Semiconductor Photooxidation of Pollutants Dissolved in Water:  A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photoelectrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination

View Author Information
Departament de Química Física and Institut Universitari d'Electroquímica, Universitat d'Alacant, Ap. 99, E-03080 Alacant, Spain, Instituto de Catálisis y Petroleoquímica, CSIC, Spain, Laboratoire de Physique de Solides et de Cristallographie, CNRS, France, Laboratoire Electrocatalyse, Universite de Poitiers, France, and Departamento de Matemáticas e Informática, Universidad Islas Baleares, E-07071, Spain
Cite this: J. Phys. Chem. B 2004, 108, 39, 15172–15181
Publication Date (Web):August 31, 2004
https://doi.org/10.1021/jp049447a
Copyright © 2004 American Chemical Society
Article Views
1127
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (185 KB)

Abstract

A kinetic model based on a set of reactions occurring at the illuminated semiconductor/electrolyte junction, under current multiplication (doubling) and external applied bias (absence of recombination), was developed as a tool for assessing mechanistic aspects of photoelectrochemical oxidation of water-dissolved pollutants. The model allows to distinguish whether direct or indirect interfacial hole transfer to the solute predominates. We apply the model to the photooxidation of aqueous solutions of formic acid and methanol on polycrystalline TiO2 (anatase) electrodes. Formic acid is mainly oxidized directly through photogenerated valence band free holes, while methanol oxidation occurs indirectly, via surface-bound hydroxyl radicals. The importance of the specific electronic interaction of pollutant molecules with the semiconductor surface in the photooxidation process is emphasized.

 CSIC.

 Universitat d'Alacant.

§

 CNRS.

 Universite de Poitiers.

*

 Corresponding author. E-mail:  [email protected]

 Universidad de las Islas Baleares.

Cited By


This article is cited by 132 publications.

  1. C. Ros, C. Fàbrega, D. Monllor-Satoca, M. D. Hernández-Alonso, G. Penelas-Pérez, J. R. Morante, and T. Andreu . Hydrogenation and Structuration of TiO2 Nanorod Photoanodes: Doping Level and the Effect of Illumination in Trap-States Filling. The Journal of Physical Chemistry C 2018, 122 (6) , 3295-3304. https://doi.org/10.1021/acs.jpcc.7b12468
  2. Justin B. Sambur and Peng Chen . Distinguishing Direct and Indirect Photoelectrocatalytic Oxidation Mechanisms Using Quantitative Single-Molecule Reaction Imaging and Photocurrent Measurements. The Journal of Physical Chemistry C 2016, 120 (37) , 20668-20676. https://doi.org/10.1021/acs.jpcc.6b01848
  3. Georges Siddiqi, Victor Mougel, and Christophe Copéret . Highly Active Subnanometer Au Particles Supported on TiO2 for Photocatalytic Hydrogen Evolution from a Well-Defined Organogold Precursor, [Au5(mesityl)5]. Inorganic Chemistry 2016, 55 (8) , 4026-4033. https://doi.org/10.1021/acs.inorgchem.6b00341
  4. Burton H. Simpson and Joaquín Rodríguez-López . Electrochemical Imaging and Redox Interrogation of Surface Defects on Operating SrTiO3 Photoelectrodes. Journal of the American Chemical Society 2015, 137 (47) , 14865-14868. https://doi.org/10.1021/jacs.5b10256
  5. Robert Reichert, Zenonas Jusys, and R. Jürgen Behm . Au/TiO2 Photo(electro)catalysis: The Role of the Au Cocatalyst in Photoelectrochemical Water Splitting and Photocatalytic H2 Evolution. The Journal of Physical Chemistry C 2015, 119 (44) , 24750-24759. https://doi.org/10.1021/acs.jpcc.5b08428
  6. Erno Kemppainen, Janne Halme, and Peter Lund . Physical Modeling of Photoelectrochemical Hydrogen Production Devices. The Journal of Physical Chemistry C 2015, 119 (38) , 21747-21766. https://doi.org/10.1021/acs.jpcc.5b04764
