Photocatalytic Comparison of TiO2 Nanoparticles and Electrospun TiO2 Nanofibers: Effects of Mesoporosity and Interparticle Charge Transfer

View Author Information
School of Physics and Energy Science, Kyungpook National University, Daegu 702-701, Republic of Korea, and Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 704-230, Republic of Korea
* To whom correspondence should be addressed. Tel: +82-53-430-8434 (S.K.), +82-53-950-7371 (H.P.). Fax: +82-53-430-8443 (S.K.), +82-53-950-1739 (H.P.). E-mail: [email protected] (S.K.), [email protected] (H.P.).
†Kyungpook National University.
‡Daegu Gyeongbuk Institute of Science and Technology (DGIST).
Cite this: J. Phys. Chem. C 2010, 114, 39, 16475–16480
Publication Date (Web):September 9, 2010
https://doi.org/10.1021/jp104317x
Copyright © 2010 American Chemical Society
Article Views
7264
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

The development of a high-efficiency TiO2 photocatalyst is of great importance to a variety of solar light conversion and application fields; the desired high efficiency can be achieved by employing well-controlled TiO2 nanoarchitectures. In this study, we have successfully synthesized well-ordered and aligned high surface area mesoporous TiO2 nanofibers (TiO2-NF) by electrospinning of TiO2 powder dispersed in viscous polymer solution and subsequent calcination. For comparison, TiO2 nanoparticles (TiO2-NP) are also prepared from calcination of the same TiO2 powder. The TiO2-NF of ca. 500 nm in diameter and a few micrometers in length consist of compactly and densely packed spherical nanoparticles of ca. 20 nm in size and have mesopores of 3−4 nm in radius. Photocatalytic comparison between TiO2-NF and TiO2-NP indicated that the former had far higher photocatalytic activities in photocurrent generation by a factor of 3 and higher hydrogen production by a factor of 7. The photocatalytic superiority of TiO2-NF is attributed to effects of mesoporosity and nanoparticle alignment, which could cause efficient charge separation through interparticle charge transfer along the nanofiber framework. Finally, various surface characterization experiments were conducted and included to understand the photocatalytic behaviors of TiO2-NF and TiO2-NP.

Supporting Information

ARTICLE SECTIONS
Jump To

Figures S1−S4 as noted in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 281 publications.

  1. Haonan Zhang, Xin Zhang, Zhaoze Zhang, Xiaoming Ma, Yuanna Zhu, Miaojuan Ren, Yongqiang Cao, Ping Yang. Ultrahigh Charge Separation Achieved by Selective Growth of Bi4O5I2 Nanoplates on Electron-Accumulating Facets of Bi5O7I Nanobelts. ACS Applied Materials & Interfaces 2021, 13 (33) , 39985-40001. https://doi.org/10.1021/acsami.1c06188
  2. Amaresh C. Pradhan, Tamer Uyar. Electrospun Fe2O3 Entrenched SiO2 Supported N and S Dual Incorporated TiO2 Nanofibers Derived from Mixed Polymeric Template/Surfactant: Enriched Mesoporosity within Nanofibers, Effective Charge Separation, and Visible Light Photocatalysis Activity. Industrial & Engineering Chemistry Research 2019, 58 (28) , 12535-12550. https://doi.org/10.1021/acs.iecr.9b00970
  3. Qifeng Mu, Qingsong Zhang, Lu Gao, Zhiyong Chu, Zhongyu Cai, Xiaoyong Zhang, Ke Wang, and Yen Wei . Structural Evolution and Formation Mechanism of the Soft Colloidal Arrays in the Core of PAAm Nanofibers by Electrospun Packing. Langmuir 2017, 33 (39) , 10291-10301. https://doi.org/10.1021/acs.langmuir.7b02275
  4. Roberto Nisticò, Silvia Tabasso, Giuliana Magnacca, Thomas Jordan, Menny Shalom, and Nina Fechler . Reactive Hypersaline Route: One-Pot Synthesis of Porous Photoactive Nanocomposites. Langmuir 2017, 33 (21) , 5213-5222. https://doi.org/10.1021/acs.langmuir.7b00142
