Further Understanding of the Electronic Interactions between N719 Sensitizer and Anatase TiO2 Films: A Combined X-ray Absorption and X-ray Photoelectron Spectroscopic Study

View Author Information
Materials Engineering, McGill University, Montreal, Canada H3A 2B2
Canadian Light Source Inc., University of Saskatchewan, 101 Perimeter Road, Saskatoon, Canada S7N 0X4
*E-mail [email protected] (K.E.L.); [email protected] (G.P.D.).
Cite this: J. Phys. Chem. C 2011, 115, 13, 5692–5707
Publication Date (Web):March 7, 2011
https://doi.org/10.1021/jp109869z
Copyright © 2011 American Chemical Society
Article Views
1840
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

In this study, the electronic properties of N719 adsorbed onto anatase were comparably investigated by using X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) techniques. Sensitized TiO2 films made from two different nanocrystalline anatase powders were investigated: a commercial one (Solaronix) and our synthetic variety produced through aqueous synthesis. This was done to investigate how our aqueous-produced nanocrystalline anatase substrates compared with commercial products and to observe whether both nanocrystalline anatase anodes behaved in a similar manner in terms of their bonding and electronic interactions. Surface coordination changes to Ti−O groups previously reported via Ti K-edge extended X-ray absorption fine structure (EXAFS) data [using transmission or fluorescence yield (FY)] between the pure TiO2 and the adsorbed state were not observed in our measurements via the Ti L or K X-ray absorption near-edge structure (XANES) (nor EXAFS) data for both substrates via a surface-sensitive detection technique (total electron yield, TEY). This is likely due to the probing depth of TEY mode (5−10 nm), in which the coordination changes that occur to the surface groups, which should in turn affect the XANES spectrum, are not observed at Ti K- or L-edge XANES spectrum. The C and N K-edge XANES spectra of the N719 adsorbed onto two TiO2 films were for the first time evaluated in this work. From the C K-edge XANES data, the spectral changes revealed that additional electronic states occur between dye molecules and TiO2 surface. The C K-edge XANES spectra allowed us to propose that electronic interactions do not only occur through the covalent bonding of the anchoring groups but also through the aromatic electron density of the bipyridine groups and the d states found in TiO2. This was further confirmed via XPS analysis by monitoring the N bipyridine groups before and after sensitization. XPS used in combination with XAS (in TEY mode) provided complementary information owing to its higher surface sensitivity. The Ti 2p and O 1s XPS spectra showed that adsorption of the dye on TiO2 leads to a change of the surface dipole and/or a change in the Fermi level position in the band gap, which shifts all the core levels of TiO2. These are not equal for both TiO2 substrates in spite of them being nanocrystallnine anatase. This effect was found to be greater for the N719−aqueous TiO2 system than the respective Solaronix one. For the N 1s and S 2p XPS, the shift toward higher energy indicated that there exists an additional H-bonding interaction of the NCS ligand of the dye molecule with the TiO2 surface groups (OH/H2O).

Supporting Information

ARTICLE SECTIONS
Jump To

Seven figures showing TEM image of TiO2 particulate, derivatives of Ti K-edge XANES for TiO2 and N719-TiO2, EXAFS spectra of TiO2 and N719-TiO2, C K-edge XANES of bare aqueous TiO2 (organic contaminant) and dyed adsorbed TiO2, XPS spectra for comparison of 8 h and 1 week samples for N719-TiO2, C 1s XPS of bare TiO2 (organic contaminant) for Solaronix and aqueous TiO2, and IV curves of DSSCs fabricated with two different TiO2 electrodes. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 58 publications.

