Mechanistic Study of the Selective Methanation of CO over Ru/TiO2 Catalyst: Identification of Active Surface Species and Reaction Pathways

View Author Information
Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece
†Part of the “Alfons Baiker Festschrift”.
* Corresponding author. Tel: +30 2610 969527. Fax: +30 2610 991527. E-mail: [email protected]
Cite this: J. Phys. Chem. C 2011, 115, 4, 1220–1230
Publication Date (Web):November 9, 2010
https://doi.org/10.1021/jp106538z
Copyright © 2010 American Chemical Society
Article Views
3145
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)

Abstract

Selective methanation of CO can be used as the final purification step of re-formate gas for the generation of hydrogen-rich gas streams suitable for PEM fuel cell applications. In the present study, the adsorption/desorption characteristics of reactants, the nature of active sites, and the mechanism of CO/CO2 hydrogenation reactions have been investigated over 5% Ru/TiO2 catalyst with the use of in situ FTIR and temperature-programmed techniques. Results show that adsorption of hydrogen and CO are activated processes. The amount of adsorbed hydrogen increases by a factor of 2 with the increase of adsorption temperature from 25 to 200 °C, mainly due to migration of hydrogen atoms from the metal to the support. Adsorbed CO species evolve during TPD in the form of CO2, which is produced via the Boudouard and water−gas shift (WGS) reactions. Adsorption of CO2 occurs via formation of formate and carbonate species associated with the support whereas in the presence of H2 part of these species are converted to Ru-bonded carbonyls via the RWGS reaction at the metal−support interface. Depending on the experimental conditions employed, interaction of CO-containing gas mixtures with the catalyst surface results in the development of a variety of bands in the ν(CO) region attributed to mono- and multicarbonyl species adsorbed on reduced ruthenium crystallites (Rux sites), partially oxidized ruthenium (Run+ sites), and the metal−support interface. Evidence is provided that methanation of CO occurs via two distinct reaction pathways. The first one, which dominates at lower reaction temperatures, involves hydrogenation of surface carbon produced by dissociative adsorption of CO, whereas the second involves hydrogenation of Rux−CO species. The latter pathway is the only one that is operable under conditions of CO2 methanation and proceeds with intermediate formation of Ru-bonded carbonyls at the metal−support interface via the RWGS reaction. Selective methanation of CO in CO/CO2 mixture occurs under conditions where conversion of CO2 is almost completely suppressed because of the kinetically faster hydrogenation of surface carbon, which is produced only in the presence of gas-phase CO.

Cited By


This article is cited by 150 publications.

  1. Biyun Fang, Fangming Liu, Chuanfeng Zhang, Chunyan Li, Jun Ni, Xiuyun Wang, Jianxin Lin, Bingyu Lin, Lilong Jiang. Sacrificial Sucrose Strategy Achieved Enhancement of Ammonia Synthesis Activity over a Ceria-Supported Ru Catalyst. ACS Sustainable Chemistry & Engineering 2021, 9 (27) , 8962-8969. https://doi.org/10.1021/acssuschemeng.1c01275
  2. Wenlong Mo, Xingxiang Wang, Meng Zou, Xianjin Huang, Fengyun Ma, Jianzhang Zhao, Tiansheng Zhao. Influence of Ni Precursors on the Structure, Performance, and Carbon Deposition of Ni-Al2O3 Catalysts for CO Methanation. ACS Omega 2021, 6 (25) , 16373-16380. https://doi.org/10.1021/acsomega.1c00914
  3. Chunyan Li, Fangming Liu, Yuying Shi, Yiping Zheng, Biyun Fang, Jianxin Lin, Jun Ni, Xiuyun Wang, Bingyu Lin, Lilong Jiang. Inducing the Metal–Support Interaction and Enhancing the Ammonia Synthesis Activity of Ceria-Supported Ruthenium Catalyst via N2H4 Reduction. ACS Sustainable Chemistry & Engineering 2021, 9 (13) , 4885-4893. https://doi.org/10.1021/acssuschemeng.1c00468