  5. Xue Zeng, Liuqing Huang, Chaonan Wang, Jianshu Wang, Jintang Li, and Xuetao Luo . Sonocrystallization of ZIF-8 on Electrostatic Spinning TiO2 Nanofibers Surface with Enhanced Photocatalysis Property through Synergistic Effect. ACS Applied Materials & Interfaces 2016, 8 (31) , 20274-20282. https://doi.org/10.1021/acsami.6b05746
  6. Surya Prasad Adhikari, Ganesh Prasad Awasthi, Han Joo Kim, Chan Hee Park, and Cheol Sang Kim . Electrospinning Directly Synthesized Porous TiO2 Nanofibers Modified by Graphitic Carbon Nitride Sheets for Enhanced Photocatalytic Degradation Activity under Solar Light Irradiation. Langmuir 2016, 32 (24) , 6163-6175. https://doi.org/10.1021/acs.langmuir.6b01085
  7. Shuai Jiang, Li-Ping Lv, Katharina Landfester, and Daniel Crespy . Nanocontainers in and onto Nanofibers. Accounts of Chemical Research 2016, 49 (5) , 816-823. https://doi.org/10.1021/acs.accounts.5b00524
  8. Hyunwoong Park, Hsin-Hung Ou, Agustín J. Colussi, and Michael R. Hoffmann . Artificial Photosynthesis of C1–C3 Hydrocarbons from Water and CO2 on Titanate Nanotubes Decorated with Nanoparticle Elemental Copper and CdS Quantum Dots. The Journal of Physical Chemistry A 2015, 119 (19) , 4658-4666. https://doi.org/10.1021/jp511329d
  9. Kai Li, Shanmin Gao, Qingyao Wang, Hui Xu, Zeyan Wang, Baibiao Huang, Ying Dai, and Jun Lu . In-Situ-Reduced Synthesis of Ti3+ Self-Doped TiO2/g-C3N4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation. ACS Applied Materials & Interfaces 2015, 7 (17) , 9023-9030. https://doi.org/10.1021/am508505n
  10. Siew Siang Lee, Hongwei Bai, Zhaoyang Liu, and Darren Delai Sun . Green Approach for Photocatalytic Cu(II)-EDTA Degradation over TiO2: Toward Environmental Sustainability. Environmental Science & Technology 2015, 49 (4) , 2541-2548. https://doi.org/10.1021/es504711e
  11. Michael J. Nalbandian, Katherine E. Greenstein, Danmeng Shuai, Miluo Zhang, Yong-Ho Choa, Gene F. Parkin, Nosang V. Myung, and David M. Cwiertny . Tailored Synthesis of Photoactive TiO2 Nanofibers and Au/TiO2 Nanofiber Composites: Structure and Reactivity Optimization for Water Treatment Applications. Environmental Science & Technology 2015, 49 (3) , 1654-1663. https://doi.org/10.1021/es502963t
  12. Na Qin, Yuhao Liu, Weiming Wu, Lijuan Shen, Xun Chen, Zhaohui Li, and Ling Wu . One-Dimensional CdS/TiO2 Nanofiber Composites as Efficient Visible-Light-Driven Photocatalysts for Selective Organic Transformation: Synthesis, Characterization, and Performance. Langmuir 2015, 31 (3) , 1203-1209. https://doi.org/10.1021/la503731y
  13. Lixia Sang, Yixin Zhao, and Clemens Burda . TiO2 Nanoparticles as Functional Building Blocks. Chemical Reviews 2014, 114 (19) , 9283-9318. https://doi.org/10.1021/cr400629p
  14. Dina Fattakhova-Rohlfing, Adriana Zaleska, and Thomas Bein . Three-Dimensional Titanium Dioxide Nanomaterials. Chemical Reviews 2014, 114 (19) , 9487-9558. https://doi.org/10.1021/cr500201c
  15. Hye Won Jeong, Seung-Yo Choi, Seong Hui Hong, Sang Kyoo Lim, Dong Suk Han, Ahmed Abdel-Wahab, and Hyunwoong Park . Shape-Dependent Charge Transfers in Crystalline ZnO Photocatalysts: Rods versus Plates. The Journal of Physical Chemistry C 2014, 118 (37) , 21331-21338. https://doi.org/10.1021/jp506032f
  16. Astam K. Patra, Arghya Dutta, and Asim Bhaumik . Synthesis of Cuboid-Shaped Single-Crystalline TiO2 Nanocrystals with High-Energy Facets {001} and Its Dye-Sensitized Solar Cell Application. The Journal of Physical Chemistry C 2014, 118 (30) , 16703-16709. https://doi.org/10.1021/jp412674g
  17. Kunal Mondal, Md. Azahar Ali, Ved V. Agrawal, Bansi D. Malhotra, and Ashutosh Sharma . Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO2 Nanofiber Based Interface for Biosensing. ACS Applied Materials & Interfaces 2014, 6 (4) , 2516-2527. https://doi.org/10.1021/am404931f