  1. Debajyoti Das, Pronay Makal. CdS Q-Dot-Impregnated TiO2-B Nanowire-Based Photoanodes for Efficient Photovoltaic Conversion in ‘Q-Dot Co-sensitized DSSC’. Energy & Fuels 2021, 35 (9) , 8246-8262. https://doi.org/10.1021/acs.energyfuels.1c00539
  2. Keishiro Tahara, Yuya Ashihara, Takashi Ikeda, Tomofumi Kadoya, Jun-ichi Fujisawa, Yoshiki Ozawa, Hiroyuki Tajima, Noriaki Toyoda, Yuichi Haruyama, Masaaki Abe. Immobilizing a π-Conjugated Catecholato Framework on Surfaces of SiO2 Insulator Films via a One-Atom Anchor of a Platinum Metal Center to Modulate Organic Transistor Performance. Inorganic Chemistry 2020, 59 (24) , 17945-17957. https://doi.org/10.1021/acs.inorgchem.0c02163
  3. Wolf-Dietrich Zabka, Tiziana Musso, Mathias Mosberger, Zbynek Novotny, Roberta Totani, Marcella Iannuzzi, Benjamin Probst, Roger Alberto, Jürg Osterwalder. Comparative Study of the Different Anchoring of Organometallic Dyes on Ultrathin Alumina. The Journal of Physical Chemistry C 2019, 123 (36) , 22250-22260. https://doi.org/10.1021/acs.jpcc.9b05209
  4. Melike Karakus, Wen Zhang, Hans Joachim Räder, Mischa Bonn, and Enrique Cánovas . Electron Transfer from Bi-Isonicotinic Acid Emerges upon Photodegradation of N3-Sensitized TiO2 Electrodes. ACS Applied Materials & Interfaces 2017, 9 (40) , 35376-35382. https://doi.org/10.1021/acsami.7b08986
  5. Li-Qiang Xie, Ding Ding, Meng Zhang, Shu Chen, Zhi Qiu, Jia-Wei Yan, Zhi-Lin Yang, Ming-Shu Chen, Bing-Wei Mao, and Zhong-Qun Tian . Adsorption of Dye Molecules on Single Crystalline Semiconductor Surfaces: An Electrochemical Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy Study. The Journal of Physical Chemistry C 2016, 120 (39) , 22500-22507. https://doi.org/10.1021/acs.jpcc.6b07763
  6. Yu Bai, Iván Mora-Seró, Filippo De Angelis, Juan Bisquert, and Peng Wang . Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews 2014, 114 (19) , 10095-10130. https://doi.org/10.1021/cr400606n
  7. Mukes Kapilashrami, Yanfeng Zhang, Yi-Sheng Liu, Anders Hagfeldt, and Jinghua Guo . Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chemical Reviews 2014, 114 (19) , 9662-9707. https://doi.org/10.1021/cr5000893
  8. Jaspreet Singh, Abhay Gusain, Vibha Saxena, A.K. Chauhan, P. Veerender, S. P. Koiry, P. Jha, Avani Jain, D.K. Aswal, and S. K. Gupta . XPS, UV–Vis, FTIR, and EXAFS Studies to Investigate the Binding Mechanism of N719 Dye onto Oxalic Acid Treated TiO2 and Its Implication on Photovoltaic Properties. The Journal of Physical Chemistry C 2013, 117 (41) , 21096-21104. https://doi.org/10.1021/jp4062994
  9. Mitsunori Honda, Masatoshi Yanagida, Liyuan Han, and Kenjiro Miyano . X-ray Characterization of Dye Adsorption in Coadsorbed Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (33) , 17033-17038. https://doi.org/10.1021/jp404572y
  10. Lilian Ellis-Gibbings, Viktor Johansson, Rick B. Walsh, Lars Kloo, Jamie S. Quinton, and Gunther G. Andersson . Formation of N719 Dye Multilayers on Dye Sensitized Solar Cell Photoelectrode Surfaces Investigated by Direct Determination of Element Concentration Depth Profiles. Langmuir 2012, 28 (25) , 9431-9439. https://doi.org/10.1021/la300077g
  11. Altaf A. Shamsaldeen, Lars Kloo, Yanting Yin, Christopher Gibson, Sunita Gautam Adhikari, Gunther G. Andersson. Influence of TiO 2 surface defects on the adsorption of N719 dye molecules. Physical Chemistry Chemical Physics 2021, 23 (38) , 22160-22173. https://doi.org/10.1039/D1CP02283K
