667
  23. Lei He, Zheng-Hao Li, Miao Gao, Guo-Ping Sheng. Phosphorus-Accumulating Organism Assisted Phosphorization of Ni-Fe Nanocomposites for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2020, 8 (30) , 11456-11464. https://doi.org/10.1021/acssuschemeng.0c04551
  24. Alagan Muthurasu, Gunendra Prasad Ojha, Minju Lee, Hak Yong Kim. Integration of Cobalt Metal–Organic Frameworks into an Interpenetrated Prussian Blue Analogue to Derive Dual Metal–Organic Framework-Assisted Cobalt Iron Derivatives for Enhancing Electrochemical Total Water Splitting. The Journal of Physical Chemistry C 2020, 124 (27) , 14465-14476. https://doi.org/10.1021/acs.jpcc.0c03086
  25. Hanlin Chen, Jincheng Si, Siliu Lyu, Tianyu Zhang, Zhongjian Li, Chaojun Lei, Lecheng Lei, Chris Yuan, Bin Yang, Liguo Gao, Yang Hou. Highly Effective Electrochemical Exfoliation of Ultrathin Tantalum Disulfide Nanosheets for Energy-Efficient Hydrogen Evolution Electrocatalysis. ACS Applied Materials & Interfaces 2020, 12 (22) , 24675-24682. https://doi.org/10.1021/acsami.9b15039
  26. Qi Shao, Yan Li, Xu Cui, Tianjiao Li, Heng-guo Wang, Yanhui Li, Qian Duan, Zhenjun Si. Metallophthalocyanine-Based Polymer-Derived Co2P Nanoparticles Anchoring on Doped Graphene as High-Efficient Trifunctional Electrocatalyst for Zn-Air Batteries and Water Splitting. ACS Sustainable Chemistry & Engineering 2020, 8 (16) , 6422-6432. https://doi.org/10.1021/acssuschemeng.0c00852
  27. Qian Chen, Rong Ding, Huan Liu, Lingxi Zhou, Yi Wang, Yun Zhang, Guangyin Fan. Flexible Active-Site Engineering of Monometallic Co-Layered Double Hydroxides for Achieving High-Performance Bifunctional Electrocatalyst toward Oxygen Evolution and H2O2 Reduction. ACS Applied Materials & Interfaces 2020, 12 (11) , 12919-12929. https://doi.org/10.1021/acsami.0c01315
  28. Zonghua Pu, Tingting Liu, Weiyue Zhao, Xiudong Shi, Yanchen Liu, Gaixia Zhang, Weihua Hu, Shuhui Sun, Shijun Liao. Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions. ACS Applied Materials & Interfaces 2020, 12 (10) , 11737-11744. https://doi.org/10.1021/acsami.9b23426
  29. Yuting Luo, Shuqing Zhang, Haiyang Pan, Shujie Xiao, Zenglong Guo, Lei Tang, Usman Khan, Bao-Fu Ding, Meng Li, Zhengyang Cai, Yue Zhao, Wei Lv, Qingliang Feng, Xiaolong Zou, Junhao Lin, Hui-Ming Cheng, Bilu Liu. Unsaturated Single Atoms on Monolayer Transition Metal Dichalcogenides for Ultrafast Hydrogen Evolution. ACS Nano 2020, 14 (1) , 767-776. https://doi.org/10.1021/acsnano.9b07763
  30. Sasidharan Sankar, Yuuki Sugawara, S. Assa Aravindh, Rajan Jose, Takanori Tamaki, Gopinathan M. Anilkumar, Takeo Yamaguchi. Tuning Palladium Nickel Phosphide toward Efficient Oxygen Evolution Performance. ACS Applied Energy Materials 2020, 3 (1) , 879-888. https://doi.org/10.1021/acsaem.9b01996
  31. Renuka V. Digraskar, Vijay S. Sapner, Anil V. Ghule, Bhaskar R. Sathe. Enhanced Overall Water-Splitting Performance: Oleylamine-Functionalized GO/Cu2ZnSnS4 Composite as a Nobel Metal-Free and NonPrecious Electrocatalyst. ACS Omega 2019, 4 (21) , 18969-18977. https://doi.org/10.1021/acsomega.9b01680
  32. Kaidong Wang, Can Wu, Feng Wang, Nan Jing, Guoqiang Jiang. Co/Co3O4 Nanoparticles Coupled with Hollow Nanoporous Carbon Polyhedrons for the Enhanced Electrochemical Sensing of Acetaminophen. ACS Sustainable Chemistry & Engineering 2019, 7 (22) , 18582-18592. https://doi.org/10.1021/acssuschemeng.9b04813