  4. Bingyu Lin, Biyun Fang, Yuyuan Wu, Chunyan Li, Jun Ni, Xiuyun Wang, Jianxin Lin, Chak-tong Au, Lilong Jiang. Enhanced Ammonia Synthesis Activity of Ceria-Supported Ruthenium Catalysts Induced by CO Activation. ACS Catalysis 2021, 11 (3) , 1331-1339. https://doi.org/10.1021/acscatal.0c05074
  5. Caihong Fang, Xiaomin Jiang, Jinwu Hu, Jiaojiao Song, Na Sun, Deliang Zhang, Long Kuai. Ru Nanoworms Loaded TiO2 for Their Catalytic Performances toward CO Oxidation. ACS Applied Materials & Interfaces 2021, 13 (4) , 5079-5087. https://doi.org/10.1021/acsami.0c20181
  6. Muhammad A. Naeem, Dudari B. Burueva, Paula M. Abdala, Nikolai S. Bushkov, Dragos Stoian, Andrey V. Bukhtiyarov, Igor P. Prosvirin, Valerii I. Bukhtiyarov, Kirill V. Kovtunov, Igor V. Koptyug, Alexey Fedorov, Christoph R. Müller. Deciphering the Nature of Ru Sites in Reductively Exsolved Oxides with Electronic and Geometric Metal–Support Interactions. The Journal of Physical Chemistry C 2020, 124 (46) , 25299-25307. https://doi.org/10.1021/acs.jpcc.0c07203
  7. Zhongqi Liu, Yang Lu, Matthew P. Confer, Hao Cui, Junhao Li, Yudong Li, Yifan Wang, Shane C. Street, Evan K. Wujcik, Ruigang Wang. Thermally Stable RuOx–CeO2 Nanofiber Catalysts for Low-Temperature CO Oxidation. ACS Applied Nano Materials 2020, 3 (8) , 8403-8413. https://doi.org/10.1021/acsanm.0c01815
  8. Xiuyun Wang, Lingling Li, Zhongpu Fang, Yongfan Zhang, Jun Ni, Bingyu Lin, Lirong Zheng, Chak-tong Au, Lilong Jiang. Atomically Dispersed Ru Catalyst for Low-Temperature Nitrogen Activation to Ammonia via an Associative Mechanism. ACS Catalysis 2020, 10 (16) , 9504-9514. https://doi.org/10.1021/acscatal.0c00549
  9. Mitsuhiro Inoue, Kaori Miyazaki, Baowang Lu, Chulho Song, Yoshitake Honda, Masazumi Arao, Tsukuru Ohwaki, Masashi Matsumoto, Hideto Imai, Asuka Shima, Yoshitsugu Sone, Ren Chung Peng, Toshiya Shibayanagi, Takayuki Abe. Structure-Sensitivity Factors Based on Highly Active CO2 Methanation Catalysts Prepared via the Polygonal Barrel-Sputtering Method. The Journal of Physical Chemistry C 2020, 124 (18) , 10016-10025. https://doi.org/10.1021/acs.jpcc.0c01666
  10. Qijun Pei, Teng He, Yang Yu, Zijun Jing, Jianping Guo, Lin Liu, Zhitao Xiong, Ping Chen. Liberating Active Metals from Reducible Oxide Encapsulation for Superior Hydrogenation Catalysis. ACS Applied Materials & Interfaces 2020, 12 (6) , 7071-7080. https://doi.org/10.1021/acsami.9b17805
  11. Khairul Naim Ahmad, Siti Aishah Anuar, Wan Nor Roslam Wan Isahak, Masli Irwan Rosli, Mohd Ambar Yarmo. Influences of Calcination Atmosphere on Nickel Catalyst Supported on Mesoporous Graphitic Carbon Nitride Thin Sheets for CO Methanation. ACS Applied Materials & Interfaces 2020, 12 (6) , 7102-7113. https://doi.org/10.1021/acsami.9b18984
  12. Peng Liu, Binran Zhao, Sha Li, Haofeng Shi, Miao Ma, Jingjun Lu, Fan Yang, Xiaonan Deng, Xianzhi Jia, Xiaoxun Ma, Xiaoliang Yan. Influence of the Microstructure of Ni–Co Bimetallic Catalyst on CO Methanation. Industrial & Engineering Chemistry Research 2020, 59 (5) , 1845-1854. https://doi.org/10.1021/acs.iecr.9b05951
  13. Bingyu Lin, Lan Heng, Haiyun Yin, Biyun Fang, Jun Ni, Xiuyun Wang, Jianxin Lin, Lilong Jiang. Effects of Using Carbon-Coated Alumina as Support for Ba-Promoted Ru Catalyst in Ammonia Synthesis. Industrial & Engineering Chemistry Research 2019, 58 (24) , 10285-10295. https://doi.org/10.1021/acs.iecr.9b01610
  14. Bingyu Lin, Lan Heng, Biyun Fang, Haiyun Yin, Jun Ni, Xiuyun Wang, Jianxin Lin, Lilong Jiang. Ammonia Synthesis Activity of Alumina-Supported Ruthenium Catalyst Enhanced by Alumina Phase Transformation. ACS Catalysis 2019, 9 (3) , 1635-1644. https://doi.org/10.1021/acscatal.8b03554
  15. Guowu Zhan and Hua Chun Zeng . ZIF-67-Derived Nanoreactors for Controlling Product Selectivity in CO2 Hydrogenation. ACS Catalysis 2017, 7 (11) , 7509-7519. https://doi.org/10.1021/acscatal.7b01827