  7. Jingjing Yang, Baoshun Liu, Huan Xie, Xiujian Zhao, Chiaki Terashima, Akira Fujishima, and Kazuya Nakata . In Situ Photoconductivity Kinetic Study of Nano-TiO2 during the Photocatalytic Oxidation of Formic Acid: Effects of New Recombination and Current Doubling. The Journal of Physical Chemistry C 2015, 119 (37) , 21711-21722. https://doi.org/10.1021/acs.jpcc.5b06534
  8. Benjamin Klahr, Sixto Gimenez, Omid Zandi, Francisco Fabregat-Santiago, and Thomas Hamann . Competitive Photoelectrochemical Methanol and Water Oxidation with Hematite Electrodes. ACS Applied Materials & Interfaces 2015, 7 (14) , 7653-7660. https://doi.org/10.1021/acsami.5b00440
  9. Jacqueline B. Priebe, Jörg Radnik, Alastair J. J. Lennox, Marga-Martina Pohl, Michael Karnahl, Dirk Hollmann, Kathleen Grabow, Ursula Bentrup, Henrik Junge, Matthias Beller, and Angelika Brückner . Solar Hydrogen Production by Plasmonic Au–TiO2 Catalysts: Impact of Synthesis Protocol and TiO2 Phase on Charge Transfer Efficiency and H2 Evolution Rates. ACS Catalysis 2015, 5 (4) , 2137-2148. https://doi.org/10.1021/cs5018375
  10. Yongfei Ji, Bing Wang, and Yi Luo . A Comparative Theoretical Study of Proton-Coupled Hole Transfer for H2O and Small Organic Molecules (CH3OH, HCOOH, H2CO) on the Anatase TiO2(101) Surface. The Journal of Physical Chemistry C 2014, 118 (37) , 21457-21462. https://doi.org/10.1021/jp505854t
  11. Yongfei Ji and Yi Luo . First-Principles Study on the Mechanism of Photoselective Catalytic Reduction of NO by NH3 on Anatase TiO2(101) Surface. The Journal of Physical Chemistry C 2014, 118 (12) , 6359-6364. https://doi.org/10.1021/jp501427k
  12. Jenny Schneider and Detlef W. Bahnemann . Undesired Role of Sacrificial Reagents in Photocatalysis. The Journal of Physical Chemistry Letters 2013, 4 (20) , 3479-3483. https://doi.org/10.1021/jz4018199
  13. Cristian Fàbrega, Damián Monllor-Satoca, Santiago Ampudia, Andrés Parra, Teresa Andreu, and Joan Ramón Morante . Tuning the Fermi Level and the Kinetics of Surface States of TiO2 Nanorods by Means of Ammonia Treatments. The Journal of Physical Chemistry C 2013, 117 (40) , 20517-20524. https://doi.org/10.1021/jp407167z
  14. Xiang Li and Wenhua Leng . Regenerated Dye-Sensitized Photocatalytic Oxidation of Arsenite over Nanostructured TiO2 Films under Visible Light in Normal Aqueous Solutions: An Insight into the Mechanism by Simultaneous (Photo)electrochemical Measurements. The Journal of Physical Chemistry C 2013, 117 (2) , 750-762. https://doi.org/10.1021/jp308920u
  15. J. P. Gonzalez-Vazquez, Gerko Oskam, and Juan A. Anta . Origin of Nonlinear Recombination in Dye-Sensitized Solar Cells: Interplay between Charge Transport and Charge Transfer. The Journal of Physical Chemistry C 2012, 116 (43) , 22687-22697. https://doi.org/10.1021/jp306517g
  16. David C. Grinter, Marco Nicotra, and Geoff Thornton . Acetic Acid Adsorption on Anatase TiO2(101). The Journal of Physical Chemistry C 2012, 116 (21) , 11643-11651. https://doi.org/10.1021/jp303514g
  17. Baoshun Liu, Kazuya Nakata, Shanhu Liu, Munetoshi Sakai, Tsuyoshi Ochiai, Taketoshi Murakami, Katsuhiko Takagi, and Akira Fujishima . Theoretical Kinetic Analysis of Heterogeneous Photocatalysis by TiO2 Nanotube Arrays: the Effects of Nanotube Geometry on Photocatalytic Activity. The Journal of Physical Chemistry C 2012, 116 (13) , 7471-7479. https://doi.org/10.1021/jp300481a
  18. Baoshun Liu, Kazuya Nakata, Xiujian Zhao, Tsuyoshi Ochiai, Taketoshi Murakami, and Akira Fujishima . Theoretical Kinetic Analysis of Heterogeneous Photocatalysis: The Effects of Surface Trapping and Bulk Recombination through Defects. The Journal of Physical Chemistry C 2011, 115 (32) , 16037-16042. https://doi.org/10.1021/jp203744v
