Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching

View Author Information
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16,. Tarragona E-43007, Spain
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
§ Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià del Besòs, 08930 Barcelona, Catalonia, Spain
ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
Cite this: J. Am. Chem. Soc. 2016, 138, 49, 16037–16045
Publication Date (Web):November 16, 2016
https://doi.org/10.1021/jacs.6b09778
Copyright © 2016 American Chemical Society
Article Views
5783
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (6 MB)
Supporting Info (2)»

Abstract

The development of upscalable oxygen evolving electrocatalysts from earth-abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge for the realization of artificial photosynthesis. In this study, we report a highly active phase of heterobimetallic cyanide-bridged electrocatalysts able to promote water oxidation under neutral, basic (pH < 13), and acidic conditions (pH > 1). Cobalt–iron Prussian blue-type thin films, formed by chemical etching of Co(OH)1.0(CO3)0.5·nH2O nanocrystals, yield a dramatic enhancement of the catalytic performance toward oxygen production, when compared with previous reports for analogous materials. Electrochemical, spectroscopic, and structural studies confirm the excellent performance, stability, and corrosion resistance, even when compared with state-of-the-art metal oxide catalysts under moderate overpotentials and in a remarkably large pH range, including acid media where most cost-effective water oxidation catalysts are not useful. The origin of the superior electrocatalytic activity toward water oxidation appears to be in the optimized interfacial matching between catalyst and electrode surface obtained through this fabrication method.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b09778.

  • Additional electrochemical data, composition and structural characterization by IR and Raman, XRD, SEM and TEM, and proposed mechanistic pathway (PDF)

  • Video showing oxygen bubbles formed during oxidative process (MPG)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 127 publications.

  1. Sina Sadigh Akbari, Ugur Unal, Ferdi Karadas. Photocatalytic Water Oxidation with a CoFe Prussian Blue Analogue–Layered Niobate Hybrid Material. ACS Applied Energy Materials 2021, 4 (11) , 12383-12390. https://doi.org/10.1021/acsaem.1c02188
  2. Franziska S. Hegner, Felipe A. Garcés-Pineda, Jesús González-Cobos, Barbara Rodríguez-García, Mabel Torréns, Emilio Palomares, Núria López, José-Ramón Galán-Mascarós. Understanding the Catalytic Selectivity of Cobalt Hexacyanoferrate toward Oxygen Evolution in Seawater Electrolysis. ACS Catalysis 2021, 11 (21) , 13140-13148. https://doi.org/10.1021/acscatal.1c03502
  3. Fangyuan Diao, Wei Huang, Georgios Ctistis, Hainer Wackerbarth, Yuan Yang, Pengchao Si, Jingdong Zhang, Xinxin Xiao, Christian Engelbrekt. Bifunctional and Self-Supported NiFeP-Layer-Coated NiP Rods for Electrochemical Water Splitting in Alkaline Solution. ACS Applied Materials & Interfaces 2021, 13 (20) , 23702-23713. https://doi.org/10.1021/acsami.1c03089
  4. Xiaohu Xu, Tao Wang, Le Su, Yujie Zhang, Lijuan Dong, Xiangyang Miao. In Situ Synthesis of Superhydrophilic Amorphous NiFe Prussian Blue Analogues for the Oxygen Evolution Reaction at a High Current Density. ACS Sustainable Chemistry & Engineering 2021, 9 (16) , 5693-5704. https://doi.org/10.1021/acssuschemeng.1c00855
  5. Ponart Aroonratsameruang, Pichaya Pattanasattayavong, Vincent Dorcet, Cristelle Mériadec, Soraya Ababou-Girard, Stéphanie Fryars, Gabriel Loget. Structure–Property Relationships in Redox-Derivatized Metal–Insulator–Semiconductor (MIS) Photoanodes. The Journal of Physical Chemistry C 2020, 124 (47) , 25907-25916. https://doi.org/10.1021/acs.jpcc.0c08971
