Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells

View Author Information
National Renewable Energy Laboratory, Golden, Colorado 80401-3393
* To whom correspondence should be addressed. E-mail: [email protected] and [email protected]
Cite this: J. Phys. Chem. C 2010, 114, 32, 13433–13441
Publication Date (Web):July 27, 2010
Copyright © 2010 American Chemical Society
Article Views
Read OnlinePDF (2 MB)


We report on the influence of annealing temperature (Ta) on the microstructure and dynamics of electron transport and recombination in dye-sensitized solar cells (DSSCs) incorporating oriented titanium oxide nanotube (NT) arrays. The morphology of the NT arrays was characterized by scanning and transmission electron microscopies and Raman and X-ray diffraction spectroscopies. Over the temperature range from 200 to 600 °C, the crystallinity, crystal phase, and structural integrity of the NT walls underwent pronounced changes whereas the overall film architecture remained intact. Increasing Ta from 200 to 400 °C transformed the as-deposited NT film from the amorphous phase to partially crystalline (300 °C) to fully crystalline anatase (400 °C). When the as-deposited NTs were detached from the underlying Ti substrate and then annealed, the anatase crystallites comprising the NT walls were stable to at least 600 °C in air. When the NTs remained attached to the substrate, thermal oxidation of the Ti metal initiated the growth and propagation of rutile crystallites in the NT walls at relatively low temperatures (ca. 500 °C). Once present in the NT walls, the rutile crystallites further catalyzed the anatase-to-rutile transformation, leading to partial degradation of the walls. The percent of rutile present in the TiO2 NT walls increased from 3% to 32% for samples annealed between 500 and 600 °C. Charge transport and recombination properties of dye-sensitized NT films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Altering the microstructure of the NTs led to significant changes in the electron transport and recombination kinetics in DSSCs. At a fixed photoelectron density, the electron diffusion coefficient and recombination current density are found to change orders of magnitude in the opposite direction over the temperature range. DSSCs containing NT films annealed at 400 °C exhibited the fastest transport and slowest recombination kinetics. The various structural changes were also found to affect the light-harvesting, charge-injection, and charge-collection properties of DSSCs, which, in turn, altered the photocurrent density, photovoltage, and solar energy conversion efficiency.

Cited By

This article is cited by 105 publications.

  1. Michael J. Mortelliti, Annie N. Wang, Jillian L. Dempsey. Interfacial Electron Transfer through Ultrathin ALD TiOx Layers: A Comparative Study of TiO2/TiOx and SnO2/TiOx Core/Shell Nanocrystals. The Journal of Physical Chemistry C 2021, 125 (23) , 12937-12959. https://doi.org/10.1021/acs.jpcc.1c02428
  2. Marta Nycz, Katarzyna Arkusz, Dorota Genowefa Pijanowska. Electrodes Based on a Titanium Dioxide Nanotube–Spherical Silver Nanoparticle Composite for Sensing of Proteins. ACS Biomaterials Science & Engineering 2021, 7 (1) , 105-113. https://doi.org/10.1021/acsbiomaterials.0c01207
  3. Alexander B. Tesler, Marco Altomare, Patrik Schmuki. Morphology and Optical Properties of Highly Ordered TiO2 Nanotubes Grown in NH4F/o-H3PO4 Electrolytes in View of Light-Harvesting and Catalytic Applications. ACS Applied Nano Materials 2020, 3 (11) , 10646-10658. https://doi.org/10.1021/acsanm.0c01859
  4. Julio Villanueva-Cab, Paul Olalde-Velasco, Alfredo Romero-Contreras, Zengqing Zhuo, Feng Pan, Sandra E. Rodil, Wanli Yang, Umapada Pal. Photocharging and Band Gap Narrowing Effects on the Performance of Plasmonic Photoelectrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (37) , 31374-31383. https://doi.org/10.1021/acsami.8b10063
