Directional Engraving within Single Crystalline Metal–Organic Framework Particles via Oxidative Linker Cleaving

  • Lianshun Luo
    Lianshun Luo
    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    More by Lianshun Luo
  • Wei-Shang Lo
    Wei-Shang Lo
    Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
    More by Wei-Shang Lo
  • Xiaomeng Si
    Xiaomeng Si
    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    More by Xiaomeng Si
  • Hailong Li
    Hailong Li
    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    More by Hailong Li
  • Yichen Wu
    Yichen Wu
    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    More by Yichen Wu
  • Yuanyuan An
    Yuanyuan An
    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    More by Yuanyuan An
  • Qinlin Zhu
    Qinlin Zhu
    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    More by Qinlin Zhu
  • Lien-Yang Chou*
    Lien-Yang Chou
    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    *[email protected]
  • Tao Li*
    Tao Li
    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    *[email protected]
    More by Tao Li
  • , and 
  • Chia-Kuang Tsung*
    Chia-Kuang Tsung
    Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
    *[email protected]
Cite this: J. Am. Chem. Soc. 2019, 141, 51, 20365–20370
Publication Date (Web):November 29, 2019
https://doi.org/10.1021/jacs.9b10499
Copyright © 2019 American Chemical Society
Article Views
4061
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

An oxidative linker cleaving (OLC) process was developed for surgical manipulation of the engraving process within single crystalline MOFs particles. The strategy relies on selective degradation of 2,5-dihydroxyterephthalic acid linker into small molecular fragments by oxidative ring-opening reactions, resulting in controllable scissoring of framework. By regulation of the generation and diffusion of oxidative species, the core MOFs will undergo divergent etching routes, producing a series of single crystalline hollow and yolk–shell MOF structures. In addition, the OLC process can be initiated and localized around the pre-embedded Pd NPs through on-site catalytic generation of oxidative species, leading to solitary confinement of multiple NPs within one single crystalline MOF particle, namely, a multi-yolk–shell structure. This unique architecture can effectively protect NPs from agglomeration while realizing size selective catalysis at the same time.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b10499.

  • Experimental details and additional characterization data (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 33 publications.

  1. Benjamin P. Williams, Wei-Shang Lo, Joseph V. Morabito, Allison P. Young, Frances Tsung, Chun-Hong Kuo, Joseph M. Palomba, Thomas M. Rayder, Lien-Yang Chou, Brian T. Sneed, Xiao-Yuan Liu, Leo K. Lamontagne, Christopher A. Petroff, Casey N. Brodsky, Jane Yang, Ilektra Andoni, Yang Li, Furui Zhang, Zhehui Li, Sheng-Yu Chen, Connor Gallacher, Banruo Li, Sheng-Yuan Tsung, Ming-Hwa Pu, Chia-Kuang Tsung. Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS Applied Materials & Interfaces 2021, 13 (44) , 51809-51828. https://doi.org/10.1021/acsami.1c08916
  2. Matthew J. Hurlock, Leiduan Hao, Kyle W. Kriegsman, Xiaofeng Guo, Michael O’Keeffe, Qiang Zhang. Evolution of 14-Connected Zr6 Secondary Building Units through Postsynthetic Linker Incorporation. ACS Applied Materials & Interfaces 2021, 13 (44) , 51945-51953. https://doi.org/10.1021/acsami.1c07701
  3. Sha Li, Jiande Lin, Yu Ding, Pan Xu, Xiangyang Guo, Weiming Xiong, De-Yin Wu, Quanfeng Dong, Jiajia Chen, Li Zhang. Defects Engineering of Lightweight Metal–Organic Frameworks-Based Electrocatalytic Membrane for High-Loading Lithium–Sulfur Batteries. ACS Nano 2021, 15 (8) , 13803-13813. https://doi.org/10.1021/acsnano.1c05585