  12. Ha Lim Cha, Seungyoon Seok, Hyun Jo Kim, Suresh Thogiti, Burragoni Sravanthi Goud, Gyuho Shin, Lee Ji Eun, Ganesh Koyyada, Jae Hong Kim. Towards achieving improved efficiency using newly designed dye-sensitized solar cell devices engineered with dye-anchored counter electrodes. Journal of Industrial and Engineering Chemistry 2021, 99 , 117-125. https://doi.org/10.1016/j.jiec.2021.04.014
  13. Sheng-Pei Zhang, Jia-Sheng Lin, Rong-Kun Lin, Petar M. Radjenovic, Wei-Min Yang, Juan Xu, Jin-Chao Dong, Zhi-Lin Yang, Wei Hang, Zhong-Qun Tian, Jian-Feng Li. In situ Raman study of the photoinduced behavior of dye molecules on TiO 2 ( hkl ) single crystal surfaces. Chemical Science 2020, 11 (25) , 6431-6435. https://doi.org/10.1039/D0SC00588F
  14. Lei Yang, Xue Bai, Juan Shi, Xinyu Du, Lu Xu, Pengkang Jin. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants. Applied Catalysis B: Environmental 2019, 256 , 117759. https://doi.org/10.1016/j.apcatb.2019.117759
  15. Lin Guo, Xiaolei Zhang, Peng Li, Rui Han, Yawen Liu, Xiaoxia Han, Bing Zhao. Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO 2 and CdS nanoparticles. New Journal of Chemistry 2019, 43 (1) , 230-237. https://doi.org/10.1039/C8NJ04003F
  16. Mahyar Mohammadnezhad, Gurpreet Singh Selopal, Zhiming M. Wang, Barry Stansfield, Haiguang Zhao, Federico Rosei. Towards Long-Term Thermal Stability of Dye-Sensitized Solar Cells Using Multiwalled Carbon Nanotubes. ChemPlusChem 2018, 83 (7) , 682-690. https://doi.org/10.1002/cplu.201800046
  17. M.O. Silva-Moraes, Y. Garcia-Basabe, R.F.B. de Souza, A.J. Mota, R.R. Passos, D. Galante, H.D. Fonseca Filho, Y. Romaguera-Barcelay, M.L.M. Rocco, W.R. Brito. Geometry-dependent DNA-TiO2 immobilization mechanism: A spectroscopic approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 199 , 349-355. https://doi.org/10.1016/j.saa.2018.03.081
  18. Li Cheng Kao, Yifan Ye, Yi-Sheng Liu, Chung Li Dong, Jinghua Guo, Sofia Ya Hsuan Liou. A facile route for the synthesis of heterogeneous crystal structures in hierarchical architectures with vacancy-driven defects via the oriented attachment growth mechanism. Journal of Materials Chemistry A 2018, 6 (23) , 10663-10673. https://doi.org/10.1039/C8TA01027G
  19. Tristan Petit, Jian Ren, Sneha Choudhury, Ronny Golnak, Sreeju S. N. Lalithambika, Marc F. Tesch, Jie Xiao, Emad F. Aziz. X-Ray Absorption Spectroscopy of TiO 2 Nanoparticles in Water Using a Holey Membrane-Based Flow Cell. Advanced Materials Interfaces 2017, 4 (23) , 1700755. https://doi.org/10.1002/admi.201700755
  20. Manuela Loeblein, Annalisa Bruno, G.C. Loh, Asaf Bolker, Cecile Saguy, Liisa Antila, Siu Hon Tsang, Edwin Hang Tong Teo. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application. Chemical Physics Letters 2017, 685 , 442-450. https://doi.org/10.1016/j.cplett.2017.08.011
  21. Juming Liu, Lu Han, Ning An, Lei Xing, Huiyan Ma, Lin Cheng, Jucai Yang, Qiancheng Zhang. Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Applied Catalysis B: Environmental 2017, 202 , 642-652. https://doi.org/10.1016/j.apcatb.2016.09.057