  5. Raul Zazpe, Jan Prikryl, Viera Gärtnerova, Katerina Nechvilova, Ludvik Benes, Lukas Strizik, Ales Jäger, Markus Bosund, Hanna Sopha, and Jan M. Macak . Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers. Langmuir 2017, 33 (13) , 3208-3216. https://doi.org/10.1021/acs.langmuir.7b00187
  6. Raul Zazpe, Martin Knaut, Hanna Sopha, Ludek Hromadko, Matthias Albert, Jan Prikryl, V. Gärtnerová, Johann W. Bartha, and Jan M. Macak . Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers. Langmuir 2016, 32 (41) , 10551-10558. https://doi.org/10.1021/acs.langmuir.6b03119
  7. JeongEun Yoo, Marco Altomare, Mohamed Mokhtar, Abdelmohsen Alshehri, Shaeel A. Al-Thabaiti, Anca Mazare, and Patrik Schmuki . Photocatalytic H2 Generation Using Dewetted Pt-Decorated TiO2 Nanotubes: Optimized Dewetting and Oxide Crystallization by a Multiple Annealing Process. The Journal of Physical Chemistry C 2016, 120 (29) , 15884-15892. https://doi.org/10.1021/acs.jpcc.5b12050
  8. Seong Sik Shin, Woon Seok Yang, Eun Joo Yeom, Seon Joo Lee, Nam Joong Jeon, Young-Chang Joo, Ik Jae Park, Jun Hong Noh, and Sang Il Seok . Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (10) , 1845-1851. https://doi.org/10.1021/acs.jpclett.6b00295
  9. Sherdil Khan, Maximiliano J. M. Zapata, Daniel L. Baptista, Renato V. Gonçalves, Jesum A. Fernandes, Jairton Dupont, Marcos J. L. Santos, and Sérgio R. Teixeira . Effect of Oxygen Content on the Photoelectrochemical Activity of Crystallographically Preferred Oriented Porous Ta3N5 Nanotubes. The Journal of Physical Chemistry C 2015, 119 (34) , 19906-19914. https://doi.org/10.1021/acs.jpcc.5b05475
  10. Seong Sik Shin, Dong Wook Kim, Jong Hoon Park, Dong Hoe Kim, Ju Seong Kim, Kug Sun Hong, and In Sun Cho . Anionic Ligand Assisted Synthesis of 3-D Hollow TiO2 Architecture with Enhanced Photoelectrochemical Performance. Langmuir 2014, 30 (51) , 15531-15539. https://doi.org/10.1021/la503641n
  11. Kiyoung Lee, Anca Mazare, and Patrik Schmuki . One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews 2014, 114 (19) , 9385-9454. https://doi.org/10.1021/cr500061m
  12. Yichen Zheng, Steven Klankowski, Yiqun Yang, and Jun Li . Preparation and Characterization of TiO2 Barrier Layers for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (13) , 10679-10686. https://doi.org/10.1021/am502421w
  13. Meidan Ye, Dajiang Zheng, Mengye Wang, Chang Chen, Wenming Liao, Changjian Lin, and Zhiqun Lin . Hierarchically Structured Microspheres for High-Efficiency Rutile TiO2-Based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (4) , 2893-2901. https://doi.org/10.1021/am405442n
  14. B. Manmadha Rao and Somnath C. Roy . Solvothermal Processing of Amorphous TiO2 Nanotube Arrays: Achieving Crystallinity at a Lower Thermal Budget. The Journal of Physical Chemistry C 2014, 118 (2) , 1198-1205. https://doi.org/10.1021/jp406930y
  15. He He, Chao Liu, Kevin D. Dubois, Tong Jin, Michael E. Louis, and Gonghu Li . Enhanced Charge Separation in Nanostructured TiO2 Materials for Photocatalytic and Photovoltaic Applications. Industrial & Engineering Chemistry Research 2012, 51 (37) , 11841-11849. https://doi.org/10.1021/ie300510n
  16. W. Sharmoukh and Nageh K. Allam . TiO2 Nanotube-Based Dye-Sensitized Solar Cell Using New Photosensitizer with Enhanced Open-Circuit Voltage and Fill Factor. ACS Applied Materials & Interfaces 2012, 4 (8) , 4413-4418. https://doi.org/10.1021/am301089t
  17. Renato V. Gonçalves, Pedro Migowski, Heberton Wender, Dario Eberhardt, Daniel E. Weibel, Flávia C. Sonaglio, Maximiliano J. M. Zapata, Jairton Dupont, Adriano F. Feil, and Sergio R. Teixeira . Ta2O5 Nanotubes Obtained by Anodization: Effect of Thermal Treatment on the Photocatalytic Activity for Hydrogen Production. The Journal of Physical Chemistry C 2012, 116 (26) , 14022-14030. https://doi.org/10.1021/jp303273q