  33. Ayushi Pandey, Ayan Mukherjee, Sankalpita Chakrabarty, Debabrata Chanda, Suddhasatwa Basu. Interface Engineering of an RGO/MoS2/Pd 2D Heterostructure for Electrocatalytic Overall Water Splitting in Alkaline Medium. ACS Applied Materials & Interfaces 2019, 11 (45) , 42094-42103. https://doi.org/10.1021/acsami.9b13358
  34. Dan Cheng, Zhe Wang, Chang Chen, Kebin Zhou. Crystalline/Amorphous [email protected] Core/Shell Nanoheterostructures Supported on Porous Carbon Microspheres as Efficient Oxygen Reduction Electrocatalysts. Chemistry of Materials 2019, 31 (19) , 8026-8034. https://doi.org/10.1021/acs.chemmater.9b02436
  35. Chunjie Li, You Xu, Songliang Liu, Shuli Yin, Hongjie Yu, Ziqiang Wang, Xiaonian Li, Liang Wang, Hongjing Wang. Facile Construction of IrRh Nanosheet Assemblies As Efficient and Robust Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (18) , 15747-15754. https://doi.org/10.1021/acssuschemeng.9b03967
  36. Liuqing Pang, Alexandre Barras, Yuan Zhang, Mohammed A. Amin, Ahmed Addad, Sabine Szunerits, Rabah Boukherroub. CoO Promoted the Catalytic Activity of Nitrogen-Doped MoS2 Supported on Carbon Fibers for Overall Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (35) , 31889-31898. https://doi.org/10.1021/acsami.9b09112
  37. Yuanxin Du, Jing Chen, Lin Li, Hongyu Shi, Kangjian Shao, Manzhou Zhu. Core–Shell FeCo Prussian Blue Analogue/Ni(OH)2 Derived Porous Ternary Transition Metal Phosphides Connected by Graphene for Effectively Electrocatalytic Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (15) , 13523-13531. https://doi.org/10.1021/acssuschemeng.9b03166
  38. Xinhong Chen, Qing Li, Qijun Che, Yashi Chen, Ya Tan, Xi Xu. Self-Supported Ni/NiSPx Microdendrite Structure for Highly Efficient and Stable Overall Water Splitting in Simulated Industrial Environment. ACS Sustainable Chemistry & Engineering 2019, 7 (13) , 11778-11786. https://doi.org/10.1021/acssuschemeng.9b02061
  39. Mi-Xue Jin, Yu-Lu Pu, Zi-Juan Wang, Zheng Zhang, Lu Zhang, Ai-Jun Wang, Jiu-Ju Feng. Facile Synthesis of 3D [email protected] Core–Shell Nanostructures with Boosted Catalytic Activity toward Oxygen Evolution Reaction. ACS Applied Energy Materials 2019, 2 (6) , 4188-4194. https://doi.org/10.1021/acsaem.9b00431
  40. Chunjie Li, You Xu, Dandan Yang, Xiaoqian Qian, Xingjie Chai, Ziqiang Wang, Xiaonian Li, Liang Wang, Hongjing Wang. Boosting Electrocatalytic Activities of Pt-Based Mesoporous Nanoparticles for Overall Water Splitting by a Facile Ni, P Co-Incorporation Strategy. ACS Sustainable Chemistry & Engineering 2019, 7 (10) , 9709-9716. https://doi.org/10.1021/acssuschemeng.9b01484
  41. Rahul Ramesh, Dip K. Nandi, Tae Hyun Kim, Taehoon Cheon, Jihun Oh, Soo-Hyun Kim. Atomic-Layer-Deposited MoNx Thin Films on Three-Dimensional Ni Foam as Efficient Catalysts for the Electrochemical Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (19) , 17321-17332. https://doi.org/10.1021/acsami.8b20437
  42. Ling Wang, Haijun Wu, Shibo Xi, Sing Teng Chua, Fenghe Wang, Stephen J. Pennycook, Zhi Gen Yu, Yonghua Du, Junmin Xue. Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces 2019, 11 (19) , 17359-17367. https://doi.org/10.1021/acsami.9b01235