  22. Salvatore Sanzaro, Enza Fazio, Fortunato Neri, Emanuele Smecca, Corrado Bongiorno, Giovanni Mannino, Rosaria Anna Puglisi, Antonino La Magna, Alessandra Alberti. Pervasive infiltration and multi-branch chemisorption of N-719 molecules into newly designed spongy TiO 2 layers deposited by gig-lox sputtering processes. Journal of Materials Chemistry A 2017, 5 (48) , 25529-25538. https://doi.org/10.1039/C7TA07811K
  23. Özlem Ateş Sönmezoğlu, Seçkin Akın, Begüm Terzi, Serdal Mutlu, Savaş Sönmezoğlu. An Effective Approach for High-Efficiency Photoelectrochemical Solar Cells by Using Bifunctional DNA Molecules Modified Photoanode. Advanced Functional Materials 2016, 26 (47) , 8776-8783. https://doi.org/10.1002/adfm.201603454
  24. Pravin S. Shinde, Jin Woo Park, Mahadeo A. Mahadik, Jungho Ryu, Jung Hee Park, Young-Joo Yi, Jum Suk Jang. Fabrication of efficient CdS nanoflowers-decorated TiO2 nanotubes array heterojunction photoanode by a novel synthetic approach for solar hydrogen production. International Journal of Hydrogen Energy 2016, 41 (46) , 21078-21087. https://doi.org/10.1016/j.ijhydene.2016.08.205
  25. Ben Manaa Marwa, Schmaltz Bruno, Bouaicha Mongi, François Tran Van, Ben Lamine Abdelmottaleb. Modeling of adsorption isotherms of dye N719 on titanium oxide using the grand canonical ensemble in statistical physics for dye sensitized solar cells. Solar Energy 2016, 135 , 177-187. https://doi.org/10.1016/j.solener.2016.05.015
  26. Meilan Guo, Yun Gao, G . Shao. Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO 2 powders. Physical Chemistry Chemical Physics 2016, 18 (4) , 2818-2829. https://doi.org/10.1039/C5CP05318H
  27. Van-Huy Nguyen, Shawn D. Lin, Jeffrey Chi-Sheng Wu. Synergetic photo-epoxidation of propylene over V Ti/MCM-41 mesoporous photocatalysts. Journal of Catalysis 2015, 331 , 217-227. https://doi.org/10.1016/j.jcat.2015.09.001
  28. V.C. Anitha, Arghya Narayan Banerjee, Sang Woo Joo, Bong Ki Min. Fabrication of hierarchical porous anodized titania nano-network with enhanced active surface area: Ruthenium-based dye adsorption studies for dye-sensitized solar cell (DSSC) application. Journal of Industrial and Engineering Chemistry 2015, 29 , 227-237. https://doi.org/10.1016/j.jiec.2015.03.032
  29. Tao Zeng, Hangjian Ni, Xiaoli Su, Yuxia Chen, Yi Jiang. Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells. Journal of Power Sources 2015, 283 , 443-451. https://doi.org/10.1016/j.jpowsour.2015.02.150
  30. Keiji Sano, Masahito Niibe, Retsuo Kawakami, Yoshitaka Nakano. Recovery of x-ray absorption spectral profile in etched TiO 2 thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2015, 33 (3) , 031403. https://doi.org/10.1116/1.4917012
  31. Ruien Hou, Shuai Yuan, Xin Ren, Yin Zhao, Zhuyi Wang, Meihong Zhang, Dongdong Li, Liyi Shi. Effects of acetyl acetone-typed co-adsorbents on the interface charge recombination in dye-sensitized solar cell photoanodes. Electrochimica Acta 2015, 154 , 190-196. https://doi.org/10.1016/j.electacta.2014.12.083
  32. Ali Akbari, Javad Hashemi, Johannes Niskanen, Simo Huotari, Mikko Hakala. Identification of the dye adsorption modes in dye-sensitised solar cells with X-ray spectroscopy techniques: a computational study. Physical Chemistry Chemical Physics 2015, 17 (16) , 10849-10855. https://doi.org/10.1039/C4CP05980H
  33. I-Li Chen, Yu-Chen Wei, Kueih-Tzu Lu, Tsan-Yao Chen, Chi-Chang Hu, Jin-Ming Chen. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO 2 -based supercapacitors. Nanoscale 2015, 7 (37) , 15450-15461. https://doi.org/10.1039/C5NR03660G