  18. Landry Biyoghe Bi Ndong, Murielle Primaelle Ibondou, Xiaogang Gu, Shuguang Lu, Zhaofu Qiu, Qian Sui, and Serge Maurice Mbadinga . Enhanced Photocatalytic Activity of TiO2 Nanosheets by Doping with Cu for Chlorinated Solvent Pollutants Degradation. Industrial & Engineering Chemistry Research 2014, 53 (4) , 1368-1376. https://doi.org/10.1021/ie403405z
  19. Zhenyi Zhang, Zheng Wang, Shao-Wen Cao, and Can Xue . Au/Pt Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion. The Journal of Physical Chemistry C 2013, 117 (49) , 25939-25947. https://doi.org/10.1021/jp409311x
  20. Sunbok Lee, Youngshin Lee, Dong Ha Kim, and Jun Hyuk Moon . Carbon-Deposited TiO2 3D Inverse Opal Photocatalysts: Visible-Light Photocatalytic Activity and Enhanced Activity in a Viscous Solution. ACS Applied Materials & Interfaces 2013, 5 (23) , 12526-12532. https://doi.org/10.1021/am403820e
  21. D. Regonini, A. C. Teloeken, A. K. Alves, F. A. Berutti, K. Gajda-Schrantz, C. P. Bergmann, T. Graule, and F. Clemens . Electrospun TiO2 Fiber Composite Photoelectrodes for Water Splitting. ACS Applied Materials & Interfaces 2013, 5 (22) , 11747-11755. https://doi.org/10.1021/am403437q
  22. Xiuzhen Zheng, Sugang Meng, Jing Chen, Jinxiu Wang, Jiangjun Xian, Yu Shao, Xianzhi Fu, and Danzhen Li . Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes. The Journal of Physical Chemistry C 2013, 117 (41) , 21263-21273. https://doi.org/10.1021/jp404519j
  23. Yucheng Yang, Junwei Wen, Jianhong Wei, Rui Xiong, Jing Shi, and Chunxu Pan . Polypyrrole-Decorated Ag-TiO2 Nanofibers Exhibiting Enhanced Photocatalytic Activity under Visible-Light Illumination. ACS Applied Materials & Interfaces 2013, 5 (13) , 6201-6207. https://doi.org/10.1021/am401167y
  24. Hye Won Jeong, Tae Hwa Jeon, Jum Suk Jang, Wonyong Choi, and Hyunwoong Park . Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance. The Journal of Physical Chemistry C 2013, 117 (18) , 9104-9112. https://doi.org/10.1021/jp400415m
  25. Yiseul Park, Wooyul Kim, Damián Monllor-Satoca, Takashi Tachikawa, Tetsuro Majima, and Wonyong Choi . Role of Interparticle Charge Transfers in Agglomerated Photocatalyst Nanoparticles: Demonstration in Aqueous Suspension of Dye-Sensitized TiO2. The Journal of Physical Chemistry Letters 2013, 4 (1) , 189-194. https://doi.org/10.1021/jz301881d
  26. Thushara J. Athauda, Jonathan G. Neff, Logan Sutherlin, Umaiz Butt, and Ruya R. Ozer . Systematic Study of the Structure–Property Relationships of Branched Hierarchical TiO2/ZnO Nanostructures. ACS Applied Materials & Interfaces 2012, 4 (12) , 6917-6926. https://doi.org/10.1021/am302061z
  27. Zhenfeng Bian, Takashi Tachikawa, Wooyul Kim, Wonyong Choi, and Tetsuro Majima . Superior Electron Transport and Photocatalytic Abilities of Metal-Nanoparticle-Loaded TiO2 Superstructures. The Journal of Physical Chemistry C 2012, 116 (48) , 25444-25453. https://doi.org/10.1021/jp309683f
  28. Fatma Kayaci, Cagla Ozgit-Akgun, Inci Donmez, Necmi Biyikli, and Tamer Uyar . Polymer–Inorganic Core–Shell Nanofibers by Electrospinning and Atomic Layer Deposition: Flexible Nylon–ZnO Core–Shell Nanofiber Mats and Their Photocatalytic Activity. ACS Applied Materials & Interfaces 2012, 4 (11) , 6185-6194. https://doi.org/10.1021/am3017976
  29. Tieping Cao, Yuejun Li, Changhua Wang, Changlu Shao, and Yichun Liu . A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity. Langmuir 2011, 27 (6) , 2946-2952. https://doi.org/10.1021/la104195v
  30. Huilin Hou, Linli Xu, Weiyou Yang, Wai-Yeung Wong. Applications of 1D Mesoporous Inorganic Nanomaterials in Photocatalysis. 2022,,, 143-156. https://doi.org/10.1007/978-3-030-89105-3_8