  19. Hui Fei, Wenhua Leng, Xiang Li, Xiaofang Cheng, Yiming Xu, Jianqing Zhang, and Chunan Cao . Photocatalytic Oxidation of Arsenite over TiO2: Is Superoxide the Main Oxidant in Normal Air-Saturated Aqueous Solutions?. Environmental Science & Technology 2011, 45 (10) , 4532-4539. https://doi.org/10.1021/es200574h
  20. Hrvoje Petek and Jin Zhao . Ultrafast Interfacial Proton-Coupled Electron Transfer. Chemical Reviews 2010, 110 (12) , 7082-7099. https://doi.org/10.1021/cr1001595
  21. Shi-Jie Yuan, Guo-Ping Sheng, Wen-Wei Li, Zhi-Qi Lin, Raymond J. Zeng, Zhong-Hua Tong and Han-Qing Yu. Degradation of Organic Pollutants in a Photoelectrocatalytic System Enhanced by a Microbial Fuel Cell. Environmental Science & Technology 2010, 44 (14) , 5575-5580. https://doi.org/10.1021/es101317z
  22. L. H. Zhu. Comment on “Rapid Photoelectrochemical Method for in Situ Determination of Effective Diffusion Coefficient of Organic Compounds”. The Journal of Physical Chemistry C 2009, 113 (24) , 10829-10829. https://doi.org/10.1021/jp811466n
  23. William Wen, Huijun Zhao and Shanqing Zhang. Reply to “Comment on Rapid Photoelectrochemical Method for in Situ Determination of Effective Diffusion Coefficient of Organic Compounds”. The Journal of Physical Chemistry C 2009, 113 (24) , 10830-10832. https://doi.org/10.1021/jp900773t
  24. Hongtao Yu, Xie Quan, Yaobin Zhang, Ning Ma, Shuo Chen and Huimin Zhao. Electrochemically Assisted Photocatalytic Inactivation of Escherichia coli under Visible Light Using a ZnIn2S4 Film Electrode. Langmuir 2008, 24 (14) , 7599-7604. https://doi.org/10.1021/la800835k
  25. L. H. Zhu. Comment on “Mechanisms for Photooxidation Reactions of Water and Organic Compounds on Carbon-Doped Titanium Dioxide, as Studied by Photocurrent Measurements”. The Journal of Physical Chemistry C 2008, 112 (15) , 6209-6210. https://doi.org/10.1021/jp7116104
  26. Haimei Liu,, Akihito Imanishi, and, Yoshihiro Nakato. Mechanisms for Photooxidation Reactions of Water and Organic Compounds on Carbon-Doped Titanium Dioxide, as Studied by Photocurrent Measurements. The Journal of Physical Chemistry C 2007, 111 (24) , 8603-8610. https://doi.org/10.1021/jp070771q
  27. Iván Mora-Seró,, Teresa Lana Villarreal,, Juan Bisquert,, Ángeles Pitarch,, Roberto Gómez, and, Pedro Salvador. Photoelectrochemical Behavior of Nanostructured TiO2 Thin-Film Electrodes in Contact with Aqueous Electrolytes Containing Dissolved Pollutants:  A Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer from Photocurrent Measurements. The Journal of Physical Chemistry B 2005, 109 (8) , 3371-3380. https://doi.org/10.1021/jp045585o
  28. Ailin Yousefi, Alireza Nezamzadeh-Ejhieh. Photodegradation pathways of phenazopyridine by the CdS-WO3 hybrid system and its capability for the hydrogen generation. Materials Research Bulletin 2022, 148 , 111669. https://doi.org/10.1016/j.materresbull.2021.111669
  29. Xincong Lv, Frank Leung-Yuk Lam, Xijun Hu. Developing SrTiO3/TiO2 heterostructure nanotube array for photocatalytic fuel cells with improved efficiency and elucidating the effects of organic substrates. Chemical Engineering Journal 2022, 427 , 131602. https://doi.org/10.1016/j.cej.2021.131602
  30. Ramunas Levinas, Natalia Tsyntsaru, Tomas Murauskas, Henrikas Cesiulis. Improved Photocatalytic Water Splitting Activity of Highly Porous WO3 Photoanodes by Electrochemical H+ Intercalation. Frontiers in Chemical Engineering 2021, 3 https://doi.org/10.3389/fceng.2021.760700
  31. Damián Monllor-Satoca, María Isabel Díez-García, Teresa Lana-Villarreal, Roberto Gómez. Photoelectrocatalytic production of solar fuels with semiconductor oxides: materials, activity and modeling. Chemical Communications 2020, 56 (82) , 12272-12289. https://doi.org/10.1039/D0CC04387G
