A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer in the Heterogeneous Photooxidation of Dissolved Organics on TiO2 Nanoparticle Suspensions

View Author Information
Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain, Departament de Química Física and Institut Universitari d'Electroquímica, Universitat d'Alacant, Ap. 99, E-03080 Alacant, Spain, and Departament de Ciències Matemàtiques i Informàtica, Universitat Illes Balears, E-07122 Palma, Spain
Cite this: J. Phys. Chem. B 2004, 108, 52, 20278–20290
Publication Date (Web):November 26, 2004
Copyright © 2004 American Chemical Society
Article Views
Read OnlinePDF (232 KB)


A kinetic model for assessing the photocatalytic degradation of water-dissolved pollutant species at suspensions of TiO2 nanoparticles is presented. The model is based on the sequence of reactions occurring at the semiconductor/electrolyte interface under illumination, and emphasizes the degree of electronic interaction of dissolved pollutant species with the semiconductor surface. In the case of weak interaction (nonspecific adsorption), the model establishes that interfacial hole transfer takes place via an isoenergetic, indirect mechanism involving photogenerated surface-bound OH radicals. In contrast, for strong interaction (specific adsorption), interfacial hole transfer takes place via a mixture of the indirect mechanism and an inelastic, direct one involving photogenerated valence band free holes, which predominates for low enough photon fluxes. Under high illumination intensity (standard experimental conditions), a linear dependence of the photodegradation quantum yield (QY) on the inverse of the square root of the photon flux, φ (i.e., QY ∝ φ-1/2), is predicted for indirect hole transfer (nonspecific adsorption), while a φ independent QY is predicted for direct hole transfer. The quantum yield dependence on the pollutant concentration for strong interaction is determined by the type of adsorption. So, for a Langmuir adsorption type, a linear dependence of the inverse of the QY on the inverse of the pollutant concentration (QY-1 ∝ [RH2]aq-1) is predicted. On the other hand, in the absence of specific adsorption a linear dependence of the inverse of the QY on the inverse of the square root of the pollutant concentration (QY-1 ∝ [RH2]aq-1/2) is obtained for high enough illumination intensity. The predicted behavior has been contrasted with literature experimental data.

 Instituto de Catálisis y Petroleoquímica.

 Universitat d'Alacant.


 Universitat Illes Balears.


 Corresponding author:  Departament de Ciencies Matemàtiques i Informàtica. Universitat de les Illes Balears. Crta. de Valldemossa Km. 7.5, E-07122 Palma de Mallorca, Spain. Tel.:  +34 971 172962. Fax.:  +34 971 173003. E-mail:  [email protected]

Cited By

This article is cited by 62 publications.

  1. Pitchiah E. Karthik, Vasanth Rajendiran Jothi, Sudhagar Pitchaimuthu, SungChul Yi, Sengeni Anantharaj. Alternating Current Techniques for a Better Understanding of Photoelectrocatalysts. ACS Catalysis 2021, 11 (20) , 12763-12776. https://doi.org/10.1021/acscatal.1c03783
  2. Riley E. Rex, Yi Yang, Fritz J. Knorr, Jin Z. Zhang, Yat Li, and Jeanne L. McHale . Spectroelectrochemical Photoluminescence of Trap States in H-Treated Rutile TiO2 Nanowires: Implications for Photooxidation of Water. The Journal of Physical Chemistry C 2016, 120 (6) , 3530-3541. https://doi.org/10.1021/acs.jpcc.5b11231