  31. Xiao-Qiong Wu, Nouman R. Mirza, Zhen Huang, Jianhua Zhang, Yu-Ming Zheng, Jun Xiang, Zongli Xie. Enhanced desalination performance of aluminium fumarate MOF-incorporated electrospun nanofiber membrane with bead-on-string structure for membrane distillation. Desalination 2021, 520 , 115338. https://doi.org/10.1016/j.desal.2021.115338
  32. R.N. Araujo, E.P. Nascimento, H.C.T. Firmino, D.A. Macedo, G.A. Neves, M.A. Morales, R.R. Menezes. α-Fe2O3 fibers: An efficient photocatalyst for dye degradation under visible light. Journal of Alloys and Compounds 2021, 882 , 160683. https://doi.org/10.1016/j.jallcom.2021.160683
  33. Sorayya Mirmohammad Sadeghi, Mohammadreza Vaezi, Asghar Kazemzadeh, Roghayeh Jamjah. 3D networks of TiO2 nanofibers fabricated by sol-gel/electrospinning/calcination combined method: Valuation of morphology and surface roughness parameters. Materials Science and Engineering: B 2021, 271 , 115254. https://doi.org/10.1016/j.mseb.2021.115254
  34. I. Shepa, E. Mudra, J. Dusza. Electrospinning through the prism of time. Materials Today Chemistry 2021, 21 , 100543. https://doi.org/10.1016/j.mtchem.2021.100543
  35. Martina Rihova, Oksana Yurkevich, Martin Motola, Ludek Hromadko, Zdenek Spotz, Raul Zazpe, Mato Knez, Jan M. Macak. ALD coating of centrifugally spun polymeric fibers and postannealing: case study for nanotubular TiO 2 photocatalyst. Nanoscale Advances 2021, 3 (15) , 4589-4596. https://doi.org/10.1039/D1NA00288K
  36. Feiyan Xu, Haiyan Tan, Jiajie Fan, Bei Cheng, Jiaguo Yu, Jingsan Xu. Electrospun TiO 2 ‐Based Photocatalysts. Solar RRL 2021, 5 (6) , 2000571. https://doi.org/10.1002/solr.202000571
  37. Wan-Tae Kim, Dong-Cheol Park, Wan-Hee Yang, Churl-Hee Cho, Won-Youl Choi. Effects of Electrospinning Parameters on the Microstructure of PVP/TiO2 Nanofibers. Nanomaterials 2021, 11 (6) , 1616. https://doi.org/10.3390/nano11061616
  38. Jie Wang, Zhengang Sun, Xiaoyi Jiang, Qing Yuan, Dapeng Dong, Peng Zhang, Zhenyi Zhang. Uniform decoration of UiO-66-NH 2 nanooctahedra on TiO 2 electrospun nanofibers for enhancing photocatalytic H 2 production based on multi-step interfacial charge transfer. Dalton Transactions 2021, 50 (18) , 6152-6160. https://doi.org/10.1039/D1DT00743B
  39. Min Dong, Qing-Hao Li, Ru Li, Yu-Qian Cui, Xiao-Xiong Wang, Jian-Qiang Yu, Yun-Ze Long. Efficient under visible catalysts from electrospun flexible Ag2S/TiO2 composite fiber membrane. Journal of Materials Science 2021, 56 (13) , 7966-7981. https://doi.org/10.1007/s10853-021-05796-3
  40. Siew Siang Lee, Hongwei Bai, Song Cherng Chua, Kang Wei Lee, Darren Delai Sun. Electrospun Bi3+/TiO2 nanofibers for concurrent photocatalytic H2 and clean water production from glycerol under solar irradiation: A systematic study. Journal of Cleaner Production 2021, 298 , 126671. https://doi.org/10.1016/j.jclepro.2021.126671
  41. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Sadaqat, A. Demir Korkmaz, N.A. Algarou, H. Aydın, A. Baykal, Muhammet S. Toprak. Review on functional bi-component nanocomposites based on hard/soft ferrites: Structural, magnetic, electrical and microwave absorption properties. Nano-Structures & Nano-Objects 2021, 26 , 100728. https://doi.org/10.1016/j.nanoso.2021.100728
  42. Belisa A. Marinho, Selene M. A. Guelli U. de Souza, Antônio Augusto U. de Souza, Dachamir Hotza. Electrospun TiO2 nanofibers for water and wastewater treatment: a review. Journal of Materials Science 2021, 56 (9) , 5428-5448. https://doi.org/10.1007/s10853-020-05610-6
  43. Mengying Long, Yu Ma, Chao Yang, Runnan Zhang, Zhongyi Jiang. Superwetting membranes: from controllable constructions to efficient separations. Journal of Materials Chemistry A 2021, 9 (3) , 1395-1417. https://doi.org/10.1039/D0TA10280F
  44. Xiaoling Lang, Saianand Gopalan, Wanlin Fu, Seeram Ramakrishna. Photocatalytic Water Splitting Utilizing Electrospun Semiconductors for Solar Hydrogen Generation: Fabrication, Modification and Performance. Bulletin of the Chemical Society of Japan 2021, 94 (1) , 8-20. https://doi.org/10.1246/bcsj.20200175
