Ultraviolet-Light-Assisted Formation of ZnO Nanowires in Ambient Air: Comparison of Photoresponsive and Photocatalytic Activities in Zinc Hydroxide

View Author Information
Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan
*E-mail: [email protected]. Tel.: (+886) 4-24517250 ext. 5316. Fax: (+886) 4-24510014.
Cite this: J. Phys. Chem. C 2011, 115, 5, 2235–2243
Publication Date (Web):January 11, 2011
https://doi.org/10.1021/jp110320h
Copyright © 2011 American Chemical Society
Article Views
1240
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)
Supporting Info (1)»

Abstract

In ambient air, zinc acetylacetonate hydrate precursor was directly decomposed to fabricate large-area ZnO nanowires on a substrate using ultraviolet-light- (λ = 350−380 nm, I = 76 mW cm−2) assisted thermal decomposition processes at 200 °C. The growing process required 5 min. High-resolution transmission electron microscopy images revealed that the ZnO nanowires consisted of fine single-crystal nanoparticles. The particle size was calculated to be ∼8−9 nm using the Debye−Scherrer equation. The photocatalytic activities of ZnOnonUV (without UV-light assistance) nanowires were found to be superior to those of ZnOUV (with UV-light assistance) nanowires and commercial TiO2 P25 nanoparticles. The oxygen defects (i.e., oxygen vacancies and interstitials) acted as key components for a photodegradation process in the ZnO nanowires. The oxygen defects are attributed to the presence of zinc hydroxide [Zn(OH)2] on the surface of the ZnO nanocrystallites. For the photoresponsive activities, no significant photocurrent-to-dark-current ratio was observed in ZnOnonUV nanowires using UV-light (λ = 365 nm, I = 2.33 mW cm−2), whereas the ratio of ZnOUV nanowires was high, reaching a maximum of 91. As-synthesized ZnOUV nanowires exhibited a relatively good crystallinity and superior photoresponsive properties when compared with ZnOnonUV nanowires based on the characterizations of the materials and sensor properties. Detailed mechanisms of the photoresponsive and photocatalytic properties were investigated.

Supporting Information

ARTICLE SECTIONS
Jump To

Processing explanation, XPS survey spectra, evaluation of particle size, and XRD pattern. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 60 publications.

  1. Esraa Abdala, O. Nur, Mustafa A. Mustafa. Efficient Biodiesel Production from Algae Oil Using Ca-Doped ZnO Nanocatalyst. Industrial & Engineering Chemistry Research 2020, 59 (43) , 19235-19243. https://doi.org/10.1021/acs.iecr.0c04118
  2. Luca Spitaleri, Giuseppe Nicotra, Massimo Zimbone, Annalinda Contino, Giuseppe Maccarrone, Alessandra Alberti, Antonino Gulino. Fast and Efficient Sun Light Photocatalytic Activity of Au_ZnO Core–Shell Nanoparticles Prepared by a One-Pot Synthesis. ACS Omega 2019, 4 (12) , 15061-15066. https://doi.org/10.1021/acsomega.9b01850
  3. Masimukku Srinivaas, Cheng-Yu Wu, Jenq-Gong Duh, Jyh Ming Wu. Highly Rich 1T Metallic Phase of Few-Layered WS2 Nanoflowers for Enhanced Storage of Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (12) , 10363-10370. https://doi.org/10.1021/acssuschemeng.9b00351
  4. Dang Le Tri Nguyen, Michael Shincheon Jee, Da Hye Won, Hyejin Jung, Hyung-Suk Oh, Byoung Koun Min, and Yun Jeong Hwang . Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment. ACS Sustainable Chemistry & Engineering 2017, 5 (12) , 11377-11386. https://doi.org/10.1021/acssuschemeng.7b02460
  5. Amy Tapley, Lijia Liu, Xiaoyu Cui, Lucia Zuin, David A. Love, Jigang Zhou, Tsun-Kong Sham, and Zhifeng Ding . Assessing the Band Structure of CuInS2 Nanocrystals and Their Bonding with the Capping Ligand. The Journal of Physical Chemistry C 2015, 119 (36) , 20967-20974. https://doi.org/10.1021/acs.jpcc.5b05940