  18. Kai Zhu, Qing Wang, Jae-Hun Kim, Ahmad A. Pesaran, and Arthur J. Frank . Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays. The Journal of Physical Chemistry C 2012, 116 (22) , 11895-11899. https://doi.org/10.1021/jp301884x
  19. Candy C. Mercado, Fritz J. Knorr, Jeanne L. McHale, Shirin M. Usmani, Andrew S. Ichimura, and Laxmikant V. Saraf . Location of Hole and Electron Traps on Nanocrystalline Anatase TiO2. The Journal of Physical Chemistry C 2012, 116 (19) , 10796-10804. https://doi.org/10.1021/jp301680d
  20. Jun Hong Noh, Jong Hoon Park, Hyun Soo Han, Dong Hoe Kim, Byung Suh Han, Sangwook Lee, Jin Young Kim, Hyun Suk Jung, and Kug Sun Hong . Aligned Photoelectrodes with Large Surface Area Prepared by Pulsed Laser Deposition. The Journal of Physical Chemistry C 2012, 116 (14) , 8102-8110. https://doi.org/10.1021/jp211233s
  21. Shengye Jin, Alex B. F. Martinson, and Gary P. Wiederrecht . Reduced Heterogeneity of Electron Transfer into Polycrystalline TiO2 Films: Site Specific Kinetics Revealed by Single-Particle Spectroscopy. The Journal of Physical Chemistry C 2012, 116 (4) , 3097-3104. https://doi.org/10.1021/jp2117505
  22. Po-Tsung Hsiao, Yong-Jin Liou, and Hsisheng Teng . Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations. The Journal of Physical Chemistry C 2011, 115 (30) , 15018-15024. https://doi.org/10.1021/jp202681c
  23. Yan Sun, Kangping Yan, Guixin Wang, Wei Guo, and Tingli Ma . Effect of Annealing Temperature on the Hydrogen Production of TiO2 Nanotube Arrays in a Two-Compartment Photoelectrochemical Cell. The Journal of Physical Chemistry C 2011, 115 (26) , 12844-12849. https://doi.org/10.1021/jp1116118
  24. Jin Young Kim, Jun Hong Noh, Kai Zhu, Adam F. Halverson, Nathan R. Neale, Sangbaek Park, Kug Sun Hong, and Arthur J. Frank . General Strategy for Fabricating Transparent TiO2 Nanotube Arrays for Dye-Sensitized Photoelectrodes: Illumination Geometry and Transport Properties. ACS Nano 2011, 5 (4) , 2647-2656. https://doi.org/10.1021/nn200440u
  25. Joshua C. Byers, Scott Ballantyne, Konstantin Rodionov, Alex Mann, and O. A. Semenikhin . Mechanism of Recombination Losses in Bulk Heterojunction P3HT:PCBM Solar Cells Studied Using Intensity Modulated Photocurrent Spectroscopy. ACS Applied Materials & Interfaces 2011, 3 (2) , 392-401. https://doi.org/10.1021/am100998t
  26. E. Blasco-Tamarit, B. Solsona, R. Sánchez-Tovar, D. García-García, R.M. Fernández-Domene, J. García-Antón. Influence of annealing atmosphere on photoelectrochemical response of TiO2 nanotubes anodized under controlled hydrodynamic conditions. Journal of Electroanalytical Chemistry 2021, 897 , 115579. https://doi.org/10.1016/j.jelechem.2021.115579
  27. Monika Sołtys-Mróz, Karolina Syrek, Ewelina Wiercigroch, Kamilla Małek, Krzysztof Rokosz, Steinar Raaen, Grzegorz D. Sulka. Enhanced visible light photoelectrochemical water splitting using nanotubular FeOx-TiO2 annealed at different temperatures. Journal of Power Sources 2021, 507 , 230274. https://doi.org/10.1016/j.jpowsour.2021.230274
  28. Marta Nycz, Katarzyna Arkusz, Dorota G. Pijanowska. Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection. Materials 2021, 14 (13) , 3767. https://doi.org/10.3390/ma14133767
  29. Khaled A. Soliman, Assem T. Mohamed, Amina S. Aljaber, Siham Y. AlQaradawi, Nageh K. Allam. Photoelectrocatalytic hydrogen production on ternary Co‐Pi /Ag/ TiON nanotube array photocatalysts. International Journal of Energy Research 2021, 45 (4) , 6360-6368. https://doi.org/10.1002/er.6167