  32. Hikaru Masegi, Hayato Goto, Shivaji B. Sadale, Kei Noda. Real-time monitoring of photocatalytic methanol decomposition over Cu 2 O-loaded TiO 2 nanotube arrays in high vacuum. Journal of Vacuum Science & Technology B 2020, 38 (5) , 052401. https://doi.org/10.1116/6.0000194
  33. Jiaqi Zhao, Run Shi, Zhenhua Li, Chao Zhou, Tierui Zhang. How to make use of methanol in green catalytic hydrogen production?. Nano Select 2020, 1 (1) , 12-29. https://doi.org/10.1002/nano.202000010
  34. Rudo K. Sithole, Lerato F.E. Machogo, Makwena J. Moloto, Siziwe S. Gqoba, Kalenga P. Mubiayi, Juanita Van Wyk, Nosipho Moloto. One-step synthesis of Cu3N, Cu2S and Cu9S5 and photocatalytic degradation of methyl orange and methylene blue. Journal of Photochemistry and Photobiology A: Chemistry 2020, 397 , 112577. https://doi.org/10.1016/j.jphotochem.2020.112577
  35. Pengtao Sheng, Lu Yao, Peng Yang, Dengfeng Yang, Changke Lu, Kesheng Cao, Weili Li. The origin of enhanced photoelectrochemical activity in metal-ion-doped ZnO/CdS quantum dots. Journal of Alloys and Compounds 2020, 822 , 153700. https://doi.org/10.1016/j.jallcom.2020.153700
  36. Vytautas Kavaliunas, Edvinas Krugly, Mantas Sriubas, Hidenori Mimura, Giedrius Laukaitis, Yoshinori Hatanaka. Influence of Mg, Cu, and Ni Dopants on Amorphous TiO2 Thin Films Photocatalytic Activity. Materials 2020, 13 (4) , 886. https://doi.org/10.3390/ma13040886
  37. Baoshun Liu, Xiujian Zhao, Ivan P. Parkin, Kazuya Nakata. Charge carrier transfer in photocatalysis. 2020,,, 103-159. https://doi.org/10.1016/B978-0-08-102890-2.00004-X
  38. J. Krýsa, M. Baudys, X. Vislocka, M. Neumann-Spallart. Composite photocatalysts based on TiO2 – carbon for air pollutant removal: Aspects of adsorption. Catalysis Today 2020, 340 , 34-39. https://doi.org/10.1016/j.cattod.2018.09.027
  39. Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting. Frontiers of Physics 2019, 14 (5) https://doi.org/10.1007/s11467-019-0905-4
  40. Hana Krysova, Magda Zlamalova, Hana Tarabkova, Jaromir Jirkovsky, Otakar Frank, Michal Kohout, Ladislav Kavan. Rutile TiO2 thin film electrodes with excellent blocking function and optical transparency. Electrochimica Acta 2019, 321 , 134685. https://doi.org/10.1016/j.electacta.2019.134685
  41. Peng‐Yi Tang, Li‐Juan Han, Franziska Simone Hegner, Paul Paciok, Martí Biset‐Peiró, Hong‐Chu Du, Xian‐Kui Wei, Lei Jin, Hai‐Bing Xie, Qin Shi, Teresa Andreu, Mónica Lira‐Cantú, Marc Heggen, Rafal E. Dunin‐Borkowski, Núria López, José Ramón Galán‐Mascarós, Joan Ramon Morante, Jordi Arbiol. Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification. Advanced Energy Materials 2019, 9 (34) , 1901836. https://doi.org/10.1002/aenm.201901836
  42. V. A. Grinberg, V. V. Emets, N. A. Mayorova, D. A. Maslov, A. A. Averin, S. N. Polyakov, I. S. Levin, M. V. Tsodikov. Photoelectrocatalytic Oxidation of Formic Acid in the Visible Spectral Region on Films of Nanocrystalline Titanium Oxide Doped by Bismuth. Protection of Metals and Physical Chemistry of Surfaces 2019, 55 (4) , 637-645. https://doi.org/10.1134/S2070205119040051
  43. Ahmad Nazeer Che Mat, Nor Asrina Sairi, Wan Jefrey Basirun, Majid Rezayi, Mohammad Asri Mat Teridi, Muhammad Mazhar. Photoelectrocatalytic oxidation of methanol over RuO2MnO2Co3O4 supported porous anatase under visible light irradiation. Materials Chemistry and Physics 2019, 224 , 196-205. https://doi.org/10.1016/j.matchemphys.2018.12.018
  44. Mahmoud Ahmed, Ibrahim Dincer. A review on photoelectrochemical hydrogen production systems: Challenges and future directions. International Journal of Hydrogen Energy 2019, 44 (5) , 2474-2507. https://doi.org/10.1016/j.ijhydene.2018.12.037
  45. Ana Rita Ferreira Alves Teixeira, Alex de Meireles Neris, Elson Longo, José Rodrigues de Carvalho Filho, Amer Hakki, Donald Macphee, Ieda Maria Garcia dos Santos. SrSnO3 perovskite obtained by the modified Pechini method—Insights about its photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry 2019, 369 , 181-188. https://doi.org/10.1016/j.jphotochem.2018.10.028