  16. Jianwei Liu, David Hibbitts, and Enrique Iglesia . Dense CO Adlayers as Enablers of CO Hydrogenation Turnovers on Ru Surfaces. Journal of the American Chemical Society 2017, 139 (34) , 11789-11802. https://doi.org/10.1021/jacs.7b04606
  17. Paraskevi Panagiotopoulou and Xenophon E. Verykios . Mechanistic Study of the Selective Methanation of CO over Ru/TiO2 Catalysts: Effect of Metal Crystallite Size on the Nature of Active Surface Species and Reaction Pathways. The Journal of Physical Chemistry C 2017, 121 (9) , 5058-5068. https://doi.org/10.1021/acs.jpcc.6b12091
  18. Denise Heyl, Uwe Rodemerck, and Ursula Bentrup . Mechanistic Study of Low-Temperature CO2 Hydrogenation over Modified Rh/Al2O3 Catalysts. ACS Catalysis 2016, 6 (9) , 6275-6284. https://doi.org/10.1021/acscatal.6b01295
  19. Sophie Carenco, Capucine Sassoye, Marco Faustini, Pierre Eloy, Damien P. Debecker, Hendrik Bluhm, and Miquel Salmeron . The Active State of Supported Ruthenium Oxide Nanoparticles during Carbon Dioxide Methanation. The Journal of Physical Chemistry C 2016, 120 (28) , 15354-15361. https://doi.org/10.1021/acs.jpcc.6b06313
  20. Sudhanshu Sharma, K. B. Sravan Kumar, Yash M. Chandnani, V. Sai Phani Kumar, Bhanu P. Gangwar, Aditi Singhal, and Parag A. Deshpande . Mechanistic Insights into CO2 Methanation over Ru-Substituted CeO2. The Journal of Physical Chemistry C 2016, 120 (26) , 14101-14112. https://doi.org/10.1021/acs.jpcc.6b03224
  21. A. R. Ardiyanti, M. V. Bykova, S. A. Khromova, W. Yin, R. H. Venderbosch, V. A. Yakovlev, and H. J. Heeres . Ni-Based Catalysts for the Hydrotreatment of Fast Pyrolysis Oil. Energy & Fuels 2016, 30 (3) , 1544-1554. https://doi.org/10.1021/acs.energyfuels.5b02223
  22. Xiang Wang, Hui Shi, Ja Hun Kwak, and János Szanyi . Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies. ACS Catalysis 2015, 5 (11) , 6337-6349. https://doi.org/10.1021/acscatal.5b01464
  23. Ali M. Abdel-Mageed, D. Widmann, S. E. Olesen, I. Chorkendorff, J. Biskupek, and R. J. Behm . Selective CO Methanation on Ru/TiO2 Catalysts: Role and Influence of Metal–Support Interactions. ACS Catalysis 2015, 5 (11) , 6753-6763. https://doi.org/10.1021/acscatal.5b01520
  24. José L. C. Fajín, José R. B. Gomes, and M. Natália D. S. Cordeiro . Mechanistic Study of Carbon Monoxide Methanation over Pure and Rhodium- or Ruthenium-Doped Nickel Catalysts. The Journal of Physical Chemistry C 2015, 119 (29) , 16537-16551. https://doi.org/10.1021/acs.jpcc.5b01837
  25. Jenny Schneider, Masaya Matsuoka, Masato Takeuchi, Jinlong Zhang, Yu Horiuchi, Masakazu Anpo, and Detlef W. Bahnemann . Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews 2014, 114 (19) , 9919-9986. https://doi.org/10.1021/cr5001892
  26. Shi-Tong Zhang, Chang-Ming Li, Hong Yan, Min Wei, David G. Evans, and Xue Duan . Density Functional Theory Study on the Metal–Support Interaction between Ru Cluster and Anatase TiO2(101) Surface. The Journal of Physical Chemistry C 2014, 118 (7) , 3514-3522. https://doi.org/10.1021/jp409627p
  27. Jiaying Zhang, Zhong Xin, Xin Meng, Yuhao Lv, and Miao Tao . Effect of MoO3 on Structures and Properties of Ni-SiO2 Methanation Catalysts Prepared by the Hydrothermal Synthesis Method. Industrial & Engineering Chemistry Research 2013, 52 (41) , 14533-14544. https://doi.org/10.1021/ie401708h
  28. Jiajian Gao, Chunmiao Jia, Jing Li, Fangna Gu, Guangwen Xu, Ziyi Zhong, and Fabing Su . Nickel Catalysts Supported on Barium Hexaaluminate for Enhanced CO Methanation. Industrial & Engineering Chemistry Research 2012, 51 (31) , 10345-10353. https://doi.org/10.1021/ie300566n
  29. Christos Chatzilias, Eftychia Martino, Sotirios Tsatsos, Georgios Kyriakou, Alexandros Katsaounis, Constantinos G. Vayenas. Kinetic study of CO2 hydrogenation on Ru/ YSZ catalyst using a monolithic electropromoted reactor (MEPR). Chemical Engineering Journal 2022, 430 , 132967. https://doi.org/10.1016/j.cej.2021.132967