  30. Fan Fu, Gihoon Cha, Zhenni Wu, Shanshan Qin, Yan Zhang, Yuyue Chen, Patrik Schmuki. Photocatalytic Hydrogen Generation from Water‐Annealed TiO 2 Nanotubes with White and Grey Modification. ChemElectroChem 2021, 8 (1) , 240-245. https://doi.org/10.1002/celc.202001517
  31. Hammad Malik, Sayan Sarkar, Swomitra Mohanty, Krista Carlson. Modelling and synthesis of Magnéli Phases in ordered titanium oxide nanotubes with preserved morphology. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64918-0
  32. Hiroaki Tsuchiya, Patrik Schmuki. Less known facts and findings about TiO 2 nanotubes. Nanoscale 2020, 12 (15) , 8119-8132. https://doi.org/10.1039/D0NR00367K
  33. Nan Hu, Yuzheng Wu, Lingxia Xie, Shahir Mohd Yusuf, Nong Gao, Marco J. Starink, Liping Tong, Paul K. Chu, Huaiyu Wang. Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms. Acta Biomaterialia 2020, 106 , 360-375. https://doi.org/10.1016/j.actbio.2020.02.009
  34. Manuel Rodríguez-Perez, Felipe Noh-Pat, Alfredo Romero-Contreras, Emigdio J. Reyes-Ramírez, Siva Kumar Krishnan, Jose L. Ortíz-Quiñonez, Joaquín Alvarado, Umapada Pal, Paul Olalde-Velasco, Julio Villanueva-Cab. Re-evaluating the role of phosphinic acid (DINHOP) adsorption at the photoanode surface in the performance of dye-sensitized solar cells. Physical Chemistry Chemical Physics 2020, 22 (3) , 1756-1766. https://doi.org/10.1039/C9CP05063A
  35. Imgon Hwang, Francesca Riboni, Ekaterina Gongadze, Aleš Iglič, JeongEun Yoo, Seulgi So, Anca Mazare, Patrik Schmuki. Dye-sensitized TiO 2 nanotube membranes act as a visible-light switchable diffusion gate. Nanoscale Advances 2019, 1 (12) , 4844-4852. https://doi.org/10.1039/C9NA00480G
  36. Naeimeh Sadat Peighambardoust, Shahin Khameneh Asl, Raheleh Mohammadpour, Shahab Khameneh Asl. Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes. Solar Energy 2019, 184 , 115-126. https://doi.org/10.1016/j.solener.2019.03.073
  37. Seong Sik Shin, Jae Ho Suk, Bong Joo Kang, Wenping Yin, Seon Joo Lee, Jun Hong Noh, Tae Kyu Ahn, Fabian Rotermund, In Sun Cho, Sang Il Seok. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy & Environmental Science 2019, 12 (3) , 958-964. https://doi.org/10.1039/C8EE03672A
  38. Xia Sheng, Tao Xu, Xinjian Feng. Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications. Advanced Materials 2019, 31 (11) , 1805132. https://doi.org/10.1002/adma.201805132
  39. Selda Ozkan, Nhat Truong Nguyen, Anca Mazare, Patrik Schmuki. Optimized Spacing between TiO 2 Nanotubes for Enhanced Light Harvesting and Charge Transfer. ChemElectroChem 2018, 5 (21) , 3183-3190. https://doi.org/10.1002/celc.201801136
  40. Junguang Tao, Shiqiang Chen, Lixiu Guan, Guifeng Chen, Chenqi Yu, Lei Chen, Xiangrong Cheng, Hui Zhang, Xinjian Xie. Well-patterned Au nanodots on MoS2/TiO2 hybrids for enhanced hydrogen evolution activity. Electrochimica Acta 2018, 283 , 419-427. https://doi.org/10.1016/j.electacta.2018.06.194
  41. Hu Li, Xinxin Wang, Wen Jiang, Haoyu Fu, Xiaoqiang Liang, Ke Zhang, Zhe Li, Chaochao Zhao, Hongqing Feng, Jia Nie, Ruping Liu, Gang Zhou, Yubo Fan, Zhou Li. Alkali Metal Chlorides Based Hydrogel as Eco-Friendly Neutral Electrolyte for Bendable Solid-State Capacitor. Advanced Materials Interfaces 2018, 5 (10) , 1701648. https://doi.org/10.1002/admi.201701648
  42. Fumiaki Amano, Hyosuke Mukohara, Ayami Shintani. Rutile Titania Particulate Photoelectrodes Fabricated by Two-Step Annealing of Titania Nanotube Arrays. Journal of The Electrochemical Society 2018, 165 (4) , H3164-H3169. https://doi.org/10.1149/2.0231804jes
  43. Liangpeng Wu, Juan Li, Xu Yang, Yanqin Huang, Xinjun Li. Synthesis, characterization and photocatalytic activity of TiO 2 nanotube assembled hierarchical microspheres. Inorganic and Nano-Metal Chemistry 2017, 47 (12) , 1733-1740. https://doi.org/10.1080/24701556.2017.1357625