  46. Justin B. Sambur, Douglas P. Shepherd, Mahdi Hesari, Michael Van Erdewyk, Eric Choudhary, Peng Chen. Correlated Single-Molecule Reaction Imaging and Photocurrent Measurements Reveal Underlying Rate Processes in Photoelectrochemical Water Splitting. Journal of The Electrochemical Society 2019, 166 (5) , H3286-H3293. https://doi.org/10.1149/2.040195jes
  47. Peng-Yi Tang, Li-Juan Han, Franziska Simone Hegner, Paul Paciok, Martí Biset-Peiró, Hong-Chu Du, Xian-Kui Wei, Lei Jin, Hai-Bing Xie, Qin Shi, Teresa Andreu, Mónica Lira-Cantú, Marc Heggen, Rafal E. Dunin-Borkowski, Núria López, José Ramón Galán-Mascarós, Joan Ramon Morante, Jordi Arbiol. Boosting Photoelectrochemical Water Oxidation of Hematite by Surface States Modification. SSRN Electronic Journal 2019, https://doi.org/10.2139/ssrn.3327226
  48. Ermete Antolini. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Applied Catalysis B: Environmental 2018, 237 , 491-503. https://doi.org/10.1016/j.apcatb.2018.06.029
  49. Andreia Romeiro, M. Emília Azenha, Moisés Canle, Victor H. N. Rodrigues, José P. Da Silva, Hugh D. Burrows. Titanium Dioxide Nanoparticle Photocatalysed Degradation of Ibuprofen and Naproxen in Water: Competing Hydroxyl Radical Attack and Oxidative Decarboxylation by Semiconductor Holes. ChemistrySelect 2018, 3 (39) , 10915-10924. https://doi.org/10.1002/slct.201801953
  50. Ai-Lin Liu, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia. Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device. Talanta 2018, 182 , 544-548. https://doi.org/10.1016/j.talanta.2018.02.028
  51. Takahiro Ohta, Hikaru Masegi, Kei Noda. Photocatalytic decomposition of gaseous methanol over anodized iron oxide nanotube arrays in high vacuum. Materials Research Bulletin 2018, 99 , 367-376. https://doi.org/10.1016/j.materresbull.2017.11.027
  52. Jingran Xiao, Huali Huang, Qiuyang Huang, Xiang Li, Xuelan Hou, Le Zhao, Rui Ma, Hong Chen, Yongdan Li. Remarkable improvement of the turn–on characteristics of a Fe 2 O 3 photoanode for photoelectrochemical water splitting with coating a FeCoW oxy–hydroxide gel. Applied Catalysis B: Environmental 2017, 212 , 89-96. https://doi.org/10.1016/j.apcatb.2017.04.075
  53. Zhibin Wang, Yingying Lin, Rong Chen, Qiang Liao, Xun Zhu, Liang An, Xuefeng He, Wei Zhang. A micro membrane-less photoelectrochemical cell for hydrogen and electricity generation in the presence of methanol. Electrochimica Acta 2017, 245 , 549-560. https://doi.org/10.1016/j.electacta.2017.05.182
  54. PengYi Tang, HaiBing Xie, Carles Ros, LiJuan Han, Martí Biset-Peiró, YongMin He, Wesley Kramer, Alejandro Pérez Rodríguez, Edgardo Saucedo, José Ramón Galán-Mascarós, Teresa Andreu, Joan Ramon Morante, Jordi Arbiol. Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering. Energy & Environmental Science 2017, 10 (10) , 2124-2136. https://doi.org/10.1039/C7EE01475A
  55. Alexandre L.B. Baccaro, Ivano G.R. Gutz. Quick cold preparation of TiO2 nanolayers on gold from P25 suspensions – film structure, voltammetric behavior and photocatalytic performance for the oxidation of EDTA under UVA-LED irradiation. Electrochimica Acta 2016, 214 , 295-306. https://doi.org/10.1016/j.electacta.2016.08.048
  56. D. Martel, A. Guerra, P. Turek, J. Weiss, B. Vileno. Pertinent parameters in photo-generation of electrons: Comparative study of anatase-based nano-TiO2 suspensions. Journal of Colloid and Interface Science 2016, 467 , 300-306. https://doi.org/10.1016/j.jcis.2016.01.018
  57. Justin B. Sambur, Tai-Yen Chen, Eric Choudhary, Guanqun Chen, Erin J. Nissen, Elayne M. Thomas, Ningmu Zou, Peng Chen. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 2016, 530 (7588) , 77-80. https://doi.org/10.1038/nature16534