  6. Jyh Ming Wu and Wei Tsung Kao . Heterojunction Nanowires of AgxZn1–xO–ZnO Photocatalytic and Antibacterial Activities under Visible-Light and Dark Conditions. The Journal of Physical Chemistry C 2015, 119 (3) , 1433-1441. https://doi.org/10.1021/jp510259j
  7. Jyh Ming Wu, Yi-Ru Chen, and Wei Tsung Kao . Ultrafine ZnO Nanoparticles/Nanowires Synthesized on a Flexible and Transparent Substrate: Formation, Water Molecules, and Surface Defect Effects. ACS Applied Materials & Interfaces 2014, 6 (1) , 487-494. https://doi.org/10.1021/am404532q
  8. Lidia Armelao, Franziskus Heigl, Pil-Sook Grace Kim, Richard A. Rosenberg, Tom Z. Regier, and Tsun-Kong Sham . Visible Emission from GeO2 Nanowires: Site-Specific Insights via X-ray Excited Optical Luminescence. The Journal of Physical Chemistry C 2012, 116 (26) , 14163-14169. https://doi.org/10.1021/jp3040743
  9. Neil Lin, Daksh Verma, Nikhil Saini, Ramis Arbi, Muhammad Munir, Marko Jovic, Ayse Turak. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today 2021, 40 , 101267. https://doi.org/10.1016/j.nantod.2021.101267
  10. Sandeep Kaushal, Parul Kurichh, Prit Pal Singh. Novel 3D flower like ZnO/MnV2O6 heterojunction as an efficient adsorbent for the removal of imidacloprid and photocatalyst for degradation of organic dyes in waste water. Polyhedron 2021, 201 , 115161. https://doi.org/10.1016/j.poly.2021.115161
  11. Yun‐Jung Chung, Cheng‐Shiun Yang, Jyun‐Ting Lee, Guan Hua Wu, Jyh Ming Wu. Coupling Effect of Piezo–Flexocatalytic Hydrogen Evolution with Hybrid 1T‐ and 2H‐Phase Few‐Layered MoSe 2 Nanosheets. Advanced Energy Materials 2020, 10 (42) , 2002082. https://doi.org/10.1002/aenm.202002082
  12. Francielle C.F. Marcos, Lili Lin, Luis E. Betancourt, Sanjaya D. Senanayake, Jose A. Rodriguez, José M. Assaf, Reinaldo Giudici, Elisabete M. Assaf. Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio. Journal of CO2 Utilization 2020, 41 , 101215. https://doi.org/10.1016/j.jcou.2020.101215
  13. Wei Si, Liran Pei. Synthesis of flower‐like and hexagonal flake‐like ZnO using microwave method and their photocatalytic activity. Micro & Nano Letters 2020, 15 (11) , 751-754. https://doi.org/10.1049/mnl.2020.0259
  14. Ranjitha Kumarapuram Hariharalakshmanan, Nawzat S. Saadi, Busra Ergul-Yilmaz, Khalidah H. Al-Mayalee, Tansel Karabacak. Zinc Oxide Nanostructures Synthesized by a Simple Hot Water Treatment Method for Photocatalytic Degradation of Organic Pollutants in Water. MRS Advances 2020, 5 (48-49) , 2457-2465. https://doi.org/10.1557/adv.2020.290
  15. Yu‐Ting Lin, Sz‐Nian Lai, Jyh Ming Wu. Simultaneous Piezoelectrocatalytic Hydrogen‐Evolution and Degradation of Water Pollutants by Quartz [email protected]‐Layered MoS 2 Hierarchical Heterostructures. Advanced Materials 2020, 32 (34) , 2002875. https://doi.org/10.1002/adma.202002875
  16. N. Y. Tashkandi, R. M. Mohamed, A. Baoum. Tremendously efficient Ag–ZnO–Zn(OH)2 nanosheets for nitrobenzene–aniline transformation via visible light irradiation. Applied Nanoscience 2020, 10 (5) , 1453-1463. https://doi.org/10.1007/s13204-019-01206-y
  17. Yu‐Chun Wang, Jyh Ming Wu. Effect of Controlled Oxygen Vacancy on H 2 ‐Production through the Piezocatalysis and Piezophototronics of Ferroelectric R3C ZnSnO 3 Nanowires. Advanced Functional Materials 2020, 30 (5) , 1907619. https://doi.org/10.1002/adfm.201907619
  18. Xiaona Zhao, Yuanchao Lei, Pengfei Fang, Hongjing Li, Qing Han, Weiguo Hu, Chunqing He. Piezotronic effect of single/few-layers MoS2 nanosheets composite with TiO2 nanorod heterojunction. Nano Energy 2019, 66 , 104168. https://doi.org/10.1016/j.nanoen.2019.104168