  6. Bruno M. Pires, Franziska S. Hegner, Juliano A. Bonacin, José-Ramón Galán-Mascarós. Ligand Effects of Penta- and Hexacyanidoferrate-Derived Water Oxidation Catalysts on BiVO4 Photoanodes. ACS Applied Energy Materials 2020, 3 (9) , 8448-8456. https://doi.org/10.1021/acsaem.0c01082
  7. Manabu Ishizaki, Hiroya Tanno, Hikaru Sutoh, Tomohiro Katsuki, Taichi Hayasaka, Masayuki Yagi, Yuta Tsubonouchi, Kazuki Tajima, Tohru Kawamoto, Yusuke Sakuda, Masato Kurihara. FeNi-Layered Double-Hydroxide Nanoflakes with Potential for Intrinsically High Water-Oxidation Catalytic Activity. ACS Applied Energy Materials 2020, 3 (9) , 9040-9050. https://doi.org/10.1021/acsaem.0c01439
  8. Lijuan Han, Jesús González-Cobos, Irene Sánchez-Molina, Stefano Giancola, Scott J. Folkman, Pengyi Tang, Marc Heggen, Rafal E. Dunin-Borkowski, Jordi Arbiol, Sixto Giménez, Jose Ramon Galan-Mascaros. Cobalt Hexacyanoferrate as a Selective and High Current Density Formate Oxidation Electrocatalyst. ACS Applied Energy Materials 2020, 3 (9) , 9198-9207. https://doi.org/10.1021/acsaem.0c01548
  9. Linh Trinh, Serhane Zerdane, Sandra Mazérat, Nada Dia, Diana Dragoe, Christian Herrero, Eric Rivière, Laure Catala, Marco Cammarata, Eric Collet, Talal Mallah. Photoswitchable 11 nm CsCoFe Prussian Blue Analogue Nanocrystals with High Relaxation Temperature. Inorganic Chemistry 2020, 59 (18) , 13153-13161. https://doi.org/10.1021/acs.inorgchem.0c01432
  10. Shanmugam Manivannan, Seonghwi An, Juwon Jeong, Mayavan Viji, Kyuwon Kim. Hematite/M (M = Au, Pd) Catalysts Derived from a Double-Hollow Prussian Blue Microstructure: Simultaneous Catalytic Reduction of o- and p-Nitrophenols. ACS Applied Materials & Interfaces 2020, 12 (15) , 17557-17570. https://doi.org/10.1021/acsami.0c01704
  11. Mohammad Hafezi Kahnamouei, Saeed Shahrokhian. Mesoporous Nanostructured Composite Derived from Thermal Treatment CoFe Prussian Blue Analogue Cages and Electrodeposited NiCo-S as an Efficient Electrocatalyst for an Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2020, 12 (14) , 16250-16263. https://doi.org/10.1021/acsami.9b21403
  12. Zhiwei Fang, Ping Wu, Kang Yu, Yifan Li, Yue Zhu, Paulo J. Ferreira, Yuanyue Liu, Guihua Yu. Hybrid Organic–Inorganic Gel Electrocatalyst for Stable Acidic Water Oxidation. ACS Nano 2019, 13 (12) , 14368-14376. https://doi.org/10.1021/acsnano.9b07826
  13. Carles Ros, Nina M. Carretero, Jeremy David, Jordi Arbiol, Teresa Andreu, Joan R. Morante. Insight into the Degradation Mechanisms of Atomic Layer Deposited TiO2 as Photoanode Protective Layer. ACS Applied Materials & Interfaces 2019, 11 (33) , 29725-29735. https://doi.org/10.1021/acsami.9b05724
  14. Qiang Li, Bin Wei, Yue Li, Junyuan Xu, Junjie Li, Lifeng Liu, Francis Leonard Deepak. Large-Scale Fabrication of Hollow Pt3Al Nanoboxes and Their Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7 (11) , 9842-9847. https://doi.org/10.1021/acssuschemeng.9b00372
  15. Benjamin Moss, Franziska Simone Hegner, Sacha Corby, Shababa Selim, Laia Francàs, Núria López, Sixto Giménez, José-Ramón Galán-Mascarós, James Robert Durrant. Unraveling Charge Transfer in CoFe Prussian Blue Modified BiVO4 Photoanodes. ACS Energy Letters 2019, 4 (1) , 337-342. https://doi.org/10.1021/acsenergylett.8b02225
  16. Xiaozhi Su, Yu Wang, Jing Zhou, Songqi Gu, Jiong Li, Shuo Zhang. Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society 2018, 140 (36) , 11286-11292. https://doi.org/10.1021/jacs.8b05294
  17. Jahangir Masud, Wipula P. R. Liyanage, Xi Cao, Apurv Saxena, Manashi Nath. Copper Selenides as High-Efficiency Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials 2018, 1 (8) , 4075-4083. https://doi.org/10.1021/acsaem.8b00746