  43. Xiang Wang, Zhen-Feng Cai, Dong Wang, Li-Jun Wan. Molecular Evidence for the Catalytic Process of Cobalt Porphyrin Catalyzed Oxygen Evolution Reaction in Alkaline Solution. Journal of the American Chemical Society 2019, 141 (19) , 7665-7669. https://doi.org/10.1021/jacs.9b01229
  44. Tanglue Feng, Qingsen Zeng, Siyu Lu, Mingxi Yang, Songyuan Tao, Yixin Chen, Yue Zhao, Bai Yang. Morphological and Interfacial Engineering of Cobalt-Based Electrocatalysts by Carbon Dots for Enhanced Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (7) , 7047-7057. https://doi.org/10.1021/acssuschemeng.8b06832
  45. Yu-Qing Wang, Ying Xie, Lei Zhao, Xu-Lei Sui, Da-Ming Gu, Zhen-Bo Wang. Hierarchical Heterostructured Mo2C/Mo3Co3C Bouquet-like Nanowire Arrays: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (7) , 7294-7303. https://doi.org/10.1021/acssuschemeng.9b00358
  46. Jingchang Gao, Jinming Wang, Lijun Zhou, Xiaoyi Cai, Da Zhan, Mingzhen Hou, Linfei Lai. [email protected],P-Codoped Carbon Nanofiber as a Free-Standing Air Electrode for Zn–Air Batteries: Synergy Effects of CoNx Satellite Shells. ACS Applied Materials & Interfaces 2019, 11 (10) , 10364-10372. https://doi.org/10.1021/acsami.8b20003
  47. Mei Wang, Wenjuan Zhang, Fangfang Zhang, Zhonghua Zhang, Bin Tang, Jinping Li, Xiaoguang Wang. Theoretical Expectation and Experimental Implementation of In Situ Al-Doped CoS2 Nanowires on Dealloying-Derived Nanoporous Intermetallic Substrate as an Efficient Electrocatalyst for Boosting Hydrogen Production. ACS Catalysis 2019, 9 (2) , 1489-1502. https://doi.org/10.1021/acscatal.8b04502
  48. Xin-Bao Han, Xing-Yan Tang, Yue Lin, Eduardo Gracia-Espino, San-Gui Liu, Hai-Wei Liang, Guang-Zhi Hu, Xin-Jing Zhao, Hong-Gang Liao, Yuan-Zhi Tan, Thomas Wagberg, Su-Yuan Xie, Lan-Sun Zheng. Ultrasmall Abundant Metal-Based Clusters as Oxygen-Evolving Catalysts. Journal of the American Chemical Society 2019, 141 (1) , 232-239. https://doi.org/10.1021/jacs.8b09076
  49. Huafeng Fan, Jun Huang, Guangliang Chen, Wei Chen, Rui Zhang, Sijun Chu, Xingquan Wang, Chaorong Li, Kostya Ken Ostrikov. Hollow Ni–V–Mo Chalcogenide Nanopetals as Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 1622-1632. https://doi.org/10.1021/acssuschemeng.8b05378
  50. Xuxu Wang, Zhaolin Na, Dongming Yin, Chunli Wang, Yaoming Wu, Gang Huang, Limin Wang. Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation. ACS Nano 2018, 12 (12) , 12238-12246. https://doi.org/10.1021/acsnano.8b06039
  51. Wei Lu, Xiaoli Cui, Xinxin Xu, Jin Chen, Qiang Wang. Polyoxometalate Compound-Derived MoP-Based Electrocatalyst with N-Doped Mesoporous Carbon as Matrix, a Cathode Material for Zn–H+ Battery. ACS Applied Materials & Interfaces 2018, 10 (49) , 42320-42327. https://doi.org/10.1021/acsami.8b15380
  52. Ying Wang, Zhimin Chen, Hao Wu, Fei Xiao, Erping Cao, Shichao Du, Yiqun Wu, Zhiyu Ren. Self-Assembly-Induced Mosslike Fe2O3 and FeP on Electro-oxidized Carbon Paper for Low-Voltage-Driven Hydrogen Production Plus Hydrazine Degradation. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 15727-15736. https://doi.org/10.1021/acssuschemeng.8b04274