  44. Ik Jae Park, Sangbaek Park, Dong Hoe Kim, Heesu Jeong, Sangwook Lee. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion. Materials Letters 2017, 202 , 48-51. https://doi.org/10.1016/j.matlet.2017.05.075
  45. M. Einollahzadeh-Samadi, R. S. Dariani, A. Paul. Tailoring morphology, structure and photoluminescence properties of anodic TiO 2 nanotubes. Journal of Applied Crystallography 2017, 50 (4) , 1133-1143. https://doi.org/10.1107/S1600576717007968
  46. Jesum A. Fernandes, Emerson C. Kohlrausch, Sherdil Khan, Rafael C. Brito, Guilherme J. Machado, Sérgio R. Teixeira, Jairton Dupont, Marcos J. Leite Santos. Effect of anodisation time and thermal treatment temperature on the structural and photoelectrochemical properties of TiO 2 nanotubes. Journal of Solid State Chemistry 2017, 251 , 217-223. https://doi.org/10.1016/j.jssc.2017.04.025
  47. T.A. Ruhane, M. Tauhidul Islam, Md. Saifur Rahaman, M.M.H. Bhuiyan, Jahid M.M. Islam, T.I. Bhuiyan, K.A. Khan, Mubarak A. Khan. Impact of photo electrode thickness and annealing temperature on natural dye sensitized solar cell. Sustainable Energy Technologies and Assessments 2017, 20 , 72-77. https://doi.org/10.1016/j.seta.2017.01.012
  48. Xiaoyu Zhang, Na Li, Wenting Li, Shulong Yuan, Xiaokai Zhang, Yuzhen Yuan, Xue Li. Annealing temperature on photocatalytic activity of (hollow Au−Ag nanoparticles)/TiO 2 composites prepared from block copolymer-stabilized bimetallic nanoparticles. Integrated Ferroelectrics 2017, 179 (1) , 10-23. https://doi.org/10.1080/10584587.2017.1330062
  49. Stepan Kment, Francesca Riboni, Sarka Pausova, Lei Wang, Lingyun Wang, Hyungkyu Han, Zdenek Hubicka, Josef Krysa, Patrik Schmuki, Radek Zboril. Photoanodes based on TiO 2 and α-Fe 2 O 3 for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews 2017, 46 (12) , 3716-3769. https://doi.org/10.1039/C6CS00015K
  50. Nyein Nyein, Wai Kian Tan, Go Kawamura, Atsunori Matsuda, Zainovia Lockman. Formation of anodic TiO2 nanotube arrays in NaOH added fluoride-ethylene glycol electrolyte for dye-sensitized solar cells. 2017,,, 020006. https://doi.org/10.1063/1.4993325
  51. Abbas M. Selman, M. Husham. Calcination induced phase transformation of TiO 2 nanostructures and fabricated a Schottky diode as humidity sensor based on rutile phase. Sensing and Bio-Sensing Research 2016, 11 , 8-13. https://doi.org/10.1016/j.sbsr.2016.09.003
  52. Imran Zada, Wang Zhang, Yao Li, Peng Sun, Nianjin Cai, Jiajun Gu, Qinglei Liu, Huilan Su, Di Zhang. Angle dependent antireflection property of TiO 2 inspired by cicada wings. Applied Physics Letters 2016, 109 (15) , 153701. https://doi.org/10.1063/1.4962903
  53. Seulgi So, Imgon Hwang, Francesca Riboni, JeongEun Yoo, Patrik Schmuki. Robust free standing flow-through TiO 2 nanotube membranes of pure anatase. Electrochemistry Communications 2016, 71 , 73-78. https://doi.org/10.1016/j.elecom.2016.08.010
  54. Guang-Ya Hou, Yun-Yun Xie, Lian-Kui Wu, Hua-Zhen Cao, Yi-Ping Tang, Guo-Qu Zheng. Electrocatalytic performance of Ni-Ti-O nanotube arrays/NiTi alloy electrode annealed under H2 atmosphere for electro-oxidation of methanol. International Journal of Hydrogen Energy 2016, 41 (22) , 9295-9302. https://doi.org/10.1016/j.ijhydene.2016.04.054
  55. Gihoon Cha, Patrik Schmuki, Marco Altomare. Free-Standing Membranes to Study the Optical Properties of Anodic TiO 2 Nanotube Layers. Chemistry - An Asian Journal 2016, 11 (5) , 789-797. https://doi.org/10.1002/asia.201501336
  56. Nhat Truong Nguyen, Marco Altomare, Jeong Eun Yoo, Nicola Taccardi, Patrik Schmuki. Noble Metals on Anodic TiO 2 Nanotube Mouths: Thermal Dewetting of Minimal Pt Co-Catalyst Loading Leads to Significantly Enhanced Photocatalytic H 2 Generation. Advanced Energy Materials 2016, 6 (2) , 1501926. https://doi.org/10.1002/aenm.201501926