  19. Yu Ting Chang, Yu-Chun Wang, Sz-Nian Lai, Chun-Wei Su, Chyi-Ming Leu, Jyh Ming Wu. Performance of hydrogen evolution reaction of R3C ferroelectric ZnSnO 3 nanowires. Nanotechnology 2019, 30 (45) , 455401. https://doi.org/10.1088/1361-6528/ab35f9
  20. Abinash Das, Nikhil S.K., Ranjith G. Nair. Influence of surface morphology on photocatalytic performance of zinc oxide: A review. Nano-Structures & Nano-Objects 2019, 19 , 100353. https://doi.org/10.1016/j.nanoso.2019.100353
  21. Yi-Ling Liu, Jyh Ming Wu. Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy 2019, 56 , 74-81. https://doi.org/10.1016/j.nanoen.2018.11.028
  22. Vahid Mirkhani, Kosala Yapabandara, Shiqiang Wang, Min Prasad Khanal, Sunil Uprety, Muhammad Shehzad Sultan, Burcu Ozden, Ayayi Claude Ahyi, Michael C. Hamilton, Mobbassar Hassan Sk, Minseo Park. On the anomaly in the electrical characteristics of thin film transistors with multi-layered sol-gel processed ZnO. Thin Solid Films 2019, 672 , 152-156. https://doi.org/10.1016/j.tsf.2019.01.015
  23. Cheng-Yu Wu, Wei-En Chang, Yu-Guang Sun, Jyh-Ming Wu, Jenq-Gong Duh. Three-dimensional [email protected]α-Fe2O3 nanoparticles composites as lithium-ion battery anodes for enhanced electrochemical performance. Materials Chemistry and Physics 2018, 219 , 311-317. https://doi.org/10.1016/j.matchemphys.2018.08.059
  24. Srinivaas Masimukku, Yu-Chen Hu, Zong-Hong Lin, Shuen-Wen Chan, Ting-Mao Chou, Jyh Ming Wu. High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance. Nano Energy 2018, 46 , 338-346. https://doi.org/10.1016/j.nanoen.2018.02.008
  25. Jyh Ming Wu, Yu-Guang Sun, Wei-En Chang, Jyun-Ting Lee. Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy 2018, 46 , 372-382. https://doi.org/10.1016/j.nanoen.2018.02.010
  26. Bo-Zhong Yang, Yu-Siou Lin, Jyh Ming Wu. Flexible contact-electrification field-effect transistor made from the P3HT:PCBM conductive polymer thin film. Applied Materials Today 2017, 9 , 96-103. https://doi.org/10.1016/j.apmt.2017.06.001
  27. Feng Kang, Shenglin Li. Wurtzite-type CdS nanocrystals: Facile synthesis and photoelectrochemical properties. Materials Today Communications 2017, 13 , 1-5. https://doi.org/10.1016/j.mtcomm.2017.08.003
  28. Yuntao Xia, Yanmin Jia, Weiqi Qian, Xiaoli Xu, Zheng Wu, Zichen Han, Yuanting Hong, Huilin You, Muhammad Ismail, Ge Bai, Liwei Wang. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations. Metals 2017, 7 (4) , 122. https://doi.org/10.3390/met7040122
  29. Seong-Hwan Kim, Gyu-In Shim, Se-Young Choi. Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties. Journal of Alloys and Compounds 2017, 698 , 77-86. https://doi.org/10.1016/j.jallcom.2016.11.377
  30. Weigang Liu, Yingming Xu, Wei Zhou, Xianfa Zhang, Xiaoli Cheng, Hui Zhao, Shan Gao, Lihua Huo. A Facile Synthesis of Hierarchically Porous TiO2 Microspheres with Carbonaceous Species for Visible-light Photocatalysis. Journal of Materials Science & Technology 2017, 33 (1) , 39-46. https://doi.org/10.1016/j.jmst.2016.04.007
  31. Jyun-Hao Lin, Yu-Hsiang Tsao, Mei-Hsuan Wu, Ting-Mao Chou, Zong-Hong Lin, Jyh Ming Wu. Single- and few-layers MoS 2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy 2017, 31 , 575-581. https://doi.org/10.1016/j.nanoen.2016.12.013
  32. Guo Liu, Shuai Li, Yuanyuan Lu, Jing Zhang, Zhaochi Feng, Can Li. Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method. Journal of Alloys and Compounds 2016, 689 , 787-799. https://doi.org/10.1016/j.jallcom.2016.08.047
