Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO4 Photocatalysts by Scanning Electrochemical Microscopy

View Author Information
Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
Cite this: J. Phys. Chem. C 2011, 115, 25, 12464–12470
Publication Date (Web):May 25, 2011
https://doi.org/10.1021/jp200852c
Copyright © 2011 American Chemical Society
Article Views
4316
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Oxygen evolution reaction (OER) electrocatalyst arrays for photoelectrochemical (PEC) water oxidation were fabricated on a metal oxide semiconductor photoelectrode, W-doped BiVO4 (BiVW-O). The electrocatalysts (IrOx, Pt, Co3O4) were prepared on a drop cast film of BiVW-O on fluorine-doped tin oxide (FTO) with a picoliter solution dispenser or photodeposition with light irradiation through an optical fiber. The prepared arrays were tested for PEC water oxidation in 0.2 M sodium phosphate buffer (pH 6.8) using scanning electrochemical microscopy modified with an optical fiber. Pt and Co oxide electrocatalysts showed an enhanced photocurrent for PEC water oxidation, while the other metal oxide catalysts including IrOx, which is known as an excellent water oxidation electrocatalyst on a metal substrate, were not effective. These results were confirmed with bulk film studies. A cobalt phosphate (Co-Pi) electrocatalyst was also tested as a bulk film on BiVW-O and showed improvement for PEC water oxidation. Preliminary characterization (X-ray diffraction and X-ray photoelectron spectroscopy) was also performed for these catalysts. The results indicate that considerations of the semiconductor photocatalyst/electrocatalyst interface are important in determining the effectiveness of materials for the photodriven OER.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional experimental data figures. This material is available free of charge via the Internet at http://pubs.acs.org

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 211 publications.