  18. Yao Zhang, Kun Rui, Zhongyuan Ma, Wenping Sun, Qingqing Wang, Peng Wu, Qiao Zhang, Desheng Li, Min Du, Weina Zhang, Huijuan Lin, Jixin Zhu. Cost-Effective Vertical Carbon Nanosheets/Iron-Based Composites as Efficient Electrocatalysts for Water Splitting Reaction. Chemistry of Materials 2018, 30 (14) , 4762-4769. https://doi.org/10.1021/acs.chemmater.8b01699
  19. Franziska Simone Hegner, Isaac Herraiz-Cardona, Drialys Cardenas-Morcoso, Núria López, José-Ramón Galán-Mascarós, and Sixto Gimenez . Cobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (43) , 37671-37681. https://doi.org/10.1021/acsami.7b09449
  20. Seonghan Jo, Jiseok Kwon, Seunggun Choi, Tianchi Lu, Yunki Byeun, HyukSu Han, Taeseup Song. Engineering [Fe(CN)6]3− vacancy via free-chelating agents in Prussian blue analogues on reduced graphene oxide for efficient oxygen evolution reaction. Applied Surface Science 2022, 574 , 151620. https://doi.org/10.1016/j.apsusc.2021.151620
  21. Chenyang Zhang, Jinwei Chen, Jie Zhang, Yan Luo, Yihan Chen, Yali Xue, Yong Yan, Yi Jiao, Gang Wang, Ruilin Wang. The activation of inert NiFe Prussian Blue analogues to boost oxygen evolution reaction activity. Journal of Colloid and Interface Science 2022, 607 , 967-977. https://doi.org/10.1016/j.jcis.2021.09.114
  22. Yi Xie, Rui‐Biao Lin, Banglin Chen. Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. Advanced Science 2021, 8 , 2104234. https://doi.org/10.1002/advs.202104234
  23. Ming Chen, Yiping Hu, Kun Liang, Ziming Zhao, Yutong Luo, Sha Luo, Jiantai Ma. Interface engineering triggered by carbon nanotube-supported multiple sulfides for boosting oxygen evolution. Nanoscale 2021, 13 (44) , 18763-18772. https://doi.org/10.1039/D1NR04540G
  24. Jing-Yi Xie, Bin Dong. Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting. Chinese Journal of Catalysis 2021, 42 (11) , 1843-1864. https://doi.org/10.1016/S1872-2067(21)63833-0
  25. Xiong Liu, Ruiting Guo, Wenzhong Huang, Jiexin Zhu, Bo Wen, Liqiang Mai. Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small 2021, 17 (45) , 2100629. https://doi.org/10.1002/smll.202100629
  26. Yosuan Avila, Próspero Acevedo-Peña, Leslie Reguera, Edilso Reguera. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coordination Chemistry Reviews 2021, 85 , 214274. https://doi.org/10.1016/j.ccr.2021.214274
  27. Sascha Keßler, Elrike R. Reinalter, Johannes Schmidt, Helmut Cölfen. Environmentally Benign Formation of Nickel Hexacyanoferrate-Derived Mesoframes for Heterogeneous Catalysis. Nanomaterials 2021, 11 (10) , 2756. https://doi.org/10.3390/nano11102756
  28. Ramadan Chalil Oglou, T. Gamze Ulusoy Ghobadi, Ekmel Ozbay, Ferdi Karadas. Electrodeposited Cobalt Hexacyanoferrate Electrode as A Non-enzymatic Glucose Sensor Under Neutral Conditions. Analytica Chimica Acta 2021, 108 , 339188. https://doi.org/10.1016/j.aca.2021.339188
  29. Xiaowei Xu, Tianyu Wang, Mingfang Zheng, Ying Li, Jichao Shi, Tian Tian, Runping Jia, Ying Liu. Metal-organic framework assisted formation of Ni-Fe-based porous nanoflowers for enhanced water splitting. Journal of Alloys and Compounds 2021, 875 , 159970. https://doi.org/10.1016/j.jallcom.2021.159970
  30. Wenbin Sun, Zimeng Wei, Jindi Qi, Luyao Kang, Jiechen Li, Junfeng Xie, Bo Tang, Yi Xie. Rapid and Scalable Synthesis of Prussian Blue Analogue Nanocubes for Electrocatalytic Water Oxidation †. Chinese Journal of Chemistry 2021, 39 (9) , 2347-2353. https://doi.org/10.1002/cjoc.202100294
  31. Junkuo Gao, Qing Huang, Yuhang Wu, Ya-Qian Lan, Banglin Chen. Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research 2021, 2 (8) , 2100033. https://doi.org/10.1002/aesr.202100033
  32. Xiong Liu, Jiashen Meng, Jiexin Zhu, Meng Huang, Bo Wen, Ruiting Guo, Liqiang Mai. Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. Advanced Materials 2021, 33 (32) , 2007344. https://doi.org/10.1002/adma.202007344
  33. Nadia Ismail, Fengjuan Qin, Chaohe Fang, Dan Liu, Bihan Liu, Xiangyu Liu, Zi‐long Wu, Zhuo Chen, Wenxing Chen. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2 (4) https://doi.org/10.1002/agt2.106