  3. Jingjing Yang, Baoshun Liu, Huan Xie, Xiujian Zhao, Chiaki Terashima, Akira Fujishima, and Kazuya Nakata . In Situ Photoconductivity Kinetic Study of Nano-TiO2 during the Photocatalytic Oxidation of Formic Acid: Effects of New Recombination and Current Doubling. The Journal of Physical Chemistry C 2015, 119 (37) , 21711-21722. https://doi.org/10.1021/acs.jpcc.5b06534
  4. Yongfei Ji, Bing Wang, and Yi Luo . A Comparative Theoretical Study of Proton-Coupled Hole Transfer for H2O and Small Organic Molecules (CH3OH, HCOOH, H2CO) on the Anatase TiO2(101) Surface. The Journal of Physical Chemistry C 2014, 118 (37) , 21457-21462. https://doi.org/10.1021/jp505854t
  5. Juan Felipe Montoya, José Peral, and Pedro Salvador . Comprehensive Kinetic and Mechanistic Analysis of TiO2 Photocatalytic Reactions According to the Direct–Indirect Model: (I) Theoretical Approach. The Journal of Physical Chemistry C 2014, 118 (26) , 14266-14275. https://doi.org/10.1021/jp4121645
  6. Juan F. Montoya, Mohamed F. Atitar, Detlef W. Bahnemann, José Peral, and Pedro Salvador . Comprehensive Kinetic and Mechanistic Analysis of TiO2 Photocatalytic Reactions According to the Direct–Indirect Model: (II) Experimental Validation. The Journal of Physical Chemistry C 2014, 118 (26) , 14276-14290. https://doi.org/10.1021/jp4121657
  7. Xiang Li and Wenhua Leng . Regenerated Dye-Sensitized Photocatalytic Oxidation of Arsenite over Nanostructured TiO2 Films under Visible Light in Normal Aqueous Solutions: An Insight into the Mechanism by Simultaneous (Photo)electrochemical Measurements. The Journal of Physical Chemistry C 2013, 117 (2) , 750-762. https://doi.org/10.1021/jp308920u
  8. Baoshun Liu, Kazuya Nakata, Xiujian Zhao, Tsuyoshi Ochiai, Taketoshi Murakami, and Akira Fujishima . Theoretical Kinetic Analysis of Heterogeneous Photocatalysis: The Effects of Surface Trapping and Bulk Recombination through Defects. The Journal of Physical Chemistry C 2011, 115 (32) , 16037-16042. https://doi.org/10.1021/jp203744v
  9. Jacek Tyczkowski. Charge Carrier Transfer: A Neglected Process in Chemical Engineering. Industrial & Engineering Chemistry Research 2010, 49 (20) , 9565-9579. https://doi.org/10.1021/ie101069w
  10. Iván Mora-Seró,, Teresa Lana Villarreal,, Juan Bisquert,, Ángeles Pitarch,, Roberto Gómez, and, Pedro Salvador. Photoelectrochemical Behavior of Nanostructured TiO2 Thin-Film Electrodes in Contact with Aqueous Electrolytes Containing Dissolved Pollutants:  A Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer from Photocurrent Measurements. The Journal of Physical Chemistry B 2005, 109 (8) , 3371-3380. https://doi.org/10.1021/jp045585o
  11. Tadesse Bassie Gelaw, Balladka Kunhana Sarojini, Arun Krishna Kodoth. Review of the Advancements on Polymer/Metal Oxide Hybrid Nanocomposite‐Based Adsorption Assisted Photocatalytic Materials for Dye Removal. ChemistrySelect 2021, 6 (34) , 9300-9310. https://doi.org/10.1002/slct.202102020
  12. Dawei Wang, Miguel Angel Mueses, José Angel Colina Márquez, Fiderman Machuca-Martínez, Ivana Grčić, Rodrigo Peralta Muniz Moreira, Gianluca Li Puma. Engineering and modeling perspectives on photocatalytic reactors for water treatment. Water Research 2021, 202 , 117421. https://doi.org/10.1016/j.watres.2021.117421