  45. Narendra Singh, Raju Kumar Gupta. Modifications in metal oxide electrospun nanofibers for environmental applications. 2021,,, 621-639. https://doi.org/10.1016/B978-0-12-819611-3.00020-0
  46. C.G. Jothi Prakash, R. Prasanth. TiO2-based devices for energy-related applications. 2021,,, 241-265. https://doi.org/10.1016/B978-0-12-819960-2.00016-X
  47. Afsaneh Faraji, Nasser Mehrdadi, Niyaz Mohammad Mahmoodi, Majid Baghdadi, Alireza Pardakhti. Enhanced photocatalytic activity by synergic action of ZIF-8 and NiFe2O4 under visible light irradiation. Journal of Molecular Structure 2021, 1223 , 129028. https://doi.org/10.1016/j.molstruc.2020.129028
  48. M. Shamshi Hassan. One Pot Synthesis of CoTiO3-TiO2 Composite Nanofibers and its Application in Dye Degradation. 2021,,, 1597-1607. https://doi.org/10.4018/978-1-7998-8591-7.ch066
  49. Tina Harifi, Majid Montazer. Engineered fibrous materials toward solar fuel production and environmental remediation. 2021,,, 261-276. https://doi.org/10.1016/B978-0-12-824381-7.00004-4
  50. Lixin Song, Lei Ning, Jifeng Zhai, Yingli Guan, Huizhen Ke, Xiong Jie. Preparation of ZnO/carbon-TiO2 core-sheath nanofibers film with enhanced photocatalytic properties. Applied Physics A 2020, 126 (12) https://doi.org/10.1007/s00339-020-04136-7
  51. Ali Khalifa, Suhaidi Shafie, WZW Hasan, H.N. Lim, M. Rusop, S.S. Pandey, Ajendra K. Vats, Hussein A. AlSultan, Buda Samaila. Comprehensive performance analysis of dye-sensitized solar cells using single layer TiO2 photoanode deposited using screen printing technique. Optik 2020, 223 , 165595. https://doi.org/10.1016/j.ijleo.2020.165595
  52. Samina Ghafoor, Faryal Aftab, Ali Rauf, Hatice Duran, Katrin Kirchhoff, Salman N. Arshad. P‐doped TiO 2 Nanofibers Decorated with Ag Nanoparticles for Enhanced Photocatalytic Activity under Simulated Solar Light. ChemistrySelect 2020, 5 (44) , 14078-14085. https://doi.org/10.1002/slct.202003287
  53. Ning Fu, Xue-chang Ren. Synthesis of Double-Shell Hollow [email protected] Nanoparticles With Enhanced Photocatalytic Activities. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.578847
  54. Huilin Hou, Gang Shao, Weiyou Yang, Wai-Yeung Wong. One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Progress in Materials Science 2020, 113 , 100671. https://doi.org/10.1016/j.pmatsci.2020.100671
  55. Hany M. Abd El-Lateef, Ibrahim M.A. Mohamed, Ji-Hua Zhu, Mai M. Khalaf. An efficient synthesis of electrospun TiO2-nanofibers/Schiff base phenylalanine composite and its inhibition behavior for C-steel corrosion in acidic chloride environments. Journal of the Taiwan Institute of Chemical Engineers 2020, 112 , 306-321. https://doi.org/10.1016/j.jtice.2020.06.002
  56. Kaihe Zhou, Min Liu, Xiaming Ye, Yanwei Zhu, Zhoubin Liu, Yueping Yang, Yangqing Dan, Yanfen Yuan, Huilin Hou. Electrospun Highly Crystalline ZnO Nanofibers: Super‐Efficient and Stable Photocatalytic Hydrogen Production Activity. ChemistrySelect 2020, 5 (22) , 6691-6696. https://doi.org/10.1002/slct.202001500
  57. Papada Natsathaporn, Ratchapol Jenjob, Pichaya Pattanasattayavong, Doungporn Yiamsawas, Daniel Crespy. Photocatalytic degradation of pesticides by nanofibrous membranes fabricated by colloid-electrospinning. Nanotechnology 2020, 31 (21) , 215603. https://doi.org/10.1088/1361-6528/ab713d
  58. Vinícius D. Silva, Thiago A. Simões, João P. F. Grilo, Eliton S. Medeiros, Daniel A. Macedo. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. Journal of Materials Science 2020, 55 (15) , 6648-6659. https://doi.org/10.1007/s10853-020-04481-1