  34. Jiangdong Yu, Cheng Gong, Zhi Wu, Yongneng Wu, Wang Xiao, Yufeng Su, Lan Sun, Changjian Lin. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO 2 nanorods on TiO 2 nanotube arrays. Journal of Materials Chemistry A 2015, 3 (44) , 22218-22226. https://doi.org/10.1039/C5TA04107D
  35. Shinjiro UMEZU. High Efficiency Dye-Sensitized Solar Cell. Hosokawa Powder Technology Foundation ANNUAL REPORT 2015, 23 (0) , 65-69. https://doi.org/10.14356/hptf.13109
  36. M. Honda, M. Yanagida, L. Han, K. Miyano. Investigation of the influence of coadsorbent dye upon the interfacial structure of dye-sensitized solar cells. The Journal of Chemical Physics 2014, 141 (17) , 174709. https://doi.org/10.1063/1.4900640
  37. Claudio Garino, Elisa Borfecchia, Roberto Gobetto, Jeroen A. van Bokhoven, Carlo Lamberti. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coordination Chemistry Reviews 2014, 277-278 , 130-186. https://doi.org/10.1016/j.ccr.2014.03.027
  38. Jakub Szlachetko, Yves Kayser. Techniques: RXES, HR-­XAS, HEROS, GIXRF, and GEXRF. 2014,,, 59-116. https://doi.org/10.1201/b17184-4
  39. M. Hannelore Rittmann-Frank, Chris J. Milne, Jochen Rittmann, Marco Reinhard, Thomas J. Penfold, Majed Chergui. Mapping of the Photoinduced Electron Traps in TiO 2 by Picosecond X-ray Absorption Spectroscopy. Angewandte Chemie 2014, 126 (23) , 5968-5972. https://doi.org/10.1002/ange.201310522
  40. M. Hannelore Rittmann-Frank, Chris J. Milne, Jochen Rittmann, Marco Reinhard, Thomas J. Penfold, Majed Chergui. Mapping of the Photoinduced Electron Traps in TiO 2 by Picosecond X-ray Absorption Spectroscopy. Angewandte Chemie International Edition 2014, 53 (23) , 5858-5862. https://doi.org/10.1002/anie.201310522
  41. Xuelin Zheng, Jiabao Weng, Shuiyan Li, Haiqing Liu, Binghuan Hu, Yihui Li, Xuefei Meng, Huirong Ruan. Anticorrosive ultrathin film derived from bio-based urushiol–Ti by layer-by-layer self-assembly. Chemical Engineering Journal 2014, 245 , 265-275. https://doi.org/10.1016/j.cej.2014.02.039
  42. Erik M. J. Johansson, Rebecka Lindblad, Hans Siegbahn, Anders Hagfeldt, Håkan Rensmo. Atomic and Electronic Structures of Interfaces in Dye-Sensitized, Nanostructured Solar Cells. ChemPhysChem 2014, 15 (6) , 1006-1017. https://doi.org/10.1002/cphc.201301074
  43. Nima Parsi Benehkohal, George P. Demopoulos. Green-Engineered All-Substrate Mesoporous TiO 2 Photoanodes with Superior Light-Harvesting Structure and Performance. ChemSusChem 2014, 7 (3) , 813-821. https://doi.org/10.1002/cssc.201301139
  44. Viktor Johansson, Lilian Ellis-Gibbings, Trevor Clarke, Mikhail Gorlov, Gunther G. Andersson, Lars Kloo. On the correlation between dye coverage and photoelectrochemical performance in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2014, 16 (2) , 711-718. https://doi.org/10.1039/C3CP52486H
  45. Daniela Ullien, Peter C. Thüne, Wolter F. Jager, Ernst J. R. Sudhölter, Louis C. P. M. de Smet. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si(111) surfaces. Phys. Chem. Chem. Phys. 2014, 16 (36) , 19258-19265. https://doi.org/10.1039/C4CP02464H
  46. Ke Meng, Praveen K. Surolia, K. Ravindranathan Thampi. BaTiO 3 photoelectrodes for CdS quantum dot sensitized solar cells. J. Mater. Chem. A 2014, 2 (26) , 10231-10238. https://doi.org/10.1039/C4TA00877D