  58. Yongfei Ji, Yi Luo. Structure-dependent photocatalytic decomposition of formic acid on the anatase TiO2(101) surface and strategies to increase its reaction rate. Journal of Power Sources 2016, 306 , 208-212. https://doi.org/10.1016/j.jpowsour.2015.12.002
  59. Baoshun Liu. Monte-Carlo modelling of nano-material photocatalysis: bridging photocatalytic activity and microscopic charge kinetics. Physical Chemistry Chemical Physics 2016, 18 (16) , 11520-11527. https://doi.org/10.1039/C6CP01065B
  60. Kalyan C. Chitrada, Ruchi Gakhar, Dev Chidambaram, Eric Aston, Krishnan S. Raja. Enhanced Performance of β-Bi 2 O 3 by In-Situ Photo-Conversion to Bi 2 O 3 -BiO 2-x Composite Photoanode for Solar Water Splitting. Journal of The Electrochemical Society 2016, 163 (7) , H546-H558. https://doi.org/10.1149/2.0721607jes
  61. Chenyan Hu, Denis Kelm, Manuel Schreiner, Tobias Wollborn, Lutz Mädler, Wey Yang Teoh. Designing Photoelectrodes for Photocatalytic Fuel Cells and Elucidating the Effects of Organic Substrates. ChemSusChem 2015, 8 (23) , 4005-4015. https://doi.org/10.1002/cssc.201500793
  62. Masashi Hattori, Kei Noda. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production. Applied Surface Science 2015, 357 , 214-220. https://doi.org/10.1016/j.apsusc.2015.08.236
  63. Robert Reichert, Christian Zambrzycki, Zenonas Jusys, R. Jürgen Behm. Photo-electrochemical Oxidation of Organic C1 Molecules over WO 3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation. ChemSusChem 2015, 8 (21) , 3677-3687. https://doi.org/10.1002/cssc.201500800
  64. Burton H. Simpson, Joaquín Rodríguez-López. Redox Titrations via Surface Interrogation Scanning Electrochemical Microscopy at an Extended Semiconducting Surface for the Quantification of Photogenerated Adsorbed Intermediates. Electrochimica Acta 2015, 179 , 74-83. https://doi.org/10.1016/j.electacta.2015.04.128
  65. Yanhe Han, Qi Cheng, Jiaqing Chen, Cuihong Zhou, Haimin Zhang, Shanqing Zhang, Huijun Zhao. Extending the photoelectrocatalytic detection range of KHP by eliminating self-inhibition at TiO2 nanoparticle electrodes. Journal of Electroanalytical Chemistry 2015, 738 , 209-216. https://doi.org/10.1016/j.jelechem.2014.12.004
  66. B. H. Simpson, J. Rodríguez-López. Emerging techniques for the in situ analysis of reaction intermediates on photo-electrochemical interfaces. Analytical Methods 2015, 7 (17) , 7029-7041. https://doi.org/10.1039/C5AY00503E
  67. Damián Monllor-Satoca, Mario Bärtsch, Cristian Fàbrega, Aziz Genç, Sandra Reinhard, Teresa Andreu, Jordi Arbiol, Markus Niederberger, Joan Ramon Morante. What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes. Energy & Environmental Science 2015, 8 (11) , 3242-3254. https://doi.org/10.1039/C5EE01679G
  68. Amira Y. Ahmed, Tarek A. Kandiel, Irina Ivanova, Detlef Bahnemann. Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Applied Surface Science 2014, 319 , 44-49. https://doi.org/10.1016/j.apsusc.2014.07.134
  69. Cristina Pablos, Javier Marugán, Rafael van Grieken, Cristina Adán, Ainhoa Riquelme, Jesús Palma. Correlation between photoelectrochemical behaviour and photoelectrocatalytic activity and scaling-up of P25-TiO2 electrodes. Electrochimica Acta 2014, 130 , 261-270. https://doi.org/10.1016/j.electacta.2014.03.038
  70. Marta Manzanares, Cristian Fàbrega, J. Oriol Ossó, Lourdes F. Vega, Teresa Andreu, Joan Ramón Morante. Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction. Applied Catalysis B: Environmental 2014, 150-151 , 57-62. https://doi.org/10.1016/j.apcatb.2013.11.036
  71. Oliver Merka, Detlef W. Bahnemann, Michael Wark. Photocatalytic hydrogen production with non-stoichiometric pyrochlore bismuth titanate. Catalysis Today 2014, 225 , 102-110. https://doi.org/10.1016/j.cattod.2013.09.009