  59. Tomasz Kowalczyk. Functional Micro- and Nanofibers Obtained by Nonwoven Post-Modification. Polymers 2020, 12 (5) , 1087. https://doi.org/10.3390/polym12051087
  60. Ajay Kumar Adepu, Suresh Siliveri, Suman Chirra, Srinath Goskula, Sripal Reddy Gujjula, Rajini Anumula, Venkatathri Narayanan. A novel porous Fe3O4/Titanosilicate/g-C3N4 ternary nanocomposites: Synthesis, characterization and their enhanced photocatalytic activity on Rhodamine B degradation under sunlight irradiation. Journal of Water Process Engineering 2020, 34 , 101141. https://doi.org/10.1016/j.jwpe.2020.101141
  61. Nikolay V. Ryzhkov, Veronika Yu. Yurova, Sviatlana A. Ulasevich, Ekaterina V. Skorb. Photoelectrochemical photocurrent switching effect on a pristine anodized Ti/TiO 2 system as a platform for chemical logic devices. RSC Advances 2020, 10 (21) , 12355-12359. https://doi.org/10.1039/D0RA00205D
  62. Md Moniruddin, Branden Meusling, Robin Dupre, Dominick J. Casadonte, Nurxat Nuraje. Nanoassembly of perovskite-based photocatalysts in a nanoconfined system for photocatalytic H2 production under visible light. Molecular Catalysis 2020, 483 , 110719. https://doi.org/10.1016/j.mcat.2019.110719
  63. Hadeel T. Khudhair, Raad S. Sabry, Muhsin A. Kudhier. Synthesis of hierarchical TiO 2 nanofiber as a high-efficient photocatalyst material. International Journal of Environmental Analytical Chemistry 2020, 34 , 1-13. https://doi.org/10.1080/03067319.2020.1730339
  64. Ataf Ali Altaf, Muneeb Ahmed, Muhammad Hamayun, Samia Kausar, Muhammad Waqar, Amin Badshah. Titania nano-fibers: A review on synthesis and utilities. Inorganica Chimica Acta 2020, 501 , 119268. https://doi.org/10.1016/j.ica.2019.119268
  65. Amel Boudjemaa, Nabila Cherifi. Photocatalytic Systems for Carbon Dioxide Conversion to Hydrocarbons. 2020,,, 63-89. https://doi.org/10.1007/978-3-030-28622-4_4
  66. Baoshun Liu, Xiujian Zhao, Ivan P. Parkin, Kazuya Nakata. Charge carrier transfer in photocatalysis. 2020,,, 103-159. https://doi.org/10.1016/B978-0-08-102890-2.00004-X
  67. Sarita P. Patil, Sandhya A. Jagadale. Ferrites for electrocatalytic water splitting applications. 2020,,, 123-145. https://doi.org/10.1016/B978-0-12-819237-5.00006-7
  68. Guocheng Huang, Xueyan Liu, Shuangru Shi, Sitan Li, Zhengtao Xiao, Weiqian Zhen, Shengwei Liu, Po Keung Wong. Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals. Chinese Journal of Catalysis 2020, 41 (1) , 50-61. https://doi.org/10.1016/S1872-2067(19)63424-8
  69. Fail Sultanov, Chingis Daulbayev, Baglan Bakbolat, Olzhas Daulbayev, Magdalena Bigaj, Zulkhair Mansurov, Kairat Kuterbekov, Kenzhebatyr Bekmyrza. Aligned composite SrTiO3/PAN fibers as 1D photocatalyst obtained by electrospinning method. Chemical Physics Letters 2019, 737 , 136821. https://doi.org/10.1016/j.cplett.2019.136821
  70. Peng Zhao, Peipei Huo, Xinxu Han, Bo Liu. Enhanced photodegradation activity of electrospun porous TiO 2 fibers. Functional Materials Letters 2019, 12 (06) , 1941002. https://doi.org/10.1142/S1793604719410029
  71. Changheon Kim, Jongsung Park, Gunho Kim, Sukho Lee, Dohyung Kim, Hyuk-Ryeol Park, Jae Sung Yun, Cheolhyun Lim. Fluorine-mediated porosity and crystal-phase tailoring of meso-macroporous F TiO2 nanofibers and their enhanced photocatalytic performance. Thin Solid Films 2019, 689 , 137523. https://doi.org/10.1016/j.tsf.2019.137523
  72. Xiao-Qiong Wu, Zai-Dong Shao, Qing Liu, Zongli Xie, Fei Zhao, Yu-Ming Zheng. Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water. Journal of Colloid and Interface Science 2019, 553 , 156-166. https://doi.org/10.1016/j.jcis.2019.06.019
  73. Na, Kim, Song, Choi. Magnetic Properties of NiZn Ferrite Nanofibers Prepared by Electrospinning. Applied Sciences 2019, 9 (20) , 4297. https://doi.org/10.3390/app9204297