  53. Xiaomei Wang, Weiguang Ma, Chunmei Ding, Zhiqiang Xu, Hong Wang, Xu Zong, Can Li. Amorphous Multi-elements Electrocatalysts with Tunable Bifunctionality toward Overall Water Splitting. ACS Catalysis 2018, 8 (11) , 9926-9935. https://doi.org/10.1021/acscatal.8b01839
  54. Chih-Jung Chen, Chi-Wei Liu, Kai-Chih Yang, Li-Chang Yin, Da-Hua Wei, Shu-Fen Hu, Ru-Shi Liu. Amorphous Phosphorus-Doped Cobalt Sulfide Modified on Silicon Pyramids for Efficient Solar Water Reduction. ACS Applied Materials & Interfaces 2018, 10 (43) , 37142-37149. https://doi.org/10.1021/acsami.8b14571
  55. Kaidong Wang, Can Wu, Feng Wang, Guoqiang Jiang. MOF-Derived CoPx Nanoparticles Embedded in Nitrogen-Doped Porous Carbon Polyhedrons for Nanomolar Sensing of p-Nitrophenol. ACS Applied Nano Materials 2018, 1 (10) , 5843-5853. https://doi.org/10.1021/acsanm.8b01501
  56. Ling Zhang, Xingyue Wang, Xingqun Zheng, Lishan Peng, JingJun Shen, Rui Xiang, Zihua Deng, Li Li, Hongmei Chen, Zidong Wei. Oxygen-Incorporated NiMoP2 Nanowire Arrays for Enhanced Hydrogen Evolution Activity in Alkaline Solution. ACS Applied Energy Materials 2018, 1 (10) , 5482-5489. https://doi.org/10.1021/acsaem.8b01044
  57. Debanjan Das, Saswati Santra, Karuna Kar Nanda. In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER. ACS Applied Materials & Interfaces 2018, 10 (41) , 35025-35038. https://doi.org/10.1021/acsami.8b09941
  58. Fatemeh Davodi, Elisabeth Mühlhausen, Mohammad Tavakkoli, Jani Sainio, Hua Jiang, Bilal Gökce, Galina Marzun, Tanja Kallio. Catalyst Support Effect on the Activity and Durability of Magnetic Nanoparticles: toward Design of Advanced Electrocatalyst for Full Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (37) , 31300-31311. https://doi.org/10.1021/acsami.8b08830
  59. Jingjing Duan, Sheng Chen, Chuan Zhao. Strained Nickel Phosphide Nanosheet Array. ACS Applied Materials & Interfaces 2018, 10 (36) , 30029-30034. https://doi.org/10.1021/acsami.8b09147
  60. JunRan Jia, MengKe Zhai, JingJing Lv, BaoXun Zhao, HongBin Du, JunJie Zhu. Nickel Molybdenum Nitride Nanorods Grown on Ni Foam as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (36) , 30400-30408. https://doi.org/10.1021/acsami.8b09854
  61. Kexin Zhang, Chong Qu, Zibin Liang, Song Gao, Hao Zhang, Bingjun Zhu, Wei Meng, Engang Fu, Ruqiang Zou. Highly Dispersed Co–B/N Codoped Carbon Nanospheres on Graphene for Synergistic Effects as Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces 2018, 10 (36) , 30460-30469. https://doi.org/10.1021/acsami.8b11726
  62. Junkai Wang, Rui Gao, Lirong Zheng, Zhongjun Chen, Zhonghua Wu, Limei Sun, Zhongbo Hu, Xiangfeng Liu. CoO/CoP Heterostructured Nanosheets with an O–P Interpenetrated Interface as a Bifunctional Electrocatalyst for Na–O2 Battery. ACS Catalysis 2018, 8 (9) , 8953-8960. https://doi.org/10.1021/acscatal.8b01023
  63. Hui Xu, Jingjing Wei, Ke Zhang, Yukihide Shiraishi, Yukou Du. Hierarchical NiMo Phosphide Nanosheets Strongly Anchored on Carbon Nanotubes as Robust Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (35) , 29647-29655. https://doi.org/10.1021/acsami.8b10314
  64. Shanshan Tong, Shenghua Ma, Yingchun Su, Qingchuan Li, Xuejing Wang, Xiaojun Han. Molybdenum Disulfide Nanoflakes Covered Carbonized Catkin Microtube Hybrids as Superior Catalysts for Electrochemical Hydrogen Evolution. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 11255-11264. https://doi.org/10.1021/acssuschemeng.7b04751