  34. Wenhui Hu, Mingbo Zheng, Huiyu Duan, Wei Zhu, Ying Wei, Yi Zhang, Kunming Pan, Huan Pang. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chinese Chemical Letters 2021, 324 https://doi.org/10.1016/j.cclet.2021.08.025
  35. Roger Sanchis-Gual, Alvaro Seijas-Da Silva, Marc Coronado-Puchau, Toribio F. Otero, Gonzalo Abellán, Eugenio Coronado. Improving the onset potential and Tafel slope determination of earth-abundant water oxidation electrocatalysts. Electrochimica Acta 2021, 388 , 138613. https://doi.org/10.1016/j.electacta.2021.138613
  36. Roger Sanchis-Gual, Toribio F. Otero, Marc Coronado-Puchau, Eugenio Coronado. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles. Nanoscale 2021, 13 (29) , 12676-12686. https://doi.org/10.1039/D1NR02928B
  37. Li Quan, Shuohan Li, Zhanpeng Zhao, Jianqiao Liu, Yue Ran, Jiayi Cui, Wei Lin, Xuelian Yu, Lin Wang, Yihe Zhang, Jinhua Ye. Hierarchically Assembling CoFe Prussian Blue Analogue Nanocubes on CoP Nanosheets as Highly Efficient Electrocatalysts for Overall Water Splitting. Small Methods 2021, 5 (7) , 2100125. https://doi.org/10.1002/smtd.202100125
  38. William Hadinata Lie, Chen Deng, Yuwei Yang, Constantine Tsounis, Kuang-Hsu Wu, Maria Veronica Chandra Hioe, Nicholas M. Bedford, Da-Wei Wang. High yield electrooxidation of 5-hydroxymethyl furfural catalysed by unsaturated metal sites in CoFe Prussian Blue Analogue films. Green Chemistry 2021, 23 (12) , 4333-4337. https://doi.org/10.1039/D1GC01208H
  39. Miaomiao Jiang, Xiaoming Fan, Shuai Cao, Zihan Wang, Zeheng Yang, Weixin Zhang. Thermally activated carbon–nitrogen vacancies in double-shelled NiFe Prussian blue analogue nanocages for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A 2021, 9 (21) , 12734-12745. https://doi.org/10.1039/D1TA01625C
  40. Y. Kang, S. Wang, K.S. Hui, H.-F. Li, F. Liang, X.-L. Wu, Q. Zhang, W. Zhou, L. Chen, F. Chen, K.N. Hui. [Fe(CN)6] vacancy-boosting oxygen evolution activity of Co-based Prussian blue analogues for hybrid sodium-air battery. Materials Today Energy 2021, 20 , 100572. https://doi.org/10.1016/j.mtener.2020.100572
  41. Ekaterina Mamontova, Maria Rodríguez-Castillo, Erwan Oliviero, Yannick Guari, Joulia Larionova, Miguel Monge, Jérôme Long. Designing heterostructured [email protected] Prussian Blue [email protected]–Ag nanoparticles: Effect on the magnetic properties and catalytic activity. Inorganic Chemistry Frontiers 2021, 8 (9) , 2248-2260. https://doi.org/10.1039/D1QI00008J
  42. Li Zhong, Junyang Ding, Jinjie Qian, Maochun Hong. Unconventional inorganic precursors determine the growth of metal-organic frameworks. Coordination Chemistry Reviews 2021, 434 , 213804. https://doi.org/10.1016/j.ccr.2021.213804
  43. Li An, Chao Wei, Min Lu, Hanwen Liu, Yubo Chen, Günther G. Scherer, Adrian C. Fisher, Pinxian Xi, Zhichuan J. Xu, Chun‐Hua Yan. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. Advanced Materials 2021, 33 (20) , 2006328. https://doi.org/10.1002/adma.202006328
  44. Jordi Morales-Vidal, Rodrigo García-Muelas, Manuel A. Ortuño. Defects as catalytic sites for the oxygen evolution reaction in Earth-abundant MOF-74 revealed by DFT. Catalysis Science & Technology 2021, 11 (4) , 1443-1450. https://doi.org/10.1039/D0CY02163F
  45. Próspero Acevedo Peña, David Ramírez Ortega, Diana Guerrero Araque, Agileo Hernández Gordillo, Rodolfo Zanella, Edilso Reguera. Boosting the photocatalytic hydrogen production of TiO2 by using copper hexacyanocobaltate as co-catalyst. International Journal of Hydrogen Energy 2021, 46 (17) , 10312-10323. https://doi.org/10.1016/j.ijhydene.2020.12.135