  74. Yanan Wu, Yingyi Fu, Li Zhang, Yuanhang Ren, Xueying Chen, Bin Yue, Heyong He. Study of Oxygen Vacancies on Different Facets of Anatase TiO 2. Chinese Journal of Chemistry 2019, 37 (9) , 922-928. https://doi.org/10.1002/cjoc.201900188
  75. Hanieh Mohammad-Salehi, Masood Hamadanian, Hossein Safardoust-Hojaghan. Visible-Light Induced Photodegradation of Methyl Orange via Palladium Nanoparticles Anchored to Chrome and Nitrogen Doped TiO2 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials 2019, 29 (5) , 1457-1465. https://doi.org/10.1007/s10904-019-01109-z
  76. Joshua Zheyan Soo, Kian Mun Lee, Bee Chin Ang, Boon Hoong Ong. Optimal Electrospun TiO 2 Nanofiber Photocatalytic Performance via Synergistic Morphology and Particle Crystallinity with Anatase/Rutile Phase Tuning. physica status solidi (a) 2019, 216 (16) , 1900066. https://doi.org/10.1002/pssa.201900066
  77. Zhao-Hui Ruan, Yu-Dong Li, Yuan Yuan, Kai-Feng Lin, He-Ping Tan. Energy-absorption-based explanation of the photocatalytic activity enhancement mechanism of TiO2 nanofibers. International Journal of Hydrogen Energy 2019, 44 (39) , 21569-21576. https://doi.org/10.1016/j.ijhydene.2019.06.083
  78. Sakar, Prakash, Do. Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts 2019, 9 (8) , 680. https://doi.org/10.3390/catal9080680
  79. Moaaed Motlak, A.M. Hamza, Mohammed Gh. Hammed, Nasser A.M. Barakat. Cd-doped TiO2 nanofibers as effective working electrode for the dye sensitized solar cells. Materials Letters 2019, 246 , 206-209. https://doi.org/10.1016/j.matlet.2019.03.067
  80. M. Shamshi Hassan. One Pot Synthesis of CoTiO3-TiO2 Composite Nanofibers and its Application in Dye Degradation. International Journal of Chemoinformatics and Chemical Engineering 2019, 8 (2) , 47-56. https://doi.org/10.4018/IJCCE.2019070105
  81. Vinícius D. Silva, Thiago A. Simões, Francisco J.A. Loureiro, Duncan P. Fagg, Filipe M.L. Figueiredo, Eliton S. Medeiros, Daniel A. Macedo. Solution blow spun nickel oxide/carbon nanocomposite hollow fibres as an efficient oxygen evolution reaction electrocatalyst. International Journal of Hydrogen Energy 2019, 44 (29) , 14877-14888. https://doi.org/10.1016/j.ijhydene.2019.04.073
  82. Mina Oveisi, Niyaz Mohammad Mahmoodi, Mokhtar Alinia Asli. Facile and green synthesis of metal-organic framework/inorganic nanofiber using electrospinning for recyclable visible-light photocatalysis. Journal of Cleaner Production 2019, 222 , 669-684. https://doi.org/10.1016/j.jclepro.2019.03.066
  83. Jyoti Prakash Dhal, Shraban Kumar Sahoo, Sandip Padhiari, Tapan Dash, Garudadhwaj Hota. In-situ synthesis of mixed phase electrospun TiO2 nanofibers: a novel visible light photocatalyst. SN Applied Sciences 2019, 1 (3) https://doi.org/10.1007/s42452-019-0261-6
  84. Vinícius D. Silva, Luciena S. Ferreira, Thiago A. Simões, Eliton S. Medeiros, Daniel A. Macedo. 1D hollow MFe2O4 (M = Cu, Co, Ni) fibers by Solution Blow Spinning for oxygen evolution reaction. Journal of Colloid and Interface Science 2019, 540 , 59-65. https://doi.org/10.1016/j.jcis.2019.01.003
  85. Heike M Herold, Tamara B Aigner, Carolin E Grill, Stefanie Krüger, Andreas Taubert, Thomas Scheibel. SpiderMAEn: recombinant spider silk-based hybrid materials for advanced energy technology. Bioinspired, Biomimetic and Nanobiomaterials 2019, 8 (1) , 99-108. https://doi.org/10.1680/jbibn.18.00007
  86. Zahra Komeily-Nia, Majid Montazer, Pejman Heidarian, Bijan Nasri-Nasrabadi. Smart photoactive soft materials for environmental cleaning and energy production through incorporation of nanophotocatalyst on polymers and textiles. Polymers for Advanced Technologies 2019, 30 (2) , 235-253. https://doi.org/10.1002/pat.4480