  30. Xiaoyu Li, Yujia Han, Yike Huang, Jian Lin, Xiaoli Pan, Ziang Zhao, Yanliang Zhou, Hua Wang, Xiaofeng Yang, Aiqin Wang, Lin Li, Botao Qiao, Xiaodong Wang. Hydrogenated TiO2 supported Ru for selective methanation of CO in practical conditions. Applied Catalysis B: Environmental 2021, 298 , 120597. https://doi.org/10.1016/j.apcatb.2021.120597
  31. Adrián Quindimil, M. Carmen Bacariza, José A. González-Marcos, Carlos Henriques, Juan R. González-Velasco. Enhancing the CO2 methanation activity of γ-Al2O3 supported mono- and bi-metallic catalysts prepared by glycerol assisted impregnation. Applied Catalysis B: Environmental 2021, 296 , 120322. https://doi.org/10.1016/j.apcatb.2021.120322
  32. I. Hussain, A.A. Jalil, N.S. Hassan, M. Farooq, M.A. Mujtaba, M.Y.S. Hamid, H.M.A. Sharif, W. Nabgan, M.A.H. Aziz, AHK Owgi. Contemporary thrust and emerging prospects of catalytic systems for substitute natural gas production by CO methanation. Fuel 2021, 258 , 122604. https://doi.org/10.1016/j.fuel.2021.122604
  33. Sergio López-Rodríguez, Arantxa Davó-Quiñonero, Esther Bailón-García, Dolores Lozano-Castelló, Agustín Bueno-López. Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation. Molecular Catalysis 2021, 515 , 111911. https://doi.org/10.1016/j.mcat.2021.111911
  34. Chunyan Li, Yuying Shi, Zecheng Zhang, Jun Ni, Xiuyun Wang, Jianxin Lin, Bingyu Lin, Lilong Jiang. Improving the ammonia synthesis activity of Ru/CeO2 through enhancement of the metal–support interaction. Journal of Energy Chemistry 2021, 60 , 403-409. https://doi.org/10.1016/j.jechem.2021.01.031
  35. Andoni Ugartemendia, Kristien Peeters, Piero Ferrari, Abel Cózar, Jose M. Mercero, Ewald Janssens, Elisa Jimenez‐Izal. Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning. ChemPhysChem 2021, 22 (15) , 1603-1610. https://doi.org/10.1002/cphc.202100407
  36. Shilong Chen, Ali M. Abdel-Mageed, Mengru Li, Sebastian Cisneros, Joachim Bansmann, Jabor Rabeah, Angelika Brückner, Axel Groß, R. Jürgen Behm. Electronic metal-support interactions and their promotional effect on CO2 methanation on Ru/ZrO2 catalysts. Journal of Catalysis 2021, 400 , 407-420. https://doi.org/10.1016/j.jcat.2021.06.028
  37. R. Davì, G. Carraro, M. Stojkovska, M. Smerieri, L. Savio, M. Lewandowski, J.-J. Gallet, F. Bournel, M. Rocca, L. Vattuone. Graphene growth on Ni (1 1 1) by CO exposure at near ambient pressure. Chemical Physics Letters 2021, 774 , 138596. https://doi.org/10.1016/j.cplett.2021.138596
  38. Jan Ilsemann, Mangir M. Murshed, Thorsten M. Gesing, Jan Kopyscinski, Marcus Bäumer. On the support dependency of the CO 2 methanation – decoupling size and support effects. Catalysis Science & Technology 2021, 11 (12) , 4098-4114. https://doi.org/10.1039/D1CY00399B
  39. Christos Chatzilias, Eftychia Martino, Alexandros Katsaounis, Constantinos G. Vayenas. Electrochemical promotion of CO2 hydrogenation in a monolithic electrochemically promoted reactor (MEPR). Applied Catalysis B: Environmental 2021, 284 , 119695. https://doi.org/10.1016/j.apcatb.2020.119695
  40. Mitsuhiro Inoue, Motohiko Sato, Asuka Shima, Hironori Nakajima, Yoshitsugu Sone, Takayuki Abe. Practical Application Study of Highly Active CO2 Methanation Catalysts Prepared Using the Polygonal Barrel-Sputtering Method: Immobilization of Catalyst Particles. Catalysis Letters 2021, 40 https://doi.org/10.1007/s10562-021-03623-7
  41. Sebastian Cisneros, Shilong Chen, Thomas Diemant, Joachim Bansmann, Ali M. Abdel-Mageed, Michael Goepel, Sine E. Olesen, Eike S. Welter, Magdalena Parlinska-Wojtan, Roger Gläser, Ib Chorkendorff, R. Jürgen Behm. Effects of SiO2-doping on high-surface-area Ru/TiO2 catalysts for the selective CO methanation. Applied Catalysis B: Environmental 2021, 282 , 119483. https://doi.org/10.1016/j.apcatb.2020.119483
  42. Maria Hatzisymeon, Athanasia Petala, Paraskevi Panagiotopoulou. Carbon Dioxide Hydrogenation over Supported Ni and Ru Catalysts. Catalysis Letters 2021, 151 (3) , 888-900. https://doi.org/10.1007/s10562-020-03355-0