  46. Bruno Morandi Pires, Willian Gonçalves Nunes, Bruno Guilherme Freitas, Francisca Elenice Rodrigues Oliveira, Vera Katic, Cristiane Barbieri Rodella, Leonardo Morais Da Silva, Hudson Zanin. Characterization of porous cobalt hexacyanoferrate and activated carbon electrodes under dynamic polarization conditions in a sodium-ion pseudocapacitor. Journal of Energy Chemistry 2021, 54 , 53-62. https://doi.org/10.1016/j.jechem.2020.05.045
  47. Jian Du, Fei Li, Licheng Sun. Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews 2021, 50 (4) , 2663-2695. https://doi.org/10.1039/D0CS01191F
  48. O. Calixto-Lozada, J. Vazquez-Samperio, E. Córdoba-Tuta, E. Reguera, P. Acevedo-Peña. Growth of Cobalt Hexacyanoferrate Particles Through Electrodeposition and Chemical Etching of Cobalt Precursors on Reticulated Vitreous Carbon Foams for Na-ion Electrochemical Storage. Solid State Sciences 2021, 69 , 106603. https://doi.org/10.1016/j.solidstatesciences.2021.106603
  49. T. Gamze Ulusoy Ghobadi, Ekmel Ozbay, Ferdi Karadas. How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies. Chemistry – A European Journal 2021, 27 (11) , 3638-3649. https://doi.org/10.1002/chem.202004091
  50. Sina Sadigh Akbari, Ferdi Karadas. Precious Metal‐Free Photocatalytic Water Oxidation by a Layered Double Hydroxide‐Prussian Blue Analogue Hybrid Assembly. ChemSusChem 2021, 14 (2) , 679-685. https://doi.org/10.1002/cssc.202002279
  51. Xiaowei Xu, Tianyu Wang, Cheng Zhao, Zhixiong Huang, Mingfang Zheng, Runping Jia, Ying Liu. MOFs derived NiFeP porous nanoflowers for boosted electrocatalytic water splitting. Microporous and Mesoporous Materials 2021, 312 , 110760. https://doi.org/10.1016/j.micromeso.2020.110760
  52. Wei Jiang, Tao Wang, Hao Chen, Xian Suo, Jiyuan Liang, Wenshuai Zhu, Huaming Li, Sheng Dai. Room temperature synthesis of high-entropy Prussian blue analogues. Nano Energy 2021, 79 , 105464. https://doi.org/10.1016/j.nanoen.2020.105464
  53. Wei Gao, Wangyan Gou, Renjie Wei, Xiuming Bu, Yuanyuan Ma, Johnny C. Ho. In situ electrochemical conversion of cobalt [email protected] core-shell structure as an efficient and robust electrocatalyst for water oxidation. Applied Materials Today 2020, 21 , 100820. https://doi.org/10.1016/j.apmt.2020.100820
  54. Zhijie Chen, Xiaoguang Duan, Wei Wei, Shaobin Wang, Bing-Jie Ni. Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy 2020, 78 , 105392. https://doi.org/10.1016/j.nanoen.2020.105392
  55. Priscilla J. Zambiazi, Gabriel de O. Aparecido, Thiago V. de B. Ferraz, William S. J. Skinner, Rafael G. Yoshimura, Daniel E. B. Moreira, Rafael L. Germscheidt, Lucas L. Nascimento, Antonio Otavio T. Patrocinio, André L. B. Formiga, Juliano A. Bonacin. Electrocatalytic water oxidation reaction promoted by cobalt-Prussian blue and its thermal decomposition product under mild conditions. Dalton Transactions 2020, 49 (45) , 16488-16497. https://doi.org/10.1039/D0DT02220A
  56. Lijuan Han, Jesús González-Cobos, Irene Sánchez-Molina, Stefano Giancola, Scott J. Folkman, S. Giménez, A. Vidal-Ferran, José Ramón Galán-Mascarós. A low temperature aqueous formate fuel cell using cobalt hexacyanoferrate as a non-noble metal oxidation catalyst. Sustainable Energy & Fuels 2020, 4 (12) , 6227-6233. https://doi.org/10.1039/D0SE01398F
  57. Bradley D. Terry, John L. DiMeglio, John P. Cousineau, Bart M. Bartlett. Nitrate Radical Facilitates Indirect Benzyl Alcohol Oxidation on Bismuth(III) Vanadate Photoelectrodes. ChemElectroChem 2020, 7 (18) , 3776-3782. https://doi.org/10.1002/celc.202000911
  58. Itthipon Jeerapan, Thitaporn Sonsa-ard, Duangjai Nacapricha. Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors 2020, 8 (3) , 71. https://doi.org/10.3390/chemosensors8030071
  59. Zhou Xu, Lijie Ci, Yifei Yuan, Xiangkun Nie, Jianwei Li, Jun Cheng, Qing Sun, Yamin Zhang, Guifang Han, Guanghui Min, Jun Lu. Potassium Prussian blue-coated Li-rich cathode with enhanced lithium ion storage property. Nano Energy 2020, 75 , 104942. https://doi.org/10.1016/j.nanoen.2020.104942