  65. Taiyang Liu, Chaozhong Li, Qiang Yuan. Facile Synthesis of PtCu Alloy/Graphene Oxide Hybrids as Improved Electrocatalysts for Alkaline Fuel Cells. ACS Omega 2018, 3 (8) , 8724-8732. https://doi.org/10.1021/acsomega.8b01347
  66. Jinfa Chang, Kai Li, Zhijian Wu, Junjie Ge, Changpeng Liu, Wei Xing. Sulfur-Doped Nickel Phosphide Nanoplates Arrays: A Monolithic Electrocatalyst for Efficient Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces 2018, 10 (31) , 26303-26311. https://doi.org/10.1021/acsami.8b08068
  67. Luhong Fu, Xiang Zeng, Gongzhen Cheng, Wei Luo. IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions. ACS Applied Materials & Interfaces 2018, 10 (30) , 24993-24998. https://doi.org/10.1021/acsami.8b08717
  68. Yao Zhang, Kun Rui, Zhongyuan Ma, Wenping Sun, Qingqing Wang, Peng Wu, Qiao Zhang, Desheng Li, Min Du, Weina Zhang, Huijuan Lin, Jixin Zhu. Cost-Effective Vertical Carbon Nanosheets/Iron-Based Composites as Efficient Electrocatalysts for Water Splitting Reaction. Chemistry of Materials 2018, 30 (14) , 4762-4769. https://doi.org/10.1021/acs.chemmater.8b01699
  69. Arpan Samanta, C. Retna Raj. Catalyst Support in Oxygen Electrocatalysis: A Case Study with CoFe Alloy Electrocatalyst. The Journal of Physical Chemistry C 2018, 122 (28) , 15843-15852. https://doi.org/10.1021/acs.jpcc.8b02830
  70. Shuai Liu, Mengsi Li, Changlai Wang, Peng Jiang, Lin Hu, Qianwang Chen. Tuning the Electronic Structure of Se via Constructing Rh-MoSe2 Nanocomposite to Generate High-Performance Electrocatalysis for Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2018, 6 (7) , 9137-9144. https://doi.org/10.1021/acssuschemeng.8b01467
  71. Qun He, Yangyang Wan, Hongliang Jiang, Ziwen Pan, Chuanqiang Wu, Mei Wang, Xiaojun Wu, Bangjiao Ye, Pulickel M. Ajayan, Li Song. Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst. ACS Energy Letters 2018, 3 (6) , 1373-1380. https://doi.org/10.1021/acsenergylett.8b00515
  72. Zichen Liu, Gong Zhang, Kai Zhang, Huijuan Liu, Jiuhui Qu. Facile Dispersion of Nanosized NiFeP for Highly Effective Catalysis of Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2018, 6 (6) , 7206-7211. https://doi.org/10.1021/acssuschemeng.8b00471
  73. Shu Hearn Yu, Daniel H. C. Chua. Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper. ACS Applied Materials & Interfaces 2018, 10 (17) , 14777-14785. https://doi.org/10.1021/acsami.8b02755
  74. Jin-Xian Feng, Si-Yao Tong, Ye-Xiang Tong, Gao-Ren Li. Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts. Journal of the American Chemical Society 2018, 140 (15) , 5118-5126. https://doi.org/10.1021/jacs.7b12968
  75. Bingyan Xiong, Lisong Chen, Jianlin Shi. Anion-Containing Noble-Metal-Free Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis 2018, 8 (4) , 3688-3707. https://doi.org/10.1021/acscatal.7b04286
  76. Zhi-Mei Luo, Jia-Wei Wang, Jing-Bo Tan, Zhi-Ming Zhang, Tong-Bu Lu. Self-Template Synthesis of Co–Se–S–O Hierarchical Nanotubes as Efficient Electrocatalysts for Oxygen Evolution under Alkaline and Neutral Conditions. ACS Applied Materials & Interfaces 2018, 10 (9) , 8231-8237. https://doi.org/10.1021/acsami.8b00986