  13. M. I. Jaramillo-Gutiérrez, J. S. Velasco-Rueda, J. A. Pedraza-Avella. Kinetic Approach by Photocurrent Measurements to the Photoelectrocatalytic Oxidation of an Anionic Surfactant Using an S,N-TiO2/Ti Electrode: Distinguishing Between Direct and Indirect Mechanisms. Topics in Catalysis 2021, 64 (1-2) , 26-35. https://doi.org/10.1007/s11244-020-01404-x
  14. R. Vidhya, R. Gandhimathi, R. Karthikeyan, K. Neyvasagam. Visible light driven enhancement in photodegradation of organic dyes using FexTi1-xO2 thin films. Materials Today: Proceedings 2021, 47 , 1819-1828. https://doi.org/10.1016/j.matpr.2021.03.228
  15. Wenjia Song, Eric M. Lopato, Stefan Bernhard, Paul A. Salvador, Gregory S. Rohrer. High-throughput measurement of the influence of pH on hydrogen production from BaTiO3/TiO2 core/shell photocatalysts. Applied Catalysis B: Environmental 2020, 269 , 118750. https://doi.org/10.1016/j.apcatb.2020.118750
  16. Pavel Afanasiev. MoS2 “inorganic fullerenes” combined with TiO2 in water-methanol suspensions: Highly active hydrogen production photo catalysts operating via transfer of accumulated electrons. International Journal of Hydrogen Energy 2020, 45 (29) , 14696-14712. https://doi.org/10.1016/j.ijhydene.2020.03.191
  17. Yoshio Nosaka, Atsuko Y. Nosaka. Intrinsic nature of photocatalysis by comparing with electrochemistry. Physical Chemistry Chemical Physics 2020, 22 (14) , 7146-7154. https://doi.org/10.1039/D0CP00771D
  18. Baoshun Liu, Xiujian Zhao, Ivan P. Parkin, Kazuya Nakata. Charge carrier transfer in photocatalysis. 2020,,, 103-159. https://doi.org/10.1016/B978-0-08-102890-2.00004-X
  19. Paola Calza, Marco Minella, Luca Demarchis, Fabrizio Sordello, Claudio Minero. Photocatalytic rate dependence on light absorption properties of different TiO2 specimens. Catalysis Today 2020, 340 , 12-18. https://doi.org/10.1016/j.cattod.2018.10.013
  20. Sina Ahadi, Nikta S. Moalej, Saeed Sheibani. Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sciences 2019, 96 , 105975. https://doi.org/10.1016/j.solidstatesciences.2019.105975
  21. Guillermo J. Rincón, Enrique J. La Motta. A fluidized-bed reactor for the photocatalytic mineralization of phenol on TiO2-coated silica gel. Heliyon 2019, 5 (6) , e01966. https://doi.org/10.1016/j.heliyon.2019.e01966
  22. Shalinee Kavadiya, Pratim Biswas. Design of Cerenkov Radiation–Assisted Photoactivation of TiO 2 Nanoparticles and Reactive Oxygen Species Generation for Cancer Treatment. Journal of Nuclear Medicine 2019, 60 (5) , 702-709. https://doi.org/10.2967/jnumed.118.215608
  23. Tayyebeh Soltani, Ahmad Tayyebi, Hyeonseon Hong, Mohammad Hassan Mirfasih, Byeong-Kyu Lee. A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance. Solar Energy Materials and Solar Cells 2019, 191 , 39-49. https://doi.org/10.1016/j.solmat.2018.10.019
  24. Junbo Zhong, Yukun Zhao, Liyong Ding, Hongwei Ji, Wanhong Ma, Chuncheng Chen, Jincai Zhao. Opposite photocatalytic oxidation behaviors of BiOCl and TiO2: Direct hole transfer vs. indirect OH oxidation. Applied Catalysis B: Environmental 2019, 241 , 514-520. https://doi.org/10.1016/j.apcatb.2018.09.058
  25. E. Mena, A. Rey, F.J. Beltrán. TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chemical Engineering Journal 2018, 339 , 369-380. https://doi.org/10.1016/j.cej.2018.01.122