  43. András Erdőhelyi. Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts. Catalysts 2021, 11 (2) , 159. https://doi.org/10.3390/catal11020159
  44. Parisa Shafiee, Seyed Mehdi Alavi, Mehran Rezaei. Solid-state synthesis method for the preparation of cobalt doped Ni–Al2O3 mesoporous catalysts for CO2 methanation. International Journal of Hydrogen Energy 2021, 46 (5) , 3933-3944. https://doi.org/10.1016/j.ijhydene.2020.10.221
  45. Shuaishuai Lyu, Qingpeng Cheng, Yunhao Liu, Ye Tian, Tong Ding, Zheng Jiang, Jing Zhang, Fei Gao, Lin Dong, Jun Bao, Qingxiang Ma, Quan-Hong Yang, Xingang Li. Dopamine sacrificial coating strategy driving formation of highly active surface-exposed Ru sites on Ru/TiO2 catalysts in Fischer–Tropsch synthesis. Applied Catalysis B: Environmental 2020, 278 , 119261. https://doi.org/10.1016/j.apcatb.2020.119261
  46. Magdalena Brzezinska, Johannes Niemeier, Yannik Louven, Nicolas Keller, Regina Palkovits, Agnieszka M. Ruppert. TiO 2 supported Ru catalysts for the hydrogenation of succinic acid: influence of the support. Catalysis Science & Technology 2020, 10 (20) , 6860-6869. https://doi.org/10.1039/D0CY01446J
  47. Monique B. Figueirêdo, Robertus H. Venderbosch, Peter J. Deuss, Hero Jan Heeres. A Two‐Step Approach for the Conversion of Technical Lignins to Biofuels. Advanced Sustainable Systems 2020, 4 (10) , 1900147. https://doi.org/10.1002/adsu.201900147
  48. Yueyue Jiang, Junyu Lang, Xuechen Wu, Yun Hang Hu. Electronic structure modulating for supported Rh catalysts toward CO2 methanation. Catalysis Today 2020, 356 , 570-578. https://doi.org/10.1016/j.cattod.2020.01.029
  49. Linlin Yan, Jingge Liu, Xianzhou Wang, Caiping Ma, Chenghua Zhang, Hulin Wang, Yuxue Wei, Xiaodong Wen, Yong Yang, Yongwang Li. Ru catalysts supported by Si3N4 for Fischer-Tropsch synthesis. Applied Surface Science 2020, 526 , 146631. https://doi.org/10.1016/j.apsusc.2020.146631
  50. Aliki Kokka, Theodora Ramantani, Athanasia Petala, Paraskevi Panagiotopoulou. Effect of the nature of the support, operating and pretreatment conditions on the catalytic performance of supported Ni catalysts for the selective methanation of CO. Catalysis Today 2020, 355 , 832-843. https://doi.org/10.1016/j.cattod.2019.04.015
  51. Ali M. Abdel-Mageed, Klara Wiese, Magdalena Parlinska-Wojtan, Jabor Rabeah, Angelika Brückner, R. Jürgen Behm. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Applied Catalysis B: Environmental 2020, 270 , 118846. https://doi.org/10.1016/j.apcatb.2020.118846
  52. Ioannis V. Yentekakis, Fan Dong. Grand Challenges for Catalytic Remediation in Environmental and Energy Applications Toward a Cleaner and Sustainable Future. Frontiers in Environmental Chemistry 2020, 1 https://doi.org/10.3389/fenvc.2020.00005
  53. Cristina Cerdá-Moreno, Antonio Chica, Sonja Keller, Christine Rautenberg, Ursula Bentrup. Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS. Applied Catalysis B: Environmental 2020, 264 , 118546. https://doi.org/10.1016/j.apcatb.2019.118546
  54. Aliki Kokka, Athanasia Katsoni, Ioannis V. Yentekakis, Paraskevi Panagiotopoulou. Hydrogen production via steam reforming of propane over supported metal catalysts. International Journal of Hydrogen Energy 2020, 45 (29) , 14849-14866. https://doi.org/10.1016/j.ijhydene.2020.03.194
  55. Jin Zhang, Linjuan Pei, Jie Wang, Pengqi Zhu, Xianmo Gu, Zhanfeng Zheng. Differences in the selective reduction mechanism of 4-nitroacetophenone catalysed by rutile- and anatase-supported ruthenium catalysts. Catalysis Science & Technology 2020, 10 (5) , 1518-1528. https://doi.org/10.1039/C9CY02260K
  56. Kensei Yamada, Shuhei Ogo, Ryota Yamano, Takuma Higo, Yasushi Sekine. Low-temperature Conversion of Carbon Dioxide to Methane in an Electric Field. Chemistry Letters 2020, 49 (3) , 303-306. https://doi.org/10.1246/cl.190930