  77. Junyuan Xu, Juliana P. S. Sousa, Natalia E. Mordvinova, José Diogo Costa, Dmitri Y. Petrovykh, Kirill Kovnir, Oleg I. Lebedev, and Yury V. Kolen’ko . Al-Induced In Situ Formation of Highly Active Nanostructured Water-Oxidation Electrocatalyst Based on Ni-Phosphide. ACS Catalysis 2018, 8 (3) , 2595-2600. https://doi.org/10.1021/acscatal.7b03817
  78. Ying Liu, Suli Liu, Yu Wang, Qinghua Zhang, Lin Gu, Shuchen Zhao, Dongdong Xu, Yafei Li, Jianchun Bao, and Zhihui Dai . Ru Modulation Effects in the Synthesis of Unique Rod-like [email protected]–Ru Heterostructures and Their Remarkable Electrocatalytic Hydrogen Evolution Performance. Journal of the American Chemical Society 2018, 140 (8) , 2731-2734. https://doi.org/10.1021/jacs.7b12615
  79. Junyuan Xu, Dehua Xiong, Isilda Amorim, and Lifeng Liu . Template-Free Synthesis of Hollow Iron Phosphide–Phosphate Composite Nanotubes for Use as Active and Stable Oxygen Evolution Electrocatalysts. ACS Applied Nano Materials 2018, 1 (2) , 617-624. https://doi.org/10.1021/acsanm.7b00122
  80. Yuan Pan, Kaian Sun, Shoujie Liu, Xing Cao, Konglin Wu, Weng-Chon Cheong, Zheng Chen, Yu Wang, Yang Li, Yunqi Liu, Dingsheng Wang, Qing Peng, Chen Chen, and Yadong Li . Core–Shell [email protected] CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society 2018, 140 (7) , 2610-2618. https://doi.org/10.1021/jacs.7b12420
  81. Xiaoxi Guo, Shuyun Zhu, Rong-Mei Kong, Xiaoping Zhang, and Fengli Qu . Fe(TCNQ)2 Nanorod Array: A Conductive Non-Noble-Metal Electrocatalyst toward Water Oxidation in Alkaline Media. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 1545-1549. https://doi.org/10.1021/acssuschemeng.7b03962
  82. Jayashree Swaminathan and Subbiah Ravichandran . Insights into the Electrocatalytic Behavior of Defect-Centered Reduced Titania (TiO1.23). The Journal of Physical Chemistry C 2018, 122 (3) , 1670-1680. https://doi.org/10.1021/acs.jpcc.7b10754
  83. Kai Zhang, Gong Zhang, Jiuhui Qu, and Huijuan Liu . Tungsten-Assisted Phase Tuning of Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2018, 10 (3) , 2451-2459. https://doi.org/10.1021/acsami.7b14733
  84. Kai Yuan, Stavroula Sfaelou, Ming Qiu, Dirk Lützenkirchen-Hecht, Xiaodong Zhuang, Yiwang Chen, Chris Yuan, Xinliang Feng, Ullrich Scherf. Synergetic Contribution of Boron and Fe–Nx Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters 2018, 3 (1) , 252-260. https://doi.org/10.1021/acsenergylett.7b01188
  85. Jinlong Yang, Jiaxin Zheng, Ming Xu, Zengqing Zhuo, Wanli Yang, Lin-Wang Wang, Liming Dai, Jun Lu, Khalil Amine, and Feng Pan . Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity. ACS Catalysis 2018, 8 (1) , 466-473. https://doi.org/10.1021/acscatal.7b02814
  86. Han Xia, Zhipeng Huang, Cuncai Lv, and Chi Zhang . A Self-Supported Porous Hierarchical Core–Shell Nanostructure of Cobalt Oxide for Efficient Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (12) , 8205-8213. https://doi.org/10.1021/acscatal.7b02320
  87. Can Wu and Jinghong Li . Unique Hierarchical Mo2C/C Nanosheet Hybrids as Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (47) , 41314-41322. https://doi.org/10.1021/acsami.7b13822
  88. Ling Zhang, Ibrahim Saana Amiinu, Xiang Ren, Zhiang Liu, Gu Du, Abdullah M. Asiri, Baozhan Zheng, and Xuping Sun . Surface Modification of a NiS2 Nanoarray with Ni(OH)2 toward Superior Water Reduction Electrocatalysis in Alkaline Media. Inorganic Chemistry 2017, 56 (22) , 13651-13654. https://doi.org/10.1021/acs.inorgchem.7b02466