  60. Mingxuan Fu, Qi Zhang, Yuena Sun, Guyang Ning, Xinyu Fan, Haiyang Wang, Haijun Lu, Yufan Zhang, Huan Wang. Ni–Fe nanocubes embedded with Pt nanoparticles for hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy 2020, 45 (41) , 20832-20842. https://doi.org/10.1016/j.ijhydene.2020.05.170
  61. Dongni Zhao, Yuezhen Lu, Dongge Ma. Effects of Structure and Constituent of Prussian Blue Analogs on Their Application in Oxygen Evolution Reaction. Molecules 2020, 25 (10) , 2304. https://doi.org/10.3390/molecules25102304
  62. Yan Xu, Bo Zhang, Jiaqi Ran, Peitao Liu, Daqiang Gao. Fe-based species anchored on N-doped carbon nanotubes as a bifunctional electrocatalyst for acidic/neutral/alkaline Zn–air batteries. Nanotechnology 2020, 31 (26) , 265402. https://doi.org/10.1088/1361-6528/ab7ef9
  63. Cuijuan Xuan, Jian Zhang, Jie Wang, Deli Wang. Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for Electrochemical Water Splitting. Chemistry – An Asian Journal 2020, 15 (7) , 958-972. https://doi.org/10.1002/asia.201901721
  64. T. Gamze Ulusoy Ghobadi, Amir Ghobadi, Muhammed Buyuktemiz, Elif Akhuseyin Yildiz, Dilara Berna Yildiz, H. Gul Yaglioglu, Yavuz Dede, Ekmel Ozbay, Ferdi Karadas. A Robust, Precious‐Metal‐Free Dye‐Sensitized Photoanode for Water Oxidation: A Nanosecond‐Long Excited‐State Lifetime through a Prussian Blue Analogue. Angewandte Chemie International Edition 2020, 59 (10) , 4082-4090. https://doi.org/10.1002/anie.201914743
  65. T. Gamze Ulusoy Ghobadi, Amir Ghobadi, Muhammed Buyuktemiz, Elif Akhuseyin Yildiz, Dilara Berna Yildiz, H. Gul Yaglioglu, Yavuz Dede, Ekmel Ozbay, Ferdi Karadas. A Robust, Precious‐Metal‐Free Dye‐Sensitized Photoanode for Water Oxidation: A Nanosecond‐Long Excited‐State Lifetime through a Prussian Blue Analogue. Angewandte Chemie 2020, 132 (10) , 4111-4119. https://doi.org/10.1002/ange.201914743
  66. Liu Yang, Huibing Liu, Hangjia Shen, Yan Huang, Shitao Wang, Lirong Zheng, Dapeng Cao. Physically Adsorbed Metal Ions in Porous Supports as Electrocatalysts for Oxygen Evolution Reaction. Advanced Functional Materials 2020, 30 (12) , 1909889. https://doi.org/10.1002/adfm.201909889
  67. Li-Ming Cao, David Lu, Di-Chang Zhong, Tong-Bu Lu. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coordination Chemistry Reviews 2020, 407 , 213156. https://doi.org/10.1016/j.ccr.2019.213156
  68. Junsheng Chen, Li Wei, Asif Mahmood, Zengxia Pei, Zheng Zhou, Xuncai Chen, Yuan Chen. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials 2020, 25 , 585-612. https://doi.org/10.1016/j.ensm.2019.09.024
  69. Manabu Ishizaki, Hiroki Fujii, Keiga Toshima, Hiroya Tanno, Hikaru Sutoh, Masato Kurihara. Preparation of Co-Fe oxides immobilized on carbon paper using water-dispersible Prussian-blue analog nanoparticles and their oxygen evolution reaction (OER) catalytic activities. Inorganica Chimica Acta 2020, 502 , 119345. https://doi.org/10.1016/j.ica.2019.119345
  70. Hao Huang, Qi Xue, Ying Zhang, Yu Chen. Two-dimensional cobalt prussian blue nanosheets: Template-directed synthesis and electrocatalytic oxygen evolution property. Electrochimica Acta 2020, 333 , 135544. https://doi.org/10.1016/j.electacta.2019.135544
  71. Jiameng Liu, Changbao Wang, Feilong Rong, Shide Wu, Kuan Tian, Minghua Wang, Linghao He, Zhihong Zhang, Miao Du. Nickel-ruthenium nanoalloy encapsulated in mesoporous carbon as active electrocatalysts for highly efficient overall water splitting in alkaline solution. Electrochimica Acta 2020, 334 , 135653. https://doi.org/10.1016/j.electacta.2020.135653
  72. Ziliang Chen, Ben Fei, Meiling Hou, Xiaoxiao Yan, Mao Chen, Huilin Qing, Renbing Wu. Ultrathin Prussian blue analogue nanosheet arrays with open bimetal centers for efficient overall water splitting. Nano Energy 2020, 68 , 104371. https://doi.org/10.1016/j.nanoen.2019.104371
  73. Sengeni Anantharaj, Suguru Noda. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony. Small 2020, 16 (2) , 1905779. https://doi.org/10.1002/smll.201905779