  57. Ruifeng Chong, Xiaoxue Cheng, Baoyun Wang, Deliang Li, Zhixian Chang, Ling Zhang. Enhanced photocatalytic activity of Ag 3 PO 4 for oxygen evolution and Methylene blue degeneration: Effect of calcination temperature. International Journal of Hydrogen Energy 2016, 41 (4) , 2575-2582. https://doi.org/10.1016/j.ijhydene.2015.12.061
  58. Taame Abraha Berhe, Wei-Nien Su, Ching-Hsiang Chen, Chun-Jern Pan, Ju-Hsiang Cheng, Hung-Ming Chen, Meng-Che Tsai, Liang-Yih Chen, Amare Aregahegn Dubale, Bing-Joe Hwang. Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science 2016, 9 (2) , 323-356. https://doi.org/10.1039/C5EE02733K
  59. Marco Altomare, Nhat Truong Nguyen, Patrik Schmuki. Templated dewetting: designing entirely self-organized platforms for photocatalysis. Chemical Science 2016, 7 (12) , 6865-6886. https://doi.org/10.1039/C6SC02555B
  60. Fatemeh Mohammadpour, Marco Altomare, Seulgi So, Kiyoung Lee, Mohamed Mokhtar, Abdelmohsen Alshehri, Shaeel A Al-Thabaiti, Patrik Schmuki. High-temperature annealing of TiO 2 nanotube membranes for efficient dye-sensitized solar cells. Semiconductor Science and Technology 2016, 31 (1) , 014010. https://doi.org/10.1088/0268-1242/31/1/014010
  61. Ming-Zheng Ge, Chun-Yan Cao, Jian-Ying Huang, Shu-Hui Li, Song-Nan Zhang, Shu Deng, Qing-Song Li, Ke-Qin Zhang, Yue-Kun Lai. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnology Reviews 2016, 5 (1) https://doi.org/10.1515/ntrev-2015-0049
  62. Mallika Thabuot, Chaiyaput Kruehong. DSSCs Fabrication Using Nano-Structured Titania as Photoanode. Applied Mechanics and Materials 2015, 781 , 184-188. https://doi.org/10.4028/www.scientific.net/AMM.781.184
  63. Imgon Hwang, Seulgi So, Mohamed Mokhtar, Abdelmohsen Alshehri, Shaeel A. Al-Thabaiti, Anca Mazare, Patrik Schmuki. Single-Walled TiO 2 Nanotubes: Enhanced Carrier-Transport Properties by TiCl 4 Treatment. Chemistry - A European Journal 2015, 21 (25) , 9204-9208. https://doi.org/10.1002/chem.201500730
  64. Tao Zeng, Hangjian Ni, Xiaoli Su, Yuxia Chen, Yi Jiang. Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells. Journal of Power Sources 2015, 283 , 443-451. https://doi.org/10.1016/j.jpowsour.2015.02.150
  65. Naoum Vaenas, Thomas Stergiopoulos, Polycarpos Falaras. Titania Nanotubes for Solar Cell Applications. 2015,,, 289-306. https://doi.org/10.1007/978-3-319-20346-1_9
  66. Ik Jae Park, Dong Hoe Kim, Won Mo Seong, Byung Suh Han, Gill Sang Han, Hyun Suk Jung, Mengjin Yang, Wen Fan, Sangwook Lee, Jung-Kun Lee, Kug Sun Hong. Observation of anatase nanograins crystallizing from anodic amorphous TiO 2 nanotubes. CrystEngComm 2015, 17 (38) , 7346-7353. https://doi.org/10.1039/C5CE01165E
  67. Jia Liang, Gengmin Zhang, Jianbo Yin, Yingchao Yang. Transparent, 3-dimensional light-collected, and flexible fiber-type dye-sensitized solar cells based on highly ordered hierarchical anatase TiO2 nanorod arrays. Journal of Power Sources 2014, 272 , 719-729. https://doi.org/10.1016/j.jpowsour.2014.09.002
  68. Próspero Acevedo-Peña, J. Edgar Carrera-Crespo, Federico González, Ignacio González. Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays. Electrochimica Acta 2014, 140 , 564-571. https://doi.org/10.1016/j.electacta.2014.06.056
  69. Xiaolin Liu, Jia Lin, Yuen Hong Tsang, Xianfeng Chen, Peter Hing, Haitao Huang. Improved anatase phase stability in small diameter TiO2 nanotube arrays for high performance dye-sensitized solar cells. Journal of Alloys and Compounds 2014, 607 , 50-53. https://doi.org/10.1016/j.jallcom.2014.04.083
  70. Jinlei Xu, Kan Li, Wenye Shi, Renjie Li, Tianyou Peng. Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources 2014, 260 , 233-242. https://doi.org/10.1016/j.jpowsour.2014.02.092