  33. Zao Yi, Jiangshan Luo, Xin Ye, Yougen Yi, Jin Huang, Yong Yi, Tao Duan, Weibin Zhang, Yongjian Tang. Effect of synthesis conditions on the growth of various ZnO nanostructures and corresponding morphology-dependent photocatalytic activities. Superlattices and Microstructures 2016, 100 , 907-917. https://doi.org/10.1016/j.spmi.2016.10.049
  34. Željka Petrović, Mira Ristić, Marijan Marciuš, Mile Ivanda, Vedran Đurina, Svetozar Musić. Hydrothermal processing of electrospun fibers in the synthesis of 1D ZnO nanoparticles. Materials Letters 2016, 176 , 278-281. https://doi.org/10.1016/j.matlet.2016.04.119
  35. Jyh Ming Wu, Wei En Chang, Yu Ting Chang, Chih‐Kai Chang. Piezo‐Catalytic Effect on the Enhancement of the Ultra‐High Degradation Activity in the Dark by Single‐ and Few‐Layers MoS 2 Nanoflowers. Advanced Materials 2016, 28 (19) , 3718-3725. https://doi.org/10.1002/adma.201505785
  36. Farid Hajareh Haghighi, Hassan Hadadzadeh, Hossein Farrokhpour. Investigation of the in situ generation of oxide-free copper nanoparticles using pulsed-laser ablation of bulk copper in aqueous solutions of DNA bases. RSC Advances 2016, 6 (111) , 109885-109896. https://doi.org/10.1039/C6RA22038J
  37. Jyh Ming Wu, Li-Yi Tsay. ZnO quantum dots–decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances. Nanotechnology 2015, 26 (39) , 395704. https://doi.org/10.1088/0957-4484/26/39/395704
  38. Melbert Jeem, Muhammad Rafiq Mirza bin Julaihi, Junya Ishioka, Shigeo Yatsu, Kazumasa Okamoto, Tamaki Shibayama, Tomio Iwasaki, Takahiko Kato, Seiichi Watanabe. A pathway of nanocrystallite fabrication by photo-assisted growth in pure water. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep11429
  39. Željka Petrović, Mira Ristić, Svetozar Musić, Bogdan Sepiol, Herwig Peterlik. The formation of ZnO nanoparticles from zinc gluconate. Ceramics International 2015, 41 (3) , 4975-4981. https://doi.org/10.1016/j.ceramint.2014.12.061
  40. Xinyu Xue, Weili Zang, Ping Deng, Qi Wang, Lili Xing, Yan Zhang, Zhong Lin Wang. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 2015, 13 , 414-422. https://doi.org/10.1016/j.nanoen.2015.02.029
  41. Nasser Y. Mostafa, Zein K. Heiba, Mohamed M. Ibrahim. Structure and optical properties of ZnO produced from microwave hydrothermal hydrolysis of tris(ethylenediamine)zinc nitrate complex. Journal of Molecular Structure 2015, 1079 , 480-485. https://doi.org/10.1016/j.molstruc.2014.09.059
  42. Jyh Ming Wu, Yu Nong Chen. The surface plasmon resonance effect on the enhancement of photodegradation activity by Au/ZnSn(OH) 6 nanocubes. Dalton Transactions 2015, 44 (37) , 16294-16303. https://doi.org/10.1039/C5DT02393A
  43. Mingsong Wang, Lingxia Jiang, Eui Jung Kim, Sung Hong Hahn. Electronic structure and optical properties of Zn(OH) 2 : LDA+U calculations and intense yellow luminescence. RSC Advances 2015, 5 (106) , 87496-87503. https://doi.org/10.1039/C5RA17024A
  44. Cheng-Liang Hsu, Shoou-Jinn Chang. Doped ZnO 1D Nanostructures: Synthesis, Properties, and Photodetector Application. Small 2014, 10 (22) , 4562-4585. https://doi.org/10.1002/smll.201401580
  45. Jie Sun, Hui wang, Yiwei Zhang, Yifan Zheng, Zhude Xu, Run Liu. Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films. Thin Solid Films 2014, 562 , 478-484. https://doi.org/10.1016/j.tsf.2014.04.019
  46. S. Soumya, A. Peer Mohamed, Lucy Paul, Kiran Mohan, S. Ananthakumar. Near IR reflectance characteristics of PMMA/ZnO nanocomposites for solar thermal control interface films. Solar Energy Materials and Solar Cells 2014, 125 , 102-112. https://doi.org/10.1016/j.solmat.2014.02.033
  47. B. Hwang, J. Kwon, M. Lee, S.J. Lim, S. Jeon, S. Kim, U. Ham, Y.J. Song, Y. Kuk. Electron-beam assisted growth of hexagonal boron-nitride layer. Current Applied Physics 2013, 13 (7) , 1365-1369. https://doi.org/10.1016/j.cap.2013.04.018