  4. Fang Wang, Yaqi Fan, Yanhang Ma, Tao Li. Sequential Oriented Growth of Zr-fcu-MOFs on Different Crystal Facets of MIL-96(Al). Crystal Growth & Design 2021, 21 (8) , 4571-4578. https://doi.org/10.1021/acs.cgd.1c00443
  5. Xianlong Zhou, Juncai Dong, Yihan Zhu, Lingmei Liu, Yan Jiao, Huan Li, Yu Han, Kenneth Davey, Qiang Xu, Yao Zheng, Shi-Zhang Qiao. Molecular Scalpel to Chemically Cleave Metal–Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society 2021, 143 (17) , 6681-6690. https://doi.org/10.1021/jacs.1c02379
  6. Wenhui Wang, Hongwei Yan, Utkarsh Anand, Utkur Mirsaidov. Visualizing the Conversion of Metal–Organic Framework Nanoparticles into Hollow Layered Double Hydroxide Nanocages. Journal of the American Chemical Society 2021, 143 (4) , 1854-1862. https://doi.org/10.1021/jacs.0c10285
  7. Liang Feng, Kun-Yu Wang, Jeremy Willman, Hong-Cai Zhou. Hierarchy in Metal–Organic Frameworks. ACS Central Science 2020, 6 (3) , 359-367. https://doi.org/10.1021/acscentsci.0c00158
  8. Xinming Ye, Xiaolian Zhang, Yunyun Jiang, Liang Qiao, Wenchao Zhang, Ye-Tang Pan, Rongjie Yang, Jiarong Li, Yingchun Li. Controllable dimensions and regular geometric architectures from self-assembly of lithium-containing polyhedral oligomeric silsesquioxane: Build for enhancing the fire safety of epoxy resin. Composites Part B: Engineering 2022, 229 , 109483. https://doi.org/10.1016/j.compositesb.2021.109483
  9. Rui Zhai, Hui Chen, Zhihua Shan. Exploration of collagen cavitation based on peptide electrolysis. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-96533-y
  10. Qi Wang, Guoxiang Yang, Yangjie Fu, Ningyi Li, Derek Hao, Shengqian Ma. Nanospace Engineering of Metal‐Organic Frameworks for Heterogeneous Catalysis. ChemNanoMat 2021, 117 https://doi.org/10.1002/cnma.202100396
  11. Mi Zhang, Jia‐Nan Chang, Yifa Chen, Meng Lu, Tao‐Yuan Yu, Cheng Jiang, Shun‐Li Li, Yue‐Peng Cai, Ya‐Qian Lan. Controllable Synthesis of COFs‐Based Multicomponent Nanocomposites from Core‐Shell to Yolk‐Shell and Hollow‐Sphere Structure for Artificial Photosynthesis. Advanced Materials 2021, 33 (48) , 2105002. https://doi.org/10.1002/adma.202105002
  12. Qing Liu, Bo Wu, Mengyuan Li, Yuanyu Huang, Lele Li. Heterostructures Made of Upconversion Nanoparticles and Metal–Organic Frameworks for Biomedical Applications. Advanced Science 2021, , 2103911. https://doi.org/10.1002/advs.202103911
  13. Haowu Wang, Fengbin Zheng, Guangxin Xue, Yinglong Wang, Guodong Li, Zhiyong Tang. Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Science China Chemistry 2021, 64 (11) , 1854-1874. https://doi.org/10.1007/s11426-021-1095-y
  14. Shi-Jun Yin, Xu Wang, Hui Jiang, Min Lu, Xi Zhou, Li-Xian Li, Feng-Qing Yang. Preparation of magnetic yolk-shell structured metal-organic framework material and its application in pharmacokinetics study of alkaloids. Analytical and Bioanalytical Chemistry 2021, 413 (28) , 6987-6999. https://doi.org/10.1007/s00216-021-03656-2
  15. Xianlong Zhou, Huanyu Jin, Bao Yu Xia, Kenneth Davey, Yao Zheng, Shi‐Zhang Qiao. Molecular Cleavage of Metal‐Organic Frameworks and Application to Energy Storage and Conversion. Advanced Materials 2021, 49 , 2104341. https://doi.org/10.1002/adma.202104341
  16. Dechao Wang, Yangyang Xin, Dongdong Yao, Xiaoqian Li, Hailong Ning, Hongmin Zhang, Yudeng Wang, Xiaoqian Ju, Zhongjie He, Zhiyuan Yang, Wendi Fan, Peipei Li, Yaping Zheng. Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials 2021, 356 , 2104162. https://doi.org/10.1002/adfm.202104162
  17. Xiao-Jue Bai, Xu Zhai, Li-Ying Zhang, Yu Fu, Wei Qi. Site-directed reduction engineering within bimetal-organic frameworks for efficient size-selective catalysis. Matter 2021, 4 (9) , 2919-2935. https://doi.org/10.1016/j.matt.2021.06.038