  71. Pablo Docampo, Stefan Guldin, Tomas Leijtens, Nakita K. Noel, Ullrich Steiner, Henry J. Snaith. Lessons Learned: From Dye-Sensitized Solar Cells to All-Solid-State Hybrid Devices. Advanced Materials 2014, 26 (24) , 4013-4030. https://doi.org/10.1002/adma.201400486
  72. Jingyong Zhao, Jianxi Yao, Yongzhe Zhang, Mina Guli, Li Xiao. Effect of thermal treatment on TiO2 nanorod electrodes prepared by the solvothermal method for dye-sensitized solar cells: Surface reconfiguration and improved electron transport. Journal of Power Sources 2014, 255 , 16-23. https://doi.org/10.1016/j.jpowsour.2013.12.127
  73. Sweetu Patel, Arman Butt, Qian Tao, Jorge Iván Rossero A., Dmitry Royhman, Cortino Sukotjo, Christos G. Takoudis. Novel functionalization of Ti-V alloy and Ti-II using atomic layer deposition for improved surface wettability. Colloids and Surfaces B: Biointerfaces 2014, 115 , 280-285. https://doi.org/10.1016/j.colsurfb.2013.11.038
  74. Renato V. Gonçalves, Pedro Migowski, Heberton Wender, Adriano F. Feil, Maximiliano J. M. Zapata, Sherdil Khan, Fabiano Bernardi, Gustavo M. Azevedo, Sergio R. Teixeira. On the crystallization of Ta 2 O 5 nanotubes: structural and local atomic properties investigated by EXAFS and XRD. CrystEngComm 2014, 16 (5) , 797-804. https://doi.org/10.1039/C3CE42043D
  75. Kan Li, Jinlei Xu, Wenye Shi, Yanbin Wang, Tianyou Peng. Synthesis of size controllable and thermally stable rice-like brookite titania and its application as a scattering layer for nano-sized titania film-based dye-sensitized solar cells. J. Mater. Chem. A 2014, 2 (6) , 1886-1896. https://doi.org/10.1039/C3TA13597G
  76. Lok-kun Tsui, Giovanni Zangari. Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion. Journal of The Electrochemical Society 2014, 161 (7) , D3066-D3077. https://doi.org/10.1149/2.010407jes
  77. Jia Lin, Min Guo, Cho Tung Yip, Wei Lu, Guoge Zhang, Xiaolin Liu, Limin Zhou, Xianfeng Chen, Haitao Huang. High Temperature Crystallization of Free-Standing Anatase TiO 2 Nanotube Membranes for High Efficiency Dye-Sensitized Solar Cells. Advanced Functional Materials 2013, 23 (47) , 5952-5960. https://doi.org/10.1002/adfm.201301066
  78. Arūnas Jagminas, Gediminas Niaura, Julija Kuzmarskytė-Jagminienė, Vidas Pakštas. Crystallization peculiarities of titania nanotube films under hydrothermal and solvothermal conditions. Solid State Sciences 2013, 26 , 97-104. https://doi.org/10.1016/j.solidstatesciences.2013.09.016
  79. Kang Min Lee, Eung Seok Lee, Bongyoung Yoo, Dong Hyuk Shin. Synthesis of ZnO-decorated TiO2 nanotubes for dye-sensitized solar cells. Electrochimica Acta 2013, 109 , 181-186. https://doi.org/10.1016/j.electacta.2013.07.055
  80. Atsunori Matsuda, Srimala Sreekantan, Warapong Krengvirat. Well-aligned TiO 2 nanotube arrays for energy-related applications under solar irradiation. Journal of Asian Ceramic Societies 2013, 1 (3) , 203-219. https://doi.org/10.1016/j.jascer.2013.07.001
  81. Menglin Li, Gaoshan Huang, Yuqin Qiao, Jiao Wang, Zhaoqian Liu, Xuanyong Liu, Yongfeng Mei. Biocompatible and freestanding anatase TiO 2 nanomembrane with enhanced photocatalytic performance. Nanotechnology 2013, 24 (30) , 305706. https://doi.org/10.1088/0957-4484/24/30/305706
  82. Axel Kahnt, Christian Oelsner, Fabian Werner, Dirk M. Guldi, Sergiu P. Albu, Robin Kirchgeorg, Kiyoung Lee, Patrik Schmuki. Excited state properties of anodic TiO 2 nanotubes. Applied Physics Letters 2013, 102 (23) , 233109. https://doi.org/10.1063/1.4810762
  83. Naoum Vaenas, Maria Bidikoudi, Thomas Stergiopoulos, Vlassis Likodimos, Athanassios G. Kontos, Polycarpos Falaras. Annealing effects on self-assembled TiO2 nanotubes and their behavior as photoelectrodes in dye-sensitized solar cells. Chemical Engineering Journal 2013, 224 , 121-127. https://doi.org/10.1016/j.cej.2013.02.017