  48. Xin Yu, Fang Song, Bing Zhai, Chuantao Zheng, Yiding Wang. Electrospun ZnO nanotubes and its gas sensing applications. Physica E: Low-dimensional Systems and Nanostructures 2013, 52 , 92-96. https://doi.org/10.1016/j.physe.2013.03.030
  49. Chunmei Li, Taha Ahmed, Mingguo Ma, Tomas Edvinsson, Jiefang Zhu. A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental 2013, 138-139 , 175-183. https://doi.org/10.1016/j.apcatb.2013.02.042
  50. Yang Wang, Ke Yu, Haihong Yin, Changqin Song, Zhengli Zhang, Shouchuan Li, Hui Shi, Qingfeng Zhang, Bin Zhao, Yingfang Zhang, Ziqiang Zhu. Facile synthesis, enhanced field emission and photocatalytic activities of Cu 2 O–TiO 2 –ZnO ternary hetero-nanostructures. Journal of Physics D: Applied Physics 2013, 46 (17) , 175303. https://doi.org/10.1088/0022-3727/46/17/175303
  51. Jian zhang Li, Jun bo Zhong, Jun Zeng, Fa mei Feng, Jin jin He. Improved photocatalytic activity of dysprosium-doped Bi2O3 prepared by sol–gel method. Materials Science in Semiconductor Processing 2013, 16 (2) , 379-384. https://doi.org/10.1016/j.mssp.2012.09.007
  52. Amy Tapley, Daniel Vaccarello, Jason Hedges, Falong Jia, David A. Love, Zhifeng Ding. Preparation and characterization of CuInS 2 nanocrystals for photovoltaic materials. Phys. Chem. Chem. Phys. 2013, 15 (5) , 1431-1436. https://doi.org/10.1039/C2CP42753B
  53. Daniel Vaccarello, Amy Tapley, Zhifeng Ding. Optimization of the Cu2ZnSnS4 nanocrystal recipe by means of photoelectrochemical measurements. RSC Advances 2013, 3 (11) , 3512. https://doi.org/10.1039/c2ra23163h
  54. Jyh Ming Wu, Chen Xu, Yan Zhang, Ya Yang, Yusheng Zhou, Zhong Lin Wang. Flexible and Transparent Nanogenerators Based on a Composite of Lead-Free ZnSnO 3 Triangular-Belts. Advanced Materials 2012, 24 (45) , 6094-6099. https://doi.org/10.1002/adma.201202445
  55. Svetozar Musić, Ankica Šarić. Formation of hollow ZnO particles by simple hydrolysis of zinc acetylacetonate. Ceramics International 2012, 38 (7) , 6047-6052. https://doi.org/10.1016/j.ceramint.2012.04.020
  56. Niu Xiping, Cheng Xiaoman, Xu Jianping, Zhang Xiaosong, Xuan Rongwei, Wu Yanyu, Li Lan. Size-dependent visible photoluminescence from ZnO nanoparticles prepared via SiO2 network. Superlattices and Microstructures 2012, 52 (2) , 193-199. https://doi.org/10.1016/j.spmi.2012.04.024
  57. Jun Liu, Yichun Zhou, Chunping Liu, Jinbin Wang, Yong Pan, Dongfeng Xue. Self-assembled porous hierarchical-like [email protected] microsheets transformed from inorganic–organic precursors and their lithium-ion battery application. CrystEngComm 2012, 14 (8) , 2669. https://doi.org/10.1039/c2ce06497a
  58. Jyh Ming Wu, Guo Kai Hsu, Hsin-Hsien Yeh, Hong-Ching Lin. Metallic Zinc Nanowires Effect in High-Performance Photoresponsive and Photocatalytic Properties of Composite Zinc Stannate Nanowires. Journal of The Electrochemical Society 2012, 159 (5) , H497-H501. https://doi.org/10.1149/2.053205jes
  59. Jun Zeng, Feng Chun Zeng, Jun Bo Zhong, Jian Zhang Li, Shao Hua Wang, Wei Hu. Fabrication and Photocatalytic Performance of Bi2O3 Doped with Fe3+. Advanced Materials Research 2011, 399-401 , 1425-1428. https://doi.org/10.4028/www.scientific.net/AMR.399-401.1425
  60. Hajime Wagata, Ken-ichi Katsumata, Naoki Ohashi, Munetoshi Sakai, Akira Nakajima, Akira Fujishima, Kiyoshi Okada, Nobuhiro Matsushita. Photocatalytic Activity and Related Surface Properties of Transparent ZnO Films Prepared by a Low-temperature Aqueous Route. Photochemistry and Photobiology 2011, 87 (5) , 1009-1015. https://doi.org/10.1111/j.1751-1097.2011.00964.x