  18. Fang Wang, Yang Xu, Yanzhi Wang, Zuozhong Liang, Ru Zhang, Yaru Wang, Hang Zhang, Wei Zhang, Rui Cao, Haoquan Zheng. Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts. Chemical Communications 2021, 57 (66) , 8190-8193. https://doi.org/10.1039/D1CC02591K
  19. Jun Guo, Yutian Qin, Yanfei Zhu, Xiaofei Zhang, Chang Long, Meiting Zhao, Zhiyong Tang. Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews 2021, 50 (9) , 5366-5396. https://doi.org/10.1039/D0CS01538E
  20. Songwei Zhang, Yaqi Fan, Lianshun Luo, Conger Li, Yanhang Ma, Tao Li. Reverse synthesis of yolk–shell metal–organic frameworks. Chemical Communications 2021, 57 (27) , 3415-3418. https://doi.org/10.1039/D1CC00548K
  21. Jintong Liu, Jing Huang, Lei Zhang, Jianping Lei. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chemical Society Reviews 2021, 50 (2) , 1188-1218. https://doi.org/10.1039/D0CS00178C
  22. The Ky Vo, Van Cuong Nguyen, Duong Tuan Quang, Bum Jun Park, Jinsoo Kim. Formation of structural defects within UiO-66(Zr)-(OH)2 framework for enhanced CO2 adsorption using a microwave-assisted continuous-flow tubular reactor. Microporous and Mesoporous Materials 2021, 312 , 110746. https://doi.org/10.1016/j.micromeso.2020.110746
  23. Huan Pang, Yijian Tang. Nano/Micro MOF-Based Materials. 2021,,, 1-40. https://doi.org/10.1007/978-981-16-4071-1_1
  24. Liqin Wang, Youqi Zhu, Changliang Du, Xilan Ma, Chuanbao Cao. Advances and challenges in metal–organic framework derived porous materials for batteries and electrocatalysis. Journal of Materials Chemistry A 2020, 8 (47) , 24895-24919. https://doi.org/10.1039/D0TA08311A
  25. Liang Wu, Yu Li, Zhengyi Fu, Bao-Lian Su. Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review 2020, 7 (11) , 1667-1701. https://doi.org/10.1093/nsr/nwaa183
  26. Wentao Xu, Binbin Tu, Qi Liu, Yufei Shu, Cong-Cong Liang, Christian S. Diercks, Omar M. Yaghi, Yue-Biao Zhang, Hexiang Deng, Qiaowei Li. Anisotropic reticular chemistry. Nature Reviews Materials 2020, 5 (10) , 764-779. https://doi.org/10.1038/s41578-020-0225-x
  27. Xinjiang Cui, Serhii Shyshkanov, Tu N. Nguyen, Arunraj Chidambaram, Zhaofu Fei, Kyriakos C. Stylianou, Paul J. Dyson. CO 2 Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst. Angewandte Chemie International Edition 2020, 59 (38) , 16371-16375. https://doi.org/10.1002/anie.202004618
  28. Xinjiang Cui, Serhii Shyshkanov, Tu N. Nguyen, Arunraj Chidambaram, Zhaofu Fei, Kyriakos C. Stylianou, Paul J. Dyson. CO 2 Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst. Angewandte Chemie 2020, https://doi.org/10.1002/ange.202004618
  29. Zhongchao Jin, Xiaorong Zhu, Ningning Wang, Yafei Li, Huangxian Ju, Jianping Lei. Electroactive Metal–Organic Frameworks as Emitters for Self‐Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie 2020, 132 (26) , 10532-10536. https://doi.org/10.1002/ange.202002713
  30. Zhongchao Jin, Xiaorong Zhu, Ningning Wang, Yafei Li, Huangxian Ju, Jianping Lei. Electroactive Metal–Organic Frameworks as Emitters for Self‐Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie International Edition 2020, 59 (26) , 10446-10450. https://doi.org/10.1002/anie.202002713
  31. Jongkook Hwang, Aleksander Ejsmont, Ralph Freund, Joanna Goscianska, Bernhard V. K. J. Schmidt, Stefan Wuttke. Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews 2020, 49 (11) , 3348-3422. https://doi.org/10.1039/C9CS00871C
  32. Zumin Wang, Nailiang Yang, Dan Wang. When hollow multishelled structures (HoMSs) meet metal–organic frameworks (MOFs). Chemical Science 2020, 11 (21) , 5359-5368. https://doi.org/10.1039/D0SC01284J
  33. Chaochao Zhang, Hao Yang, Dan Zhong, Yang Xu, Yanzhi Wang, Qi Yuan, Zuozhong Liang, Bin Wang, Wei Zhang, Haoquan Zheng, Tao Cheng, Rui Cao. A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. Journal of Materials Chemistry A 2020, 8 (19) , 9536-9544. https://doi.org/10.1039/D0TA00962H