  47. Tsz-Wai Ng, Chiu-Yee Chan, Qing-Dan Yang, Huai-Xin Wei, Ming-Fai Lo, V.A.L. Roy, Wen-Jun Zhang, Chun-Sing Lee. Charge interaction and interfacial electronic structures in a solid-state dye-sensitized solar cell. Organic Electronics 2013, 14 (11) , 2743-2747. https://doi.org/10.1016/j.orgel.2013.07.029
  48. Yurong Bian, Xiaohong Wang, Zhigang Zeng, Zhiyu Hu. Preparation of ordered mesoporous TiO 2 thin film and its application in methanol catalytic combustion. Surface and Interface Analysis 2013, 45 (9) , 1317-1322. https://doi.org/10.1002/sia.5272
  49. Zhi Qiu, Meng Zhang, De-Yin Wu, Song-Yuan Ding, Qi-Qi Zuo, Yi-Fan Huang, Wei Shen, Xiao-Dong Lin, Zhong-Qun Tian, Bing-Wei Mao. Raman Spectroscopic Investigation on TiO 2 -N719 Dye Interfaces Using [email protected] 2 Nanoparticles and Potential Correlation Strategies. ChemPhysChem 2013, 14 (10) , 2217-2224. https://doi.org/10.1002/cphc.201300381
  50. M. Honda, M. Yanagida, L. Han. Effect of co-adsorption dye on the electrode interface (Ru complex/TiO 2 ) of dye-sensitized solar cells. AIP Advances 2013, 3 (7) , 072113. https://doi.org/10.1063/1.4815973
  51. Kee Eun Lee, Cecile Charbonneau, George P. Demopoulos. Thin single screen-printed bifunctional titania layer photoanodes for high performing DSSCs via a novel hybrid paste formulation and process. Journal of Materials Research 2013, 28 (3) , 480-487. https://doi.org/10.1557/jmr.2012.359
  52. Ning Cai, Renzhi Li, Yinglin Wang, Min Zhang, Peng Wang. Organic dye-sensitized solar cells with a cobalt redox couple: influences of π-linker rigidification and dye–bath solvent selection. Energy Environ. Sci. 2013, 6 (1) , 139-147. https://doi.org/10.1039/C2EE23592G
  53. Nima Parsi Benehkohal, Mario A. Gomez, Raynald Gauvin, George P. Demopoulos. Enabling aqueous electrophoretic growth of adherent nanotitania mesoporous films via intrafilm cathodic deposition of hydrous zinc oxide. Electrochimica Acta 2013, 87 , 169-179. https://doi.org/10.1016/j.electacta.2012.10.005
  54. Yu-Yen Kuo, Tze-Huei Li, Jing-Neng Yao, Chiung-Yuan Lin, Chao-Hsin Chien. Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion. Electrochimica Acta 2012, 78 , 236-243. https://doi.org/10.1016/j.electacta.2012.05.157
  55. Hongbo Zhang, Jian Wang, Xiulian Pan, Yongfeng Hu, Xinhe Bao. Local structure of titania decorated double-walled carbon nanotube characterized by scanning transmission X-ray microscopy. The Journal of Chemical Physics 2012, 136 (17) , 174701. https://doi.org/10.1063/1.4706515
  56. Kaname Suto, Akinori Konno, Yoshimasa Kawata, Shigeru Tasaka, Atsushi Sugita. Adsorption dynamics of the N719 dye on nanoporous titanium oxides studied by resonance Raman scattering and Fourier transform infrared spectroscopy. Chemical Physics Letters 2012, 536 , 45-49. https://doi.org/10.1016/j.cplett.2012.03.057
  57. Kee Eun Lee, Mario A. Gomez, Cecile Charbonneau, George P. Demopoulos. Enhanced surface hydroxylation of nanocrystalline anatase films improves photocurrent output and electron lifetime in dye sensitized solar cell photoanodes. Electrochimica Acta 2012, 67 , 208-215. https://doi.org/10.1016/j.electacta.2012.02.028
  58. Kan Huang, Kotaro Sasaki, Radoslav R. Adzic, Yangchuan Xing. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. Journal of Materials Chemistry 2012, 22 (33) , 16824. https://doi.org/10.1039/c2jm32234j