Photoassisted Decomposition of Malonic Acid on TiO2 Studied by in Situ Attenuated Total Reflection Infrared Spectroscopy

View Author Information
Université de Neuchâtel, Institut de Microtechnique, Rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
Cite this: J. Phys. Chem. B 2006, 110, 30, 14898–14904
Publication Date (Web):July 7, 2006
https://doi.org/10.1021/jp0616967
Copyright © 2006 American Chemical Society
Article Views
606
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (147 KB)

Abstract

The photoassisted mineralization, i.e., conversion to CO2 and water, of malonic acid over P25 TiO2 was investigated by in situ attenuated total reflection infrared (ATR-IR) spectroscopy in a small volume flow-through cell. Reassignment of the vibrational bands of adsorbed malonic acid, assisted by deuterium labeling, reveals two dissimilar carboxylate groups within the molecule. This indicates adsorption via both carboxylate groups, one in a bridging or bidentate and the other in monodentate coordination. During irradiation the coverage of malonic acid strongly decreases, and oxalate is observed on the surface in at least two different adsorption modes. The major oxalate species observed during irradiation is characterized by monodentate coordination of both carboxylate groups. In the dark, however, part of these species adopts another adsorption mode, possibly interacting only with one carboxylate group. During band gap illumination a large fraction of the surface is not covered by acid. Oxalate is a major intermediate in the mineralization of malonic acid. However, the observed transient kinetics of adsorbed malonic and oxalic acid indicates additional pathways not involving oxalate. The rate constant for oxalate decomposition is slightly larger than the one for oxalate formation from malonic acid. As the oxalate is desorbing slowly from the surface its concentration in the liquid phase is small, despite the fact that it is a major intermediate in the mineralization of malonic acid.

*

 Corresponding author. Phone:  ++41 32 718 24 12. Fax:  ++41 32 718 25 11. E-mail:  [email protected]

Cited By


This article is cited by 39 publications.