  26. G. Camera-Roda, V. Loddo, L. Palmisano, F. Parrino. Guidelines for the assessment of the rate law of slurry photocatalytic reactions. Catalysis Today 2017, 281 , 221-230. https://doi.org/10.1016/j.cattod.2016.06.050
  27. H. Mansour, R. Bargougui, A. Gadri, S. Ammar. Co-precipitation synthesis of V-doped titania: influence of vanadium concentration on the structural and optical properties. Journal of Materials Science: Materials in Electronics 2017, 28 (2) , 1852-1858. https://doi.org/10.1007/s10854-016-5736-2
  28. Baoshun Liu, Jingjing Yang, Xiujian Zhao, Jiaguo Yu. The role of electron interfacial transfer in mesoporous nano-TiO 2 photocatalysis: a combined study of in situ photoconductivity and numerical kinetic simulation. Physical Chemistry Chemical Physics 2017, 19 (13) , 8866-8873. https://doi.org/10.1039/C6CP07328J
  29. Salatiel Wohlmuth da Silva, Cheila Viegas, Jane Zoppas Ferreira, Marco Antônio Siqueira Rodrigues, Andréa Moura Bernardes. The effect of the UV photon flux on the photoelectrocatalytic degradation of endocrine-disrupting alkylphenolic chemicals. Environmental Science and Pollution Research 2016, 23 (19) , 19237-19245. https://doi.org/10.1007/s11356-016-7121-3
  30. Hakima Azaari, Rajae Chahboune, Mohamed El Azzouzi, Mohamed Sarakha. Elucidation of oxidized products of Chloridazon in advanced oxidation processes using a liquid chromatography/negative electrospray ionization tandem mass spectrometric technique. Rapid Communications in Mass Spectrometry 2016, 30 (9) , 1145-1152. https://doi.org/10.1002/rcm.7541
  31. Nese Ertugay, Filiz Nuran Acar. Decolorization of Direct Blue 71 using UV irradiation and ultrasound in the presence of TiO 2 catalyst. Desalination and Water Treatment 2016, 57 (20) , 9318-9324. https://doi.org/10.1080/19443994.2015.1041050
  32. Yongfei Ji, Yi Luo. Structure-dependent photocatalytic decomposition of formic acid on the anatase TiO2(101) surface and strategies to increase its reaction rate. Journal of Power Sources 2016, 306 , 208-212. https://doi.org/10.1016/j.jpowsour.2015.12.002
  33. Baoshun Liu, Xiujian Zhao, Jiaguo Yu, Akira Fujishima, Kazuya Nakata. A stochastic study of electron transfer kinetics in nano-particulate photocatalysis: a comparison of the quasi-equilibrium approximation with a random walking model. Physical Chemistry Chemical Physics 2016, 18 (46) , 31914-31923. https://doi.org/10.1039/C6CP06320A
  34. Andrew Mills, Christopher O’Rourke, Keith Moore. Powder semiconductor photocatalysis in aqueous solution: An overview of kinetics-based reaction mechanisms. Journal of Photochemistry and Photobiology A: Chemistry 2015, 310 , 66-105. https://doi.org/10.1016/j.jphotochem.2015.04.011
  35. Amira Y. Ahmed, Tarek A. Kandiel, Irina Ivanova, Detlef Bahnemann. Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Applied Surface Science 2014, 319 , 44-49. https://doi.org/10.1016/j.apsusc.2014.07.134
  36. Baoshun Liu, Xiujian Zhao. Kinetic study of the heterogeneous photocatalysis of porous nanocrystalline TiO 2 assemblies using a continuous random walk simulation. Phys. Chem. Chem. Phys. 2014, 16 (40) , 22343-22351. https://doi.org/10.1039/C4CP02243B
  37. Baoshun Liu, Xiujian Zhao, Chiaki Terashima, Akira Fujishima, Kazuya Nakata. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Physical Chemistry Chemical Physics 2014, 16 (19) , 8751. https://doi.org/10.1039/c3cp55317e