  57. Pavan Dongapure, Sayan Bagchi, S. Mayadevi, R. Nandini Devi. Variations in activity of Ru/TiO2 and Ru/Al2O3 catalysts for CO2 hydrogenation: An investigation by in-situ infrared spectroscopy studies. Molecular Catalysis 2020, 482 , 110700. https://doi.org/10.1016/j.mcat.2019.110700
  58. Marios Kourtelesis, Kalliopi Kousi, Dimitris I. Kondarides. CO2 Hydrogenation to Methanol over La2O3-Promoted CuO/ZnO/Al2O3 Catalysts: A Kinetic and Mechanistic Study. Catalysts 2020, 10 (2) , 183. https://doi.org/10.3390/catal10020183
  59. Georgios Bampos, Panagiota Bika, Paraskevi Panagiotopoulou, Xenophon E. Verykios. Reactive adsorption of CO from low CO concentrations streams on the surface of Pd/CeO2 catalysts. Applied Catalysis A: General 2019, 588 , 117305. https://doi.org/10.1016/j.apcata.2019.117305
  60. Leonardo Falbo, Carlo G. Visconti, Luca Lietti, János Szanyi. The effect of CO on CO2 methanation over Ru/Al2O3 catalysts: a combined steady-state reactivity and transient DRIFT spectroscopy study. Applied Catalysis B: Environmental 2019, 256 , 117791. https://doi.org/10.1016/j.apcatb.2019.117791
  61. Runze Qin, Hua Chun Zeng. Confined Transformation of UiO‐66 Nanocrystals to Yttria‐Stabilized Zirconia with Hierarchical Pore Structures for Catalytic Applications. Advanced Functional Materials 2019, 29 (39) , 1903264. https://doi.org/10.1002/adfm.201903264
  62. Rohit D. Chavan, Pankaj Yadav, Ajaysing Nimbalkar, Sangram P. Bhoite, Popatrao N. Bhosale, Chang Kook Hong. Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells. Solar Energy 2019, 186 , 156-165. https://doi.org/10.1016/j.solener.2019.04.098
  63. M.B. Figueirêdo, Z. Jotic, P.J. Deuss, R.H. Venderbosch, H.J. Heeres. Hydrotreatment of pyrolytic lignins to aromatics and phenolics using heterogeneous catalysts. Fuel Processing Technology 2019, 189 , 28-38. https://doi.org/10.1016/j.fuproc.2019.02.020
  64. Cheng Cheng, Xilin Zhang, Zongxian Yang. Low-temperature preferential oxidation of CO over Ag monolayer decorated Mo 2 C (MXene) for purifying H 2. Journal of Physics: Condensed Matter 2019, 31 (21) , 215201. https://doi.org/10.1088/1361-648X/ab092c
  65. Shilong Chen, Ali M. Abdel-Mageed, Cornelius Gauckler, Sine E. Olesen, Ib Chorkendorff, R. Jürgen Behm. Selective CO methanation on isostructural Ru nanocatalysts: The role of support effects. Journal of Catalysis 2019, 373 , 103-115. https://doi.org/10.1016/j.jcat.2019.03.015
  66. Panagiota Garbis, Christoph Kern, Andreas Jess. Kinetics and Reactor Design Aspects of Selective Methanation of CO over a Ru/γ-Al2O3 Catalyst in CO2/H2 Rich Gases. Energies 2019, 12 (3) , 469. https://doi.org/10.3390/en12030469
  67. Yong Yan, Yihu Dai, Yanhui Yang, Alexei A. Lapkin. Improved stability of Y2O3 supported Ni catalysts for CO2 methanation by precursor-determined metal-support interaction. Applied Catalysis B: Environmental 2018, 237 , 504-512. https://doi.org/10.1016/j.apcatb.2018.06.021
  68. E. Jiménez-Barrera, P. Bazin, C. Lopez-Cartes, F. Romero-Sarria, M. Daturi, J.A. Odriozola. CO/H2 adsorption on a Ru/Al2O3 model catalyst for Fischer Trospch: Effect of water concentration on the surface species. Applied Catalysis B: Environmental 2018, 237 , 986-995. https://doi.org/10.1016/j.apcatb.2018.06.053
  69. Chanyeon Kim, Seokwon Hyeon, Jonghyeok Lee, Whi Dong Kim, Doh C. Lee, Jihan Kim, Hyunjoo Lee. Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-05542-5
  70. Paraskevi Panagiotopoulou. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: II. Effect of alkali additives on the reaction pathway. Applied Catalysis B: Environmental 2018, 236 , 162-170. https://doi.org/10.1016/j.apcatb.2018.05.028
  71. David O. Kumi, Tumelo N. Phaahlamohlaka, Mbongiseni W. Dlamini, Ian T. Mangezvo, Sabelo D. Mhlanga, Michael S. Scurrell, Neil J. Coville. Effect of a titania covering on CNTS as support for the Ru catalysed selective CO methanation. Applied Catalysis B: Environmental 2018, 232 , 492-500. https://doi.org/10.1016/j.apcatb.2018.02.016