  1. Yannick Hermans, Céline Olivier, Henrik Junge, Andreas Klein, Wolfram Jaegermann, Thierry Toupance. Sunlight Selective Photodeposition of CoOx(OH)y and NiOx(OH)y on Truncated Bipyramidal BiVO4 for Highly Efficient Photocatalysis. ACS Applied Materials & Interfaces 2020, 12 (48) , 53910-53920. https://doi.org/10.1021/acsami.0c14624
  2. Bruno M. Pires, Franziska S. Hegner, Juliano A. Bonacin, José-Ramón Galán-Mascarós. Ligand Effects of Penta- and Hexacyanidoferrate-Derived Water Oxidation Catalysts on BiVO4 Photoanodes. ACS Applied Energy Materials 2020, 3 (9) , 8448-8456. https://doi.org/10.1021/acsaem.0c01082
  3. Qian Wang, Je Hyun Bae, Alexander B. Nepomnyashchii, Rui Jia, Suojiang Zhang, Michael V. Mirkin. Light-Controlled Nanoparticle Collision Experiments. The Journal of Physical Chemistry Letters 2020, 11 (8) , 2972-2976. https://doi.org/10.1021/acs.jpclett.0c00585
  4. Umesh Prasad . BiVO4-Based Photoanodes for Photoelectrochemical Water Splitting. 2020,,, 137-167. https://doi.org/10.1021/bk-2020-1364.ch005
  5. Yanxiao Ma, Pravin S. Shinde, Xiao Li, Shanlin Pan. High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting. ACS Omega 2019, 4 (17) , 17257-17268. https://doi.org/10.1021/acsomega.9b01907
  6. Je Hyun Bae, Alexander B. Nepomnyashchii, Xiang Wang, Denis V. Potapenko, Michael V. Mirkin. Photo-Scanning Electrochemical Microscopy on the Nanoscale with Through-Tip Illumination. Analytical Chemistry 2019, 91 (20) , 12601-12605. https://doi.org/10.1021/acs.analchem.9b03347
  7. Kaushik Natarajan, Anoop K. Gupta, Shagufi Naz Ansari, Mohit Saraf, Shaikh M. Mobin. Mixed-Ligand-Architected 2D Co(II)-MOF Expressing a Novel Topology for an Efficient Photoanode for Water Oxidation Using Visible Light. ACS Applied Materials & Interfaces 2019, 11 (14) , 13295-13303. https://doi.org/10.1021/acsami.9b01754
  8. Wenrui Zhang, Feng Wu, Jun Li, Danhua Yan, Jing Tao, Yuan Ping, Mingzhao Liu. Unconventional Relation between Charge Transport and Photocurrent via Boosting Small Polaron Hopping for Photoelectrochemical Water Splitting. ACS Energy Letters 2018, 3 (9) , 2232-2239. https://doi.org/10.1021/acsenergylett.8b01445
  9. Pravin S. Shinde, Xiaoniu Peng, Jue Wang, Yanxiao Ma, Louis E. McNamara, Nathan I. Hammer, Arunava Gupta, Shanlin Pan. Rapid Screening of Photoanode Materials Using Scanning Photoelectrochemical Microscopy Technique and Formation of Z-Scheme Solar Water Splitting System by Coupling p- and n-type Heterojunction Photoelectrodes. ACS Applied Energy Materials 2018, 1 (5) , 2283-2294. https://doi.org/10.1021/acsaem.8b00381
  10. Fumin Tang, Weiren Cheng, Hui Su, Xu Zhao, and Qinghua Liu . Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO4 for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (7) , 6228-6234. https://doi.org/10.1021/acsami.7b15674
  11. Margaret A. Lumley and Kyoung-Shin Choi . Investigation of Pristine and (Mo, W)-Doped Cu11V6O26 for Use as Photoanodes for Solar Water Splitting. Chemistry of Materials 2017, 29 (21) , 9472-9479. https://doi.org/10.1021/acs.chemmater.7b03587
  12. Yohichi Suzuki, Dharmapura H. K. Murthy, Hiroyuki Matsuzaki, Akihiro Furube, Qian Wang, Takashi Hisatomi, Kazunari Domen, and Kazuhiko Seki . Rational Interpretation of Correlated Kinetics of Mobile and Trapped Charge Carriers: Analysis of Ultrafast Carrier Dynamics in BiVO4. The Journal of Physical Chemistry C 2017, 121 (35) , 19044-19052. https://doi.org/10.1021/acs.jpcc.7b05574
  13. Heung Chan Lee, Sung Ki Cho, Hyun S. Park, Ki Min Nam, and Allen J. Bard . Visible Light Photoelectrochemical Properties of PbCrO4, Pb2CrO5, and Pb5CrO8. The Journal of Physical Chemistry C 2017, 121 (33) , 17561-17568. https://doi.org/10.1021/acs.jpcc.7b03230
  14. Sung Ki Cho and Jinho Chang . Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni2+ and Its Combination with Photoelectrode. ACS Omega 2017, 2 (2) , 432-442. https://doi.org/10.1021/acsomega.6b00448
  15. Felipe Conzuelo, Kirill Sliozberg, Ramona Gutkowski, Stefanie Grützke, Michaela Nebel, and Wolfgang Schuhmann . High-Resolution Analysis of Photoanodes for Water Splitting by Means of Scanning Photoelectrochemical Microscopy. Analytical Chemistry 2017, 89 (2) , 1222-1228. https://doi.org/10.1021/acs.analchem.6b03706
  16. Kasper Wenderich and Guido Mul . Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews 2016, 116 (23) , 14587-14619. https://doi.org/10.1021/acs.chemrev.6b00327
  17. Aniketa Shinde, Dan Guevarra, Guiji Liu, Ian D. Sharp, Francesca M. Toma, John M. Gregoire, and Joel A. Haber . Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials & Interfaces 2016, 8 (36) , 23696-23705. https://doi.org/10.1021/acsami.6b06714
  18. Michele Orlandi, Nicola Dalle Carbonare, Stefano Caramori, Carlo A. Bignozzi, Serena Berardi, Alberto Mazzi, Zakaria El Koura, Nicola Bazzanella, Nainesh Patel, and Antonio Miotello . Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization. ACS Applied Materials & Interfaces 2016, 8 (31) , 20003-20011. https://doi.org/10.1021/acsami.6b05135
  19. Bin Liu, Jian Li, Hao-Lin Wu, Wen-Qiang Liu, Xin Jiang, Zhi-Jun Li, Bin Chen, Chen-Ho Tung, and Li-Zhu Wu . Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO4 Photoanode. ACS Applied Materials & Interfaces 2016, 8 (28) , 18577-18583. https://doi.org/10.1021/acsami.6b04510
  20. Jonathon W. Moir, Emma V. Sackville, Ulrich Hintermair, and