  38. Baoshun Liu, Xuelei Wang, Liping Wen, Xiujian Zhao. Investigation of Electron Behavior in Nano-TiO 2 Photocatalysis by Using In Situ Open-Circuit Voltage and Photoconductivity Measurements. Chemistry - A European Journal 2013, 19 (32) , 10751-10759. https://doi.org/10.1002/chem.201300243
  39. Claudio Minero, Valter Maurino, Davide Vione. Photocatalytic Mechanisms and Reaction Pathways Drawn from Kinetic and Probe Molecules. 2013,,, 53-72. https://doi.org/10.1002/9783527645404.ch3
  40. Joseph Rabani, Sara Goldstein. Mechanisms of Reactions Induced by Photocatalysis of Titanium Dioxide Nanoparticles. 2013,,, 115-157. https://doi.org/10.1007/698_2013_248
  41. Raquel Portela, María Dolores Hernández-Alonso. Environmental Applications of Photocatalysis. 2013,,, 35-66. https://doi.org/10.1007/978-1-4471-5061-9_3
  42. Miguel Angel Mueses, Fiderman Machuca-Martinez, Gianluca Li Puma. Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors. Chemical Engineering Journal 2013, 215-216 , 937-947. https://doi.org/10.1016/j.cej.2012.11.076
  43. Baoshun Liu. Theoretical Discussion of Electron Interfacial Transfer in Semiconductor Heterogeneous Photocatalysis. Journal of The Electrochemical Society 2013, 160 (9) , H591-H596. https://doi.org/10.1149/2.062309jes
  44. Thomas Berger, Damián Monllor-Satoca, Milena Jankulovska, Teresa Lana-Villarreal, Roberto Gómez. The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem 2012, 13 (12) , 2824-2875. https://doi.org/10.1002/cphc.201200073
  45. Thomas Berger, Juan A. Anta. IR–Spectrophotoelectrochemical Characterization of Mesoporous Semiconductor Films. Analytical Chemistry 2012, 84 (7) , 3053-3057. https://doi.org/10.1021/ac300098u
  46. Shivaji B. Sadale, Kei Noda, Kei Kobayashi, Hirofumi Yamada, Kazumi Matsushige. Real-time investigation on photocatalytic oxidation of gaseous methanol with nanocrystalline WO3–TiO2 composite films. Thin Solid Films 2012, 520 (10) , 3847-3851. https://doi.org/10.1016/j.tsf.2011.10.054
  47. J.F. Montoya, J. Peral, P. Salvador. Commentary on the article: “A new kinetic model for heterogeneous photocatalysis with titanium dioxide: Case of non-specific adsorption considering back reaction, by S. Valencia, F. Cataño, L. Rios, G. Restrepo and J. Marín, published in Applied Catalysis B: Environmental, 104 (2011) 300–304”. Applied Catalysis B: Environmental 2012, 111-112 , 649-650. https://doi.org/10.1016/j.apcatb.2011.10.027
  48. Amira Y. Ahmed, Torsten Oekermann, Patrick Lindner, Detlef Bahnemann. Comparison of the photoelectrochemical oxidation of methanol on rutile TiO2 (001) and (100) single crystal faces studied by intensity modulated photocurrent spectroscopy. Physical Chemistry Chemical Physics 2012, 14 (8) , 2774. https://doi.org/10.1039/c2cp23416e
  49. Liping Wen, Baoshun Liu, Xiujian Zhao, Kazuya Nakata, Taketoshi Murakami, Akira Fujishima. Synthesis, Characterization, and Photocatalysis of Fe-Doped : A Combined Experimental and Theoretical Study. International Journal of Photoenergy 2012, 2012 , 1-10. https://doi.org/10.1155/2012/368750
  50. Yikui Du, Sara Goldstein, Joseph Rabani. The catalytic effects of copper ions on photo-oxidation in TiO2 suspensions: The role of superoxide radicals. Journal of Photochemistry and Photobiology A: Chemistry 2011, 225 (1) , 1-7. https://doi.org/10.1016/j.jphotochem.2011.07.004