  87. Ling Yuan, Shuangwei Lu, Feng Yang, Yushu Wang, Yongfang Jia, Mayameen S. Kadhim, Yanmei Yu, Yong Zhang, Yong Zhao. A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity. Journal of Materials Science 2019, 54 (4) , 3174-3186. https://doi.org/10.1007/s10853-018-3051-4
  88. Joshua Zheyan Soo, Bee Chin Ang, Boon Hoong Ong. Influence of calcination on the morphology and crystallinity of titanium dioxide nanofibers towards enhancing photocatalytic dye degradation. Materials Research Express 2019, 6 (2) , 025039. https://doi.org/10.1088/2053-1591/aaf013
  89. Leah K. Bartel, Daniel A. Hunter, Kayla B. Anderson, W. Yau, Ji Wu, Worlanyo E. Gato. Short-term evaluation of hepatic toxicity of titanium dioxide nanofiber (TDNF). Drug and Chemical Toxicology 2019, 42 (1) , 35-42. https://doi.org/10.1080/01480545.2018.1459671
  90. Jingsheng Cai, Jiali Shen, Xinnan Zhang, Yun Hau Ng, Jianying Huang, Wenxi Guo, Changjian Lin, Yuekun Lai. Light-Driven Sustainable Hydrogen Production Utilizing TiO 2 Nanostructures: A Review. Small Methods 2019, 3 (1) , 1800184. https://doi.org/10.1002/smtd.201800184
  91. Petronela Pascariu, Anton Airinei, Felicia Iacomi, Stefan Bucur, Mirela Petruta Suchea. Electrospun TiO2-based nanofiber composites and their bio-related and environmental applications. 2019,,, 307-321. https://doi.org/10.1016/B978-0-12-814401-5.00012-8
  92. Lilia Sabantina, Robin Böttjer, Daria Wehlage, Timo Grothe, Michaela Klöcker, Francisco José García-Mateos, José Rodríguez-Mirasol, Tomás Cordero, Andrea Ehrmann. Morphological study of stabilization and carbonization of polyacrylonitrile/TiO 2 nanofiber mats. Journal of Engineered Fibers and Fabrics 2019, 14 , 155892501986224. https://doi.org/10.1177/1558925019862242
  93. I. Shepa, E. Mudra, M. Vojtko, P. Tatarko, V. Girman, O. Milkovic, T. Sopcak, V. Medvecka, J. Dusza. Preparation of highly crystalline titanium-based ceramic microfibers from polymer precursor blend by needle-less electrospinning. Ceramics International 2018, 44 (15) , 17925-17934. https://doi.org/10.1016/j.ceramint.2018.06.268
  94. Okechukwu Clinton Ifegwu, Chimezie Anyakora. The Place of Electrospinning in Separation Science and Biomedical Engineering. 2018,,https://doi.org/10.5772/intechopen.77221
  95. Lijuan Han, Bitao Su, Gang Liu, Zheng Ma, Xingcai An. Synthesis of oxygen vacancy-rich black TiO 2 nanoparticles and the visible light photocatalytic performance. Molecular Catalysis 2018, 456 , 96-101. https://doi.org/10.1016/j.mcat.2018.07.006
  96. Nisha Singh, Vignesh Murugadoss, Sivasankar Nemala, Sudhanshu Mallick, Subramania Angaiah. Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Solar Energy 2018, 171 , 571-579. https://doi.org/10.1016/j.solener.2018.06.095
  97. Lan Li, Lijuan Han, Yuqi Han, Zhiwang Yang, Bitao Su, Ziqiang Lei. Preparation and Enhanced Photocatalytic Properties of 3D Nanoarchitectural ZnO Hollow Spheres with Porous Shells. Nanomaterials 2018, 8 (9) , 687. https://doi.org/10.3390/nano8090687
  98. Monoj Ghosh, Jiawei Liu, Steven S. C. Chuang, Sadhan C. Jana. Fabrication of Hierarchical V 2 O 5 Nanorods on TiO 2 Nanofibers and Their Enhanced Photocatalytic Activity under Visible Light. ChemCatChem 2018, 10 (15) , 3305-3318. https://doi.org/10.1002/cctc.201800172
  99. Dongna Li, Yin Chen, Fen Yin, Lizhi Zhu, Jianing Li, Xiaojun Ma. Facile synthesis of Mn/N-doped TiO2 on wood-based activated carbon fiber as an efficient visible-light-driven photocatalyst. Journal of Materials Science 2018, 53 (16) , 11671-11683. https://doi.org/10.1007/s10853-018-2429-7
  100. Ran Tao, Chengcheng Zhao, Changlu Shao, Xinghua Li, Xiaowei Li, Jian Zhang, Shu Yang, Yichun Liu. Bi2WO6/ZnFe2O4 heterostructures nanofibers: Enhanced visible-light photocatalytic activity and magnetically separable property. Materials Research Bulletin 2018, 104 , 124-133. https://doi.org/10.1016/j.materresbull.2018.03.041
Load more citations