  72. Jiwei Ma, Edgar Valenzuela, Aldo S. Gago, Julie Rousseau, Aurélien Habrioux, Nicolas Alonso-Vante. Photohole Trapping Induced Platinum Cluster Nucleation on the Surface of TiO 2 Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (2) , 1111-1117. https://doi.org/10.1021/jp410846k
  73. Jenny Schneider, Tarek A. Kandiel, Detlef W. Bahnemann. Solar Photocatalytic Hydrogen Production: Current Status and Future Challenges. 2014,,, 41-74. https://doi.org/10.1007/978-1-4939-1628-3_3
  74. Robert Reichert, Zenonas Jusys, R. Jürgen Behm. A novel photoelectrochemical flow cell with online mass spectrometric detection: oxidation of formic acid on a nanocrystalline TiO 2 electrode. Phys. Chem. Chem. Phys. 2014, 16 (45) , 25076-25080. https://doi.org/10.1039/C4CP03320E
  75. Baoshun Liu, Xiujian Zhao, Chiaki Terashima, Akira Fujishima, Kazuya Nakata. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Physical Chemistry Chemical Physics 2014, 16 (19) , 8751. https://doi.org/10.1039/c3cp55317e
  76. De-Sheng Kong, Yu-Jie Wei, Xin-Xing Li, Yan Zhang, Yuan-Yuan Feng, Wen-Juan Li. pH Dependent Behavior and Effects of Photoinduced Surface States during Water Photooxidation at TiO 2 /Solution Interface: Studied by Capacitance Measurements. Journal of The Electrochemical Society 2014, 161 (3) , H144-H153. https://doi.org/10.1149/2.083403jes
  77. Baoshun Liu, Xuelei Wang, Liping Wen, Xiujian Zhao. Investigation of Electron Behavior in Nano-TiO 2 Photocatalysis by Using In Situ Open-Circuit Voltage and Photoconductivity Measurements. Chemistry - A European Journal 2013, 19 (32) , 10751-10759. https://doi.org/10.1002/chem.201300243
  78. Rossano Amadelli, Luca Samiolo. Photoelectrocatalysis for Water Purification. 2013,,, 241-270. https://doi.org/10.1002/9783527645404.ch9
  79. Andreas K. Seferlis, Stylianos G. Neophytides. On the kinetics of photoelectrocatalytic water splitting on nanocrystalline TiO2 films. Applied Catalysis B: Environmental 2013, 132-133 , 543-552. https://doi.org/10.1016/j.apcatb.2012.12.016
  80. Oliver Merka, Olga Raisch, Frank Steinbach, Detlef W. Bahnemann, Michael Wark, . Effects of Nonstoichiometry and Cocatalyst Loading on the Photocatalytic Hydrogen Production with (Y 1.5 Bi 0.5 ) 1− x Ti 2 O 7−3 x and (YBi) 1− x Ti 2 O 7−3 x Pyrochlores. Journal of the American Ceramic Society 2013, 96 (2) , 634-642. https://doi.org/10.1111/jace.12013
  81. N. Ghows, M.H. Entezari. Kinetic investigation on sono-degradation of Reactive Black 5 with core–shell nanocrystal. Ultrasonics Sonochemistry 2013, 20 (1) , 386-394. https://doi.org/10.1016/j.ultsonch.2012.06.013
  82. Baoshun Liu. Theoretical Discussion of Electron Interfacial Transfer in Semiconductor Heterogeneous Photocatalysis. Journal of The Electrochemical Society 2013, 160 (9) , H591-H596. https://doi.org/10.1149/2.062309jes
  83. Oliver Merka, Detlef W. Bahnemann, Michael Wark. Improved Photocatalytic Hydrogen Production by Structure Optimized Nonstoichiometric Y 2 Ti 2 O 7. ChemCatChem 2012, 4 (11) , 1819-1827. https://doi.org/10.1002/cctc.201200148
  84. Indhumati Paramasivam, Himendra Jha, Ning Liu, Patrik Schmuki. A Review of Photocatalysis using Self-organized TiO 2 Nanotubes and Other Ordered Oxide Nanostructures. Small 2012, 8 (20) , 3073-3103. https://doi.org/10.1002/smll.201200564
  85. Ewa Adamek, Wojciech Baran, Justyna Ziemiańska, Andrzej Sobczak. Effect of FeCl3 on sulfonamide removal and reduction of antimicrobial activity of wastewater in a photocatalytic process with TiO2. Applied Catalysis B: Environmental 2012, 126 , 29-38. https://doi.org/10.1016/j.apcatb.2012.06.027
  86. Thomas Berger, Damián Monllor-Satoca, Milena Jankulovska, Teresa Lana-Villarreal, Roberto Gómez. The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem 2012, 13 (12) , 2824-2875. https://doi.org/10.1002/cphc.201200073