  84. Aiying Pang, Lunchao Xia, Haiyan Luo, Yafeng Li, Mingdeng Wei. Highly efficient indoline dyes co-sensitized solar cells composed of titania nanorods. Electrochimica Acta 2013, 94 , 92-97. https://doi.org/10.1016/j.electacta.2013.01.128
  85. Chan Lin, Shougang Chen, Lixin Cao. Anodic formation of aligned and bamboo-type TiO2 nanotubes at constant low voltages. Materials Science in Semiconductor Processing 2013, 16 (1) , 154-159. https://doi.org/10.1016/j.mssp.2012.05.009
  86. Stefan Guldin. Structure-Function Interplay in Dye-Sensitised Solar Cells. 2013,,, 33-50. https://doi.org/10.1007/978-3-319-00312-2_3
  87. Chang-Yeol Cho, Hye-Na Kim, Jun Hyuk Moon. Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (26) , 10835. https://doi.org/10.1039/c3cp50214g
  88. Sylvia Schattauer, Beate Reinhold, Steve Albrecht, Christoph Fahrenson, Marcel Schubert, Silvia Janietz, Dieter Neher. Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol–gel approach. Colloid and Polymer Science 2012, 290 (18) , 1843-1854. https://doi.org/10.1007/s00396-012-2708-9
  89. Haihua Yang, Wenguang Fan, Aleksandar Vaneski, Andrei S. Susha, Wey Yang Teoh, Andrey L. Rogach. Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays: Intricate Effects of Size-Dependency and Interfacial Contact on Photoconversion Efficiencies. Advanced Functional Materials 2012, 22 (13) , 2821-2829. https://doi.org/10.1002/adfm.201103074
  90. Ruiqiang Hang, Xiaobo Huang, Linhai Tian, Zhiyong He, Bin Tang. Preparation, characterization, corrosion behavior and bioactivity of Ni2O3-doped TiO2 nanotubes on NiTi alloy. Electrochimica Acta 2012, 70 , 382-393. https://doi.org/10.1016/j.electacta.2012.03.085
  91. Chieko Shimada, Koji Kitamura, Seimei Shiratori. Effects of Electrospun TiO$_{2}$ Nanowires Mixed in Nanoparticle-Based Electrode for Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics 2012, 51 , 044106. https://doi.org/10.1143/JJAP.51.044106
  92. Dong Mei Li, Zhi Hua Xiong, Qi Xin Wan. Density Functional Theory Study of TinO2n-m Clusters (n=1-4, m=0,1). Advanced Materials Research 2012, 507 , 79-82. https://doi.org/10.4028/www.scientific.net/AMR.507.79
  93. Chieko Shimada, Koji Kitamura, Seimei Shiratori. Effects of Electrospun TiO 2 Nanowires Mixed in Nanoparticle-Based Electrode for Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics 2012, 51 (4R) , 044106. https://doi.org/10.7567/JJAP.51.044106
  94. . Dye-Sensitized Solar Cells I. 2012,,, 151-197. https://doi.org/10.1002/9783527647668.ch5
  95. Ning Liu, Kiyoung Lee, Patrik Schmuki. Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. Electrochemistry Communications 2012, 15 (1) , 1-4. https://doi.org/10.1016/j.elecom.2011.11.003
  96. Sangwook Lee, Ik Jae Park, Dong Hoe Kim, Won Mo Seong, Dong Wook Kim, Gil Sang Han, Jin Young Kim, Hyun Suk Jung, Kug Sun Hong. Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy & Environmental Science 2012, 5 (7) , 7989. https://doi.org/10.1039/c2ee21697c
  97. Hongjun Wu, Zhonghai Zhang. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. Journal of Solid State Chemistry 2011, 184 (12) , 3202-3207. https://doi.org/10.1016/j.jssc.2011.10.012
  98. Di Yang, Ke Wang, Wen-Zhong Wang, Yi-Quan Wang, Gu-Ling Zhang, Wen-Liang Gao, Kai-Xiang Shen. Influence of sintering temperature on energy conversion efficiency in dye-sensitized solar cell. 2011,,, 1596-1599. https://doi.org/10.1109/ICECENG.2011.6058206
  99. Kai Zhu, Arthur J. Frank. Converting light to electrons in oriented nanotube arrays used in sensitized solar cells. MRS Bulletin 2011, 36 (6) , 446-452. https://doi.org/10.1557/mrs.2011.112
  100. Juanru Huang, Xin Tan, Tao Yu. Self-assembled TiO<inf>2</inf> nanotube arrays films with controllable length for photocatalytic decoloration of methylene blue. 2011,,, 1421-1424. https://doi.org/10.1109/ICMREE.2011.5930601
Load all citations