  72. A. Kotsiras, I. Kalaitzidou, D. Grigoriou, A. Symillidis, M. Makri, A. Katsaounis, C.G. Vayenas. Electrochemical promotion of nanodispersed Ru-Co catalysts for the hydrogenation of CO2. Applied Catalysis B: Environmental 2018, 232 , 60-68. https://doi.org/10.1016/j.apcatb.2018.03.031
  73. Athanasia Petala, Paraskevi Panagiotopoulou. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: I. Effect of alkali additives on catalytic activity and selectivity. Applied Catalysis B: Environmental 2018, 224 , 919-927. https://doi.org/10.1016/j.apcatb.2017.11.048
  74. Jing Wang, Changkun Yuan, Nan Yao, Xiaonian Li. Effect of the nanostructure and the surface composition of bimetallic Ni-Ru nanoparticles on the performance of CO methanation. Applied Surface Science 2018, 441 , 816-823. https://doi.org/10.1016/j.apsusc.2018.02.070
  75. Lu Zhang, Zhiming Gao, Lixia Bao, Hongwei Ma. Influence of the supports ZrO 2 on selective methanation of CO over the nickel supported catalysts. International Journal of Hydrogen Energy 2018, 43 (19) , 9287-9295. https://doi.org/10.1016/j.ijhydene.2018.03.185
  76. Jinglei Cui, Jingjing Tan, Yulei Zhu, Fangqin Cheng. Aqueous Hydrogenation of Levulinic Acid to 1,4-Pentanediol over Mo-Modified Ru/Activated Carbon Catalyst. ChemSusChem 2018, 11 (8) , 1316-1320. https://doi.org/10.1002/cssc.201800038
  77. Jingyu Zhou, Hongfang Ma, Fangyu Jin, Haitao Zhang, Weiyong Ying. Mn and Mg dual promoters modified Ni/α-Al2O3 catalysts for high temperature syngas methanation. Fuel Processing Technology 2018, 172 , 225-232. https://doi.org/10.1016/j.fuproc.2017.08.023
  78. Shohei Tada, Akihide Yanagita, Naohiro Shimoda, Tetsuo Honma, Makoto Takahashi, Akane Nariyuki, Shigeo Satokawa. Degradation Factors of Ni/TiO2 Catalysts for Selective CO Methanation: Effect of Loss of Residual Cl on Catalyst. Journal of the Japan Petroleum Institute 2018, 61 (2) , 80-86. https://doi.org/10.1627/jpi.61.80
  79. M.V. Konishcheva, D.I. Potemkin, P.V. Snytnikov, O.A. Stonkus, V.D. Belyaev, V.A. Sobyanin. The insights into chlorine doping effect on performance of ceria supported nickel catalysts for selective CO methanation. Applied Catalysis B: Environmental 2018, 221 , 413-421. https://doi.org/10.1016/j.apcatb.2017.09.038
  80. Shuangshuang Li, Dandan Gong, Honggui Tang, Zhi Ma, Zhao-Tie Liu, Yuan Liu. Preparation of bimetallic [email protected] nanoparticles supported on SiO2 and their catalytic performance for CO methanation. Chemical Engineering Journal 2018, 334 , 2167-2178. https://doi.org/10.1016/j.cej.2017.11.124
  81. Jinlong Zhang, Baozhu Tian, Lingzhi Wang, Mingyang Xing, Juying Lei. Modifications of Photocatalysts by Doping Methods. 2018,,, 197-221. https://doi.org/10.1007/978-981-13-2113-9_8
  82. Xilin Zhang, Zongxian Yang, Ruqian Wu. A Au monolayer on WC(0001) with unexpected high activity towards CO oxidation. Nanoscale 2018, 10 (10) , 4753-4760. https://doi.org/10.1039/C7NR09498A
  83. Alfredo Solis-Garcia, Jose F. Louvier-Hernandez, Armando Almendarez-Camarillo, Juan C. Fierro-Gonzalez. Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni. Applied Catalysis B: Environmental 2017, 218 , 611-620. https://doi.org/10.1016/j.apcatb.2017.06.063
  84. Jian Dou, Yuan Sheng, Catherine Choong, Luwei Chen, Hua Chun Zeng. Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Applied Catalysis B: Environmental 2017, 219 , 580-591. https://doi.org/10.1016/j.apcatb.2017.07.083
  85. Paraskevi Panagiotopoulou. Hydrogenation of CO 2 over supported noble metal catalysts. Applied Catalysis A: General 2017, 542 , 63-70. https://doi.org/10.1016/j.apcata.2017.05.026
  86. Shivani Sharma, Robin Khosla, Dinesh Deva, Hitesh Shrimali, Satinder K. Sharma. Fluorine-chlorine co-doped TiO 2 /CSA doped polyaniline based high performance inorganic/organic hybrid heterostructure for UV photodetection applications. Sensors and Actuators A: Physical 2017, 261 , 94-102. https://doi.org/10.1016/j.sna.2017.04.043