  74. Yang Wang, Shenlong Zhao, Yinlong Zhu, Ruosang Qiu, Thomas Gengenbach, Yue Liu, Lianhai Zu, Haiyan Mao, Huanting Wang, Jing Tang, Dongyuan Zhao, Cordelia Selomulya. Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. iScience 2020, 23 (1) , 100761. https://doi.org/10.1016/j.isci.2019.100761
  75. Lijuan Han, José Ramón Galán-Mascarós. The Positive Effect of Iron Doping in the Electrocatalytic Activity of Cobalt Hexacyanoferrate. Catalysts 2020, 10 (1) , 130. https://doi.org/10.3390/catal10010130
  76. Emine ÜLKER. Polyethylene Glycol Coated Prussian Blue Nanocubes as Water Oxidation Electrocatalysts. Journal of the Turkish Chemical Society Section A: Chemistry 2019, , 227-234. https://doi.org/10.18596/jotcsa.554229
  77. Jian Du, Suxian Xu, Licheng Sun, Fei Li. Iron carbonate hydroxide templated binary metal–organic frameworks for highly efficient electrochemical water oxidation. Chemical Communications 2019, 55 (98) , 14773-14776. https://doi.org/10.1039/C9CC07433C
  78. Félix Urbain, Ruifeng Du, Pengyi Tang, Vladimir Smirnov, Teresa Andreu, Friedhelm Finger, Nuria Jimenez Divins, Jordi Llorca, Jordi Arbiol, Andreu Cabot, Joan Ramon Morante. Upscaling high activity oxygen evolution catalysts based on CoFe2O4 nanoparticles supported on nickel foam for power-to-gas electrochemical conversion with energy efficiencies above 80%. Applied Catalysis B: Environmental 2019, 259 , 118055. https://doi.org/10.1016/j.apcatb.2019.118055
  79. Zi-You Yu, Yu Duan, Jian-Dang Liu, Yu Chen, Xiao-Kang Liu, Wei Liu, Tao Ma, Yi Li, Xu-Sheng Zheng, Tao Yao, Min-Rui Gao, Jun-Fa Zhu, Bang-Jiao Ye, Shu-Hong Yu. Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10698-9
  80. Jens Melder, Stefan Mebs, Philipp A. Heizmann, Rebekka Lang, Holger Dau, Philipp Kurz. Carbon fibre paper coated by a layered manganese oxide: a nano-structured electrocatalyst for water-oxidation with high activity over a very wide pH range. Journal of Materials Chemistry A 2019, 7 (44) , 25333-25346. https://doi.org/10.1039/C9TA08804K
  81. Wei Wang, Xianyi Liu, Yahui Wang, Linwei Zhang, Sarah Imhanria, Ziqiang Lei. A metal–organic framework derived PtCo/C electrocatalyst for ethanol electro-oxidation. Journal of the Taiwan Institute of Chemical Engineers 2019, 104 , 284-292. https://doi.org/10.1016/j.jtice.2019.08.015
  82. Peng‐Yi Tang, Li‐Juan Han, Franziska Simone Hegner, Paul Paciok, Martí Biset‐Peiró, Hong‐Chu Du, Xian‐Kui Wei, Lei Jin, Hai‐Bing Xie, Qin Shi, Teresa Andreu, Mónica Lira‐Cantú, Marc Heggen, Rafal E. Dunin‐Borkowski, Núria López, José Ramón Galán‐Mascarós, Joan Ramon Morante, Jordi Arbiol. Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification. Advanced Energy Materials 2019, 9 (34) , 1901836. https://doi.org/10.1002/aenm.201901836
  83. Xiaojuan Zhang, Bo Yu, Xinqiang Wang, Dongxu Yang, Yuanfu Chen. Self-assembled globular clusters-like cobalt hexacyanoferrate/carbon nanotubes hybrid as efficient nonprecious electrocatalyst for oxygen evolution reaction. Journal of Power Sources 2019, 434 , 126670. https://doi.org/10.1016/j.jpowsour.2019.05.076
  84. Miguel García‐Tecedor, Drialys Cardenas‐Morcoso, Roser Fernández‐Climent, Sixto Giménez. The Role of Underlayers and Overlayers in Thin Film BiVO 4 Photoanodes for Solar Water Splitting. Advanced Materials Interfaces 2019, 6 (15) , 1900299. https://doi.org/10.1002/admi.201900299
  85. Wei‐Jie Li, Chao Han, Gang Cheng, Shu‐Lei Chou, Hua‐Kun Liu, Shi‐Xue Dou. Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small 2019, 15 (32) , 1900470. https://doi.org/10.1002/smll.201900470
  86. Zeynep Kap, Ferdi Karadas. Visible light-driven water oxidation with a ruthenium sensitizer and a cobalt-based catalyst connected with a polymeric platform. Faraday Discussions 2019, 215 , 111-122. https://doi.org/10.1039/C8FD00166A