  51. Sergio Valencia, Francisco Cataño, Luis Rios, Gloria Restrepo, Juan Marín. A new kinetic model for heterogeneous photocatalysis with titanium dioxide: Case of non-specific adsorption considering back reaction. Applied Catalysis B: Environmental 2011, 104 (3-4) , 300-304. https://doi.org/10.1016/j.apcatb.2011.03.015
  52. Juan Felipe Montoya, José Peral, Pedro Salvador. Surface Chemistry and Interfacial Charge-Transfer Mechanisms in Photoinduced Oxygen Exchange at O2-TiO2 Interfaces. ChemPhysChem 2011, 12 (5) , 901-907. https://doi.org/10.1002/cphc.201000611
  53. Baoshun Liu, Xiujian Zhao. A kinetic model for evaluating the dependence of the quantum yield of nano-TiO2 based photocatalysis on light intensity, grain size, carrier lifetime, and minority carrier diffusion coefficient: Indirect interfacial charge transfer. Electrochimica Acta 2010, 55 (12) , 4062-4070. https://doi.org/10.1016/j.electacta.2010.01.087
  54. Teresa Lana-Villarreal, Yuanbing Mao, Stanislaus S. Wong, Roberto Gómez. Photoelectrochemical behaviour of anatase nanoporous films: effect of the nanoparticle organization. Nanoscale 2010, 2 (9) , 1690. https://doi.org/10.1039/c0nr00140f
  55. Baoshun Liu, Xuelai Wang, Guofa Cai, Liping Wen, Yanbao Song, Xiujian Zhao. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. Journal of Hazardous Materials 2009, 169 (1-3) , 1112-1118. https://doi.org/10.1016/j.jhazmat.2009.04.068
  56. Thomas Berger, Teresa Lana-Villarreal, Damián Monllor-Satoca, Roberto Gómez. Thin Films of Rutile Quantum-size Nanowires as Electrodes: Photoelectrochemical Studies. The Journal of Physical Chemistry C 2008, 112 (40) , 15920-15928. https://doi.org/10.1021/jp8049747
  57. Yong Yao, Yonghai Song, Li Wang. Synthesis of CdS nanoparticles based on DNA network templates. Nanotechnology 2008, 19 (40) , 405601. https://doi.org/10.1088/0957-4484/19/40/405601
  58. Damián Monllor-Satoca, Roberto Gómez, Manuel González-Hidalgo, Pedro Salvador. The “Direct–Indirect” model: An alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catalysis Today 2007, 129 (1-2) , 247-255. https://doi.org/10.1016/j.cattod.2007.08.002
  59. P. Salvador. On the Nature of Photogenerated Radical Species Active in the Oxidative Degradation of Dissolved Pollutants with TiO 2 Aqueous Suspensions:  A Revision in the Light of the Electronic Structure of Adsorbed Water. The Journal of Physical Chemistry C 2007, 111 (45) , 17038-17043. https://doi.org/10.1021/jp074451i
  60. A Zolfagahri, K Nasiri Avanaki, H Z Jooya, H Sayahi. Optimization of the operational controlling parameters in indirect photocatalytic oxidation of water dissolved pollutants on nanostructured TiO 2 thin film electrodes. Semiconductor Science and Technology 2007, 22 (6) , 653-658. https://doi.org/10.1088/0268-1242/22/6/012
  61. Damián Monllor-Satoca, Luis Borja, Antonio Rodes, Roberto Gómez, Pedro Salvador. Photoelectrochemical Behavior of Nanostructured WO3 Thin-Film Electrodes: The Oxidation of Formic Acid. ChemPhysChem 2006, 7 (12) , 2540-2551. https://doi.org/10.1002/cphc.200600379
  62. Takashi Tachikawa, Sachiko Tojo, Mamoru Fujitsuka, Tetsuro Majima. One-Electron Redox Processes during Polyoxometalate-Mediated Photocatalytic Reactions of TiO2 Studied by Two-Color Two-Laser Flash Photolysis. Chemistry - A European Journal 2006, 12 (11) , 3124-3131. https://doi.org/10.1002/chem.200501077