  89. Dickson D. Babu, Yiyin Huang, Ganesan Anandhababu, Muhammad Arsalan Ghausi, and Yaobing Wang . Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (44) , 38621-38628. https://doi.org/10.1021/acsami.7b13359
  90. Yanmei Xin, Xiang Kan, Li-Yong Gan, and Zhonghai Zhang . Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting. ACS Nano 2017, 11 (10) , 10303-10312. https://doi.org/10.1021/acsnano.7b05020
  91. Jinkun Liu, Weiren Cheng, Fumin Tang, Hui Su, Yuanyuan Huang, Fengchun Hu, Xu Zhao, Yong Jiang, Qinghua Liu, and Shiqiang Wei . Electron Delocalization Boosting Highly Efficient Electrocatalytic Water Oxidation in Layered Hydrotalcites. The Journal of Physical Chemistry C 2017, 121 (40) , 21962-21968. https://doi.org/10.1021/acs.jpcc.7b07567
  92. Xu-Dong Wang, Yang Cao, Yuan Teng, Hong-Yan Chen, Yang-Fan Xu, and Dai-Bin Kuang . Large-Area Synthesis of a Ni2P Honeycomb Electrode for Highly Efficient Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (38) , 32812-32819. https://doi.org/10.1021/acsami.7b10893
  93. Meiyong Zheng, Jing Du, Baopu Hou, and Cai-Ling Xu . Few-Layered Mo(1–x)WxS2 Hollow Nanospheres on Ni3S2 Nanorod Heterostructure as Robust Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (31) , 26066-26076. https://doi.org/10.1021/acsami.7b07465
  94. Junyuan Xu, Xian-Kui Wei, José Diogo Costa, José Luis Lado, Bryan Owens-Baird, Liliana P. L. Gonçalves, Soraia P. S. Fernandes, Marc Heggen, Dmitri Y. Petrovykh, Rafal E. Dunin-Borkowski, Kirill Kovnir, and Yury V. Kolen’ko . Interface Engineering in Nanostructured Nickel Phosphide Catalyst for Efficient and Stable Water Oxidation. ACS Catalysis 2017, 7 (8) , 5450-5455. https://doi.org/10.1021/acscatal.7b01954
  95. Xinzuo Fang, Long Jiao, Rui Zhang, and Hai-Long Jiang . Porphyrinic Metal–Organic Framework-Templated Fe–Ni–P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2017, 9 (28) , 23852-23858. https://doi.org/10.1021/acsami.7b07142
  96. Cheng Du, Lan Yang, Fulin Yang, Gongzhen Cheng, and Wei Luo . Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catalysis 2017, 7 (6) , 4131-4137. https://doi.org/10.1021/acscatal.7b00662
  97. Yaqing Yang, Kai Zhang, Huanlei Lin, Xiang Li, Hang Cheong Chan, Lichun Yang, and Qingsheng Gao . MoS2–Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis 2017, 7 (4) , 2357-2366. https://doi.org/10.1021/acscatal.6b03192
  98. Bryan H. R. Suryanto, Sheng Chen, Jingjing Duan, and Chuan Zhao . Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications. ACS Applied Materials & Interfaces 2016, 8 (51) , 35513-35522. https://doi.org/10.1021/acsami.6b14090
  99. Ying Zhang, Zhen Xin Hui, Hong Yu Zhou, Shi Feng Zai, Zi Wen, Jian Chen Li, Chun Cheng Yang, Qing Jiang. Ga doping enables superior alkaline hydrogen evolution reaction performances of CoP. Chemical Engineering Journal 2022, 429 , 132012. https://doi.org/10.1016/j.cej.2021.132012
  100. Yange Wang, Yechen Wang, Jing Bai, Sibin Duan, Rongming Wang, Woon-Ming Lau. In-situ etching synthesis of 3D self-supported serrated Ni-WO3 for oxygen evolution reaction. Journal of Alloys and Compounds 2022, 893 , 162134. https://doi.org/10.1016/j.jallcom.2021.162134
Load more citations