  87. Yan Shen, Shu-Guang Guo, Feng Du, Xiao-Bo Yuan, Yintong Zhang, Jianqiang Hu, Qing Shen, Wenjun Luo, Ahmed Alsaedi, Tasawar Hayat, Guihua Wen, Guo-Ling Li, Yong Zhou, Zhigang Zou. Prussian blue analogue-derived Ni and Co bimetallic oxide nanoplate arrays block-built from porous and hollow nanocubes for the efficient oxygen evolution reaction. Nanoscale 2019, 11 (24) , 11765-11773. https://doi.org/10.1039/C9NR01804B
  88. Qi Hu, Guomin Li, Zhen Han, Ziyu Wang, Xiaowan Huang, Hengpan Yang, Qianling Zhang, Jianhong Liu, Chuanxin He. Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. Journal of Materials Chemistry A 2019, 7 (24) , 14380-14390. https://doi.org/10.1039/C9TA04163J
  89. Emine Ülker. Hydrothermally Synthesized Cobalt Borophosphate as an Electrocatalyst for Water Oxidation in the pH Range from 7 to 14. ChemElectroChem 2019, 6 (12) , 3132-3138. https://doi.org/10.1002/celc.201900683
  90. Song Lei, Qiao-Hong Li, Yao Kang, Zhi-Gang Gu, Jian Zhang. Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction. Applied Catalysis B: Environmental 2019, 245 , 1-9. https://doi.org/10.1016/j.apcatb.2018.12.036
  91. Toru Hayashi, Nadège Bonnet-Mercier, Akira Yamaguchi, Kazumasa Suetsugu, Ryuhei Nakamura. Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers. Royal Society Open Science 2019, 6 (5) , 190122. https://doi.org/10.1098/rsos.190122
  92. Sanghyun Bae, Ji‐Eun Jang, Hyun‐Wook Lee, Jungki Ryu. Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial Photosynthesis. European Journal of Inorganic Chemistry 2019, 2019 (15) , 2040-2057. https://doi.org/10.1002/ejic.201801328
  93. Felipe A. Garcés‐Pineda, Jesús González‐Cobos, Mabel Torrens, José R. Galán‐Mascarós. Fluorine‐Doped Tin Oxide/Alumina as Long‐Term Robust Conducting Support for Earth‐Abundant Water Oxidation Electrocatalysts. ChemElectroChem 2019, 6 (8) , 2282-2289. https://doi.org/10.1002/celc.201900218
  94. Alowasheeir Azhar, Yucen Li, Zexing Cai, Mohamed Barakat Zakaria, Mostafa Kamal Masud, Md. Shahriar A. Hossain, Jeonghun Kim, Wei Zhang, Jongbeom Na, Yusuke Yamauchi, Ming Hu. Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues. Bulletin of the Chemical Society of Japan 2019, 92 (4) , 875-904. https://doi.org/10.1246/bcsj.20180368
  95. Bruno M. Pires, Pãmyla L. dos Santos, Vera Katic, Stefan Strohauer, Richard Landers, André L. B. Formiga, Juliano A. Bonacin. Electrochemical water oxidation by cobalt-Prussian blue coordination polymer and theoretical studies of the electronic structure of the active species. Dalton Transactions 2019, 48 (15) , 4811-4822. https://doi.org/10.1039/C8DT04660C
  96. Ailong Li, Hideshi Ooka, Nadège Bonnet, Toru Hayashi, Yimeng Sun, Qike Jiang, Can Li, Hongxian Han, Ryuhei Nakamura. Stable Potential Windows for Long‐Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angewandte Chemie 2019, 131 (15) , 5108-5112. https://doi.org/10.1002/ange.201813361
  97. Ailong Li, Hideshi Ooka, Nadège Bonnet, Toru Hayashi, Yimeng Sun, Qike Jiang, Can Li, Hongxian Han, Ryuhei Nakamura. Stable Potential Windows for Long‐Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angewandte Chemie International Edition 2019, 58 (15) , 5054-5058. https://doi.org/10.1002/anie.201813361
  98. Chen Deng, Da‐Wei Wang. Functional Electrocatalysts Derived from Prussian Blue and its Analogues for Metal‐Air Batteries: Progress and Prospects. Batteries & Supercaps 2019, 2 (4) , 290-310. https://doi.org/10.1002/batt.201800116
  99. Ze‐Xing Cai, Zhong‐Li Wang, Jeonghun Kim, Yusuke Yamauchi. Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials 2019, 31 (11) , 1804903. https://doi.org/10.1002/adma.201804903
  100. F. Lyu, Y. Bai, Q. Wang, L. Wang, X. Zhang, Y. Yin. Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution. Materials Today Chemistry 2019, 11 , 112-118. https://doi.org/10.1016/j.mtchem.2018.10.010
Load all citations