  1. Michael R. Alves, Yuan Fang, Kristin J. Wall, Veronica Vaida, Vicki H. Grassian. Chemistry and Photochemistry of Pyruvic Acid Adsorbed on Oxide Surfaces. The Journal of Physical Chemistry A 2019, 123 (35) , 7661-7671. https://doi.org/10.1021/acs.jpca.9b06563
  2. Jan Philip Kraack and Peter Hamm . Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chemical Reviews 2017, 117 (16) , 10623-10664. https://doi.org/10.1021/acs.chemrev.6b00437
  3. Abderrahman Atifi, Kazimierz Czarnecki, Hafida Mountacer, and Michael D. Ryan . In Situ Study of the Photodegradation of Carbofuran Deposited on TiO2 Film under UV Light, Using ATR-FTIR Coupled to HS-MCR-ALS. Environmental Science & Technology 2013, 47 (15) , 8650-8657. https://doi.org/10.1021/es400800v
  4. William B. Heuer, Hai-Long Xia, William Ward, Zhen Zhou, Wayne H. Pearson, Maxime A. Siegler, Amy A. Narducci Sarjeant, Maria Abrahamsson, and Gerald J. Meyer . New Dicarboxylic Acid Bipyridine Ligand for Ruthenium Polypyridyl Sensitization of TiO2. Inorganic Chemistry 2012, 51 (7) , 3981-3988. https://doi.org/10.1021/ic201395q
  5. Dangguo Gong, Vishnu Priya Subramaniam, James G. Highfield, Yuxin Tang, Yuekun Lai, and Zhong Chen . In Situ Mechanistic Investigation at the Liquid/Solid Interface by Attenuated Total Reflectance FTIR: Ethanol Photo-Oxidation over Pristine and Platinized TiO2 (P25). ACS Catalysis 2011, 1 (8) , 864-871. https://doi.org/10.1021/cs200063q
  6. Igor Dolamic and Thomas Bürgi . In Situ ATR-IR Study on the Photocatalytic Decomposition of Amino Acids over Au/TiO2 and TiO2. The Journal of Physical Chemistry C 2011, 115 (5) , 2228-2234. https://doi.org/10.1021/jp1102753
  7. Thomas Berger, José M. Delgado, Teresa Lana-Villarreal, Antonio Rodes and Roberto Gómez. Formate Adsorption onto Thin Films of Rutile TiO2 Nanorods and Nanowires. Langmuir 2008, 24 (24) , 14035-14041. https://doi.org/10.1021/la8021326
  8. Igor Dolamic,, Cyrille Gautier,, Julien Boudon,, Natallia Shalkevich, and, Thomas Bürgi. Adsorption of Thiol-Protected Gold Nanoparticles on TiO2 and Their Behavior under UV Light Irradiation. The Journal of Physical Chemistry C 2008, 112 (15) , 5816-5824. https://doi.org/10.1021/jp711442m
  9. Seunghun Eu,, Shinya Hayashi,, Tomokazu Umeyama,, Yoshihiro Matano,, Yasuyuki Araki, and, Hiroshi Imahori. Quinoxaline-Fused Porphyrins for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2008, 112 (11) , 4396-4405. https://doi.org/10.1021/jp710400p
  10. Paul Borer,, Stephan J. Hug,, Barbara Sulzberger,, Stephan M. Kraemer, and, Ruben Kretzschmar. Photolysis of Citrate on the Surface of Lepidocrocite:  An in situ Attenuated Total Reflection Infrared Spectroscopy Study. The Journal of Physical Chemistry C 2007, 111 (28) , 10560-10569. https://doi.org/10.1021/jp0685941
  11. Haibin Wu, Liubin Huang, Amber Rose, Vicki H. Grassian. Impact of surface adsorbed biologically and environmentally relevant coatings on TiO 2 nanoparticle reactivity. Environmental Science: Nano 2020, 7 (12) , 3783-3793. https://doi.org/10.1039/D0EN00706D
  12. Yidan Luo, Xiaoqian Wei, Bin Gao, Weixin Zou, Yulin Zheng, Yicheng Yang, Yue Zhang, Qing Tong, Lin Dong. Synergistic adsorption-photocatalysis processes of graphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics, models, and mechanisms. Chemical Engineering Journal 2019, 375 , 122019. https://doi.org/10.1016/j.cej.2019.122019
  13. Milena Ponczek, Nathalie Hayeck, Corinne Emmelin, Christian George. Heterogeneous photochemistry of dicarboxylic acids on mineral dust. Atmospheric Environment 2019, 212 , 262-271. https://doi.org/10.1016/j.atmosenv.2019.05.032
  14. Mario J. Muñoz-Batista, María M. Ballari, Anna Kubacka, Orlando M. Alfano, Marcos Fernández-García. Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach. Chemical Society Reviews 2019, 48 (2) , 637-682. https://doi.org/10.1039/C8CS00108A
  15. Wanfeng Liao, Xiuyuan Ni. Photocatalytic decarboxylation of diacids for the initiation of free radical polymerization. Photochemical & Photobiological Sciences 2017, 16 (8) , 1211-1219. https://doi.org/10.1039/C7PP00013H
  16. S. Kment, H. Kmentova, Z. Hubicka, J. Olejnicek, M. Cada, J. Krysa. Enhanced photocatalytic activity of silver-doped nanoparticulate TiO2 thin films with respect to the method of doping. Research on Chemical Intermediates 2015, 41 (12) , 9343-9355. https://doi.org/10.1007/s11164-015-2022-5
  17. Cecilia B. Mendive, Thomas Bredow, Jenny Schneider, Miguel Blesa, Detlef Bahnemann. Oxalic acid at the TiO 2 /water interface under UV(A) illumination: Surface reaction mechanisms. Journal of Catalysis 2015, 322 , 60-72. https://doi.org/10.1016/j.jcat.2014.11.008
  18. Karen L. Syres, Andrew G. Thomas, Darren M. Graham, Ben F. Spencer, Wendy R. Flavell, Mark J. Jackman, Vinod R. Dhanak. Adsorption and stability of malonic acid on rutile TiO2 (110), studied by near edge X-ray absorption fine structure and photoelectron spectroscopy. Surface Science 2014, 626 , 14-20. https://doi.org/10.1016/j.susc.2014.03.015
  19. Ilknur Tunc. The effect of the presence of Ag nanoparticles on the photocatalytic degradation of oxalic acid adsorbed on TiO2 nanoparticles monitored by ATR-FTIR. Materials Chemistry and Physics 2014, 144 (3) , 444-450. https://doi.org/10.1016/j.matchemphys.2014.01.018