  87. Shivaji B. Sadale, Kei Noda, Kei Kobayashi, Hirofumi Yamada, Kazumi Matsushige. Real-time investigation on photocatalytic oxidation of gaseous methanol with nanocrystalline WO3–TiO2 composite films. Thin Solid Films 2012, 520 (10) , 3847-3851. https://doi.org/10.1016/j.tsf.2011.10.054
  88. Maria Ilieva, Aneliya Nakova, Vessela Tsakova. TiO2/WO3 hybrid structures produced through a sacrificial polymer layer technique for pollutant photo- and photoelectrooxidation under ultraviolet and visible light illumination. Journal of Applied Electrochemistry 2012, 42 (2) , 121-129. https://doi.org/10.1007/s10800-011-0378-9
  89. J.F. Montoya, J. Peral, P. Salvador. Commentary on the article: “A new kinetic model for heterogeneous photocatalysis with titanium dioxide: Case of non-specific adsorption considering back reaction, by S. Valencia, F. Cataño, L. Rios, G. Restrepo and J. Marín, published in Applied Catalysis B: Environmental, 104 (2011) 300–304”. Applied Catalysis B: Environmental 2012, 111-112 , 649-650. https://doi.org/10.1016/j.apcatb.2011.10.027
  90. Yu-Kuei Hsu, Ying-Chu Chen, Yan-Gu Lin, Li-Chyong Chen, Kuei-Hsien Chen. Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. J. Mater. Chem. 2012, 22 (6) , 2733-2739. https://doi.org/10.1039/C1JM14355G
  91. Brian Seger, Gao Qing (Max) Lu, Lianzhou Wang. Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics. Journal of Materials Chemistry 2012, 22 (21) , 10709. https://doi.org/10.1039/c2jm16635f
  92. Kasem K. Kasem, Nida Zia. Photoelectrochemical Studies at CdS/PTTh Nanoparticles Interfaces. Materials Sciences and Applications 2012, 03 (10) , 719-727. https://doi.org/10.4236/msa.2012.310105
  93. Damián Monllor-Satoca, Teresa Lana-Villarreal, Roberto Gómez. Effect of Surface Fluorination on the Electrochemical and Photoelectrocatalytic Properties of Nanoporous Titanium Dioxide Electrodes. Langmuir 2011, 27 (24) , 15312-15321. https://doi.org/10.1021/la203319b
  94. C. Das, I. Paramasivam, N. Liu, P. Schmuki. Photoelectrochemical and photocatalytic activity of tungsten doped TiO2 nanotube layers in the near visible region. Electrochimica Acta 2011, 56 (28) , 10557-10561. https://doi.org/10.1016/j.electacta.2011.05.061
  95. Masashi Hattori, Kei Noda, Kazumi Matsushige. High-purity hydrogen generation by ultraviolet illumination with the membrane composed of titanium dioxide nanotube array and Pd layer. Applied Physics Letters 2011, 99 (12) , 123107. https://doi.org/10.1063/1.3643052
  96. Gian Luca Chiarello, Davide Ferri, Elena Selli. Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. Journal of Catalysis 2011, 280 (2) , 168-177. https://doi.org/10.1016/j.jcat.2011.03.013
  97. S.S. Shinde, C.H. Bhosale, K.Y. Rajpure. Photocatalytic activity of sea water using TiO2 catalyst under solar light. Journal of Photochemistry and Photobiology B: Biology 2011, 103 (2) , 111-117. https://doi.org/10.1016/j.jphotobiol.2011.02.002
  98. Juan Felipe Montoya, José Peral, Pedro Salvador. Surface Chemistry and Interfacial Charge-Transfer Mechanisms in Photoinduced Oxygen Exchange at O2-TiO2 Interfaces. ChemPhysChem 2011, 12 (5) , 901-907. https://doi.org/10.1002/cphc.201000611
  99. Nándor Balázs, Attila Gácsi, Attila Pallagi, Károly Mogyorósi, Tünde Alapi, Pál Sipos, András Dombi. Comparison of the liquid and gas phase photocatalytic activity of flame-synthesized TiO2 catalysts: the role of surface quality. Reaction Kinetics, Mechanisms and Catalysis 2011, 102 (2) , 283-294. https://doi.org/10.1007/s11144-010-0271-2
  100. Tarek A. Kandiel, Ralf Dillert, Lars Robben, Detlef W. Bahnemann. Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catalysis Today 2011, 161 (1) , 196-201. https://doi.org/10.1016/j.cattod.2010.08.012
Load all citations