  87. Lina A. Calzada, Sebastian E. Collins, Chang W. Han, Volkan Ortalan, Rodolfo Zanella. Synergetic effect of bimetallic Au-Ru/TiO2 catalysts for complete oxidation of methanol. Applied Catalysis B: Environmental 2017, 207 , 79-92. https://doi.org/10.1016/j.apcatb.2017.01.081
  88. Kalala Jalama. Carbon dioxide hydrogenation over nickel-, ruthenium-, and copper-based catalysts: Review of kinetics and mechanism. Catalysis Reviews 2017, 59 (2) , 95-164. https://doi.org/10.1080/01614940.2017.1316172
  89. Fengyu Li, Lei Li, Xinying Liu, Xiao Cheng Zeng, Zhongfang Chen. High‐Performance Ru 1 /CeO 2 Single‐Atom Catalyst for CO Oxidation: A Computational Exploration. ChemPhysChem 2016, 17 (20) , 3170-3175. https://doi.org/10.1002/cphc.201600540
  90. P. V. Snytnikov, M. M. Zyryanova, V. A. Sobyanin. CO-Cleanup of Hydrogen-Rich Stream for LT PEM FC Feeding: Catalysts and Their Performance in Selective CO Methanation. Topics in Catalysis 2016, 59 (15-16) , 1394-1412. https://doi.org/10.1007/s11244-016-0652-5
  91. Zhicheng Bian, Xin Meng, Miao Tao, YuHao Lv, Zhong Xin. Effect of MoO3 on catalytic performance and stability of the SBA-16 supported Ni-catalyst for CO methanation. Fuel 2016, 179 , 193-201. https://doi.org/10.1016/j.fuel.2016.03.091
  92. Jian Zheng, Chengyang Wang, Wei Chu, Yuanlin Zhou, Klaus Köhler. CO 2 Methanation over Supported Ru/Al 2 O 3 Catalysts: Mechanistic Studies by In situ Infrared Spectroscopy. ChemistrySelect 2016, 1 (12) , 3197-3203. https://doi.org/10.1002/slct.201600651
  93. Chaoxian Wang, Dan Ping, Xinfa Dong, Yingchao Dong, Yunhao Zang. Construction of Ru/Ni-Al-oxide/Ni-foam monolithic catalyst for deep-removing CO in hydrogen-rich gas via selective methanation. Fuel Processing Technology 2016, 148 , 367-371. https://doi.org/10.1016/j.fuproc.2016.03.021
  94. Xiong Su, Jinghua Xu, Binglian Liang, Hongmin Duan, Baolin Hou, Yanqiang Huang. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. Journal of Energy Chemistry 2016, 25 (4) , 553-565. https://doi.org/10.1016/j.jechem.2016.03.009
  95. I. Kalaitzidou, M. Makri, D. Theleritis, A. Katsaounis, C.G. Vayenas. Comparative study of the electrochemical promotion of CO2 hydrogenation on Ru using Na+, K+, H+ and O2− conducting solid electrolytes. Surface Science 2016, 646 , 194-203. https://doi.org/10.1016/j.susc.2015.09.011
  96. Ali M. Abdel-Mageed, S. Eckle, D. Widmann, R.J. Behm. Water assisted dispersion of Ru nanoparticles: The impact of water on the activity and selectivity of supported Ru catalysts during the selective methanation of CO in CO2-rich reformate. Journal of Catalysis 2016, 335 , 79-94. https://doi.org/10.1016/j.jcat.2015.12.013
  97. Jinghua Xu, Xiong Su, Hongmin Duan, Baolin Hou, Qingquan Lin, Xiaoyan Liu, Xiaoli Pan, Guangxian Pei, Haoran Geng, Yanqiang Huang, Tao Zhang. Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. Journal of Catalysis 2016, 333 , 227-237. https://doi.org/10.1016/j.jcat.2015.10.025
  98. Sicong Ma, Weiyu Song, Bing Liu, Huiling Zheng, Jianlin Deng, Wenjia Zhong, Jian Liu, Xue-Qing Gong, Zhen Zhao. Elucidation of the high CO 2 reduction selectivity of isolated Rh supported on TiO 2 : a DFT study. Catalysis Science & Technology 2016, 6 (15) , 6128-6136. https://doi.org/10.1039/C5CY02158H
  99. Dalia Liuzzi, Francisco J. Pérez-Alonso, F. Javier García-García, Federico Calle-Vallejo, José Luis G. Fierro, Sergio Rojas. Identifying the time-dependent predominance regimes of step and terrace sites for the Fischer–Tropsch synthesis on ruthenium based catalysts. Catalysis Science & Technology 2016, 6 (17) , 6495-6503. https://doi.org/10.1039/C6CY00476H
  100. Bin Miao, Su Su Khine Ma, Xin Wang, Haibin Su, Siew Hwa Chan. Catalysis mechanisms of CO 2 and CO methanation. Catalysis Science & Technology 2016, 6 (12) , 4048-4058. https://doi.org/10.1039/C6CY00478D
Load all citations