  20. Yiran Sun, Wei Chang, Hongwei Ji, Chuncheng Chen, Wanhong Ma, Jincai Zhao. An Unexpected Fluctuating Reactivity for Odd and Even Carbon Numbers in the TiO 2 -Based Photocatalytic Decarboxylation of C2-C6 Dicarboxylic Acids. Chemistry - A European Journal 2014, 20 (7) , 1861-1870. https://doi.org/10.1002/chem.201303236
  21. Russell F. Howe. Spectroscopic Methods for Investigating Reaction Pathways. 2014,,, 267-299. https://doi.org/10.1007/698_2014_255
  22. Xing Yi Ling, Ruoxue Yan, Sylvia Lo, Dat Tien Hoang, Chong Liu, Melissa A. Fardy, Sher Bahadar Khan, Abdullah M. Asiri, Salem M. Bawaked, Peidong Yang. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Research 2014, 7 (1) , 132-143. https://doi.org/10.1007/s12274-013-0380-0
  23. J. P. Schulte, S. Grass, L. Treuel. Adsorption of dicarboxylic acids onto nano-structured silver surfaces - surface-enhanced Raman scattering studies of pH-dependent adsorption geometries. Journal of Raman Spectroscopy 2013, 44 (2) , 247-254. https://doi.org/10.1002/jrs.4190
  24. E. Eren, H. Gumus, B. Eren, A. Sarihan. Surface Acidity of H-Birnessite: Infrared Spectroscopic Study of Formic Acid Decomposition. Spectroscopy Letters 2013, 46 (1) , 60-66. https://doi.org/10.1080/00387010.2012.666612
  25. Xuefeng Hu, Thomas Bürgi. Photoinduced electron transfer and photodegradation of malonic acid at Au/TiO2 investigated by in situ ATR-IR spectroscopy. Applied Catalysis A: General 2012, 449 , 139-144. https://doi.org/10.1016/j.apcata.2012.09.017
  26. Vincenzo Augugliaro, Marianna Bellardita, Vittorio Loddo, Giovanni Palmisano, Leonardo Palmisano, Sedat Yurdakal. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012, 13 (3) , 224-245. https://doi.org/10.1016/j.jphotochemrev.2012.04.003
  27. E. Eren, H. Gumus, A. Sarihan. An investigation of the catalytic decomposition of formic acid on raw and manganese oxide coated sepiolite surfaces. Applied Clay Science 2012, 62-63 , 1-7. https://doi.org/10.1016/j.clay.2012.04.013
  28. Andrew G. Thomas, Karen L. Syres. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chemical Society Reviews 2012, 41 (11) , 4207. https://doi.org/10.1039/c2cs35057b
  29. Michael A. Henderson. A surface science perspective on TiO2 photocatalysis. Surface Science Reports 2011, 66 (6-7) , 185-297. https://doi.org/10.1016/j.surfrep.2011.01.001
  30. Wenny Irawaty, Donia Friedmann, Jason Scott, Rose Amal. Relationship between mineralization kinetics and mechanistic pathway during malic acid photodegradation. Journal of Molecular Catalysis A: Chemical 2011, 335 (1-2) , 151-157. https://doi.org/10.1016/j.molcata.2010.11.027
  31. S. Kment, H. Kmentova, P. Kluson, J. Krysa, Z. Hubicka, V. Cirkva, I. Gregora, O. Solcova, L. Jastrabik. Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. Journal of Colloid and Interface Science 2010, 348 (1) , 198-205. https://doi.org/10.1016/j.jcis.2010.04.002
  32. Thomas Berger, Antonio Rodes, Roberto Gómez. Oxalic acid photooxidation on rutile nanowire electrodes. Physical Chemistry Chemical Physics 2010, 12 (35) , 10503. https://doi.org/10.1039/c003377d
  33. H. Žabová, J. Sobek, V. Církva, O. Šolcová, Š. Kment, M. Hájek. Efficient preparation of nanocrystalline anatase TiO2 and V/TiO2 thin layers using microwave drying and/or microwave calcination technique. Journal of Solid State Chemistry 2009, 182 (12) , 3387-3392. https://doi.org/10.1016/j.jssc.2009.09.033
  34. Jacinto Sá, Cristina Alcaraz Agüera, Silvia Gross, James A. Anderson. Photocatalytic nitrate reduction over metal modified TiO2. Applied Catalysis B: Environmental 2009, 85 (3-4) , 192-200. https://doi.org/10.1016/j.apcatb.2008.07.014
  35. Cecilia B. Mendive, Thomas Bredow, Armin Feldhoff, Miguel A. Blesa, Detlef Bahnemann. Adsorption of oxalate on anatase (100) and rutile (110) surfaces in aqueous systems: experimental results vs. theoretical predictions. Physical Chemistry Chemical Physics 2009, 11 (11) , 1794. https://doi.org/10.1039/b814608j
  36. Vincenzo Augugliaro, Horst Kisch, Vittorio Loddo, María José López-Muñoz, Carlos Márquez-Álvarez, Giovanni Palmisano, Leonardo Palmisano, Francesco Parrino, Sedat Yurdakal. Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide. Applied Catalysis A: General 2008, 349 (1-2) , 189-197. https://doi.org/10.1016/j.apcata.2008.07.038
  37. Sònia Abelló, D. Vijaya-Shankar, Javier Pérez-Ramírez. Stability, reutilization, and scalability of activated hydrotalcites in aldol condensation. Applied Catalysis A: General 2008, 342 (1-2) , 119-125. https://doi.org/10.1016/j.apcata.2008.03.010
  38. Ana Rita Almeida, Jacob A. Moulijn, Guido Mul. In Situ ATR-FTIR Study on the Selective Photo-oxidation of Cyclohexane over Anatase TiO 2. The Journal of Physical Chemistry C 2008, 112 (5) , 1552-1561. https://doi.org/10.1021/jp077143t
  39. Johan C. Groen, Gerben M. Hamminga, Jacob A. Moulijn, Javier Pérez-Ramírez. In situ monitoring of desilication of MFI-type zeolites in alkaline medium. Physical Chemistry Chemical Physics 2007, 9 (34) , 4822. https://doi.org/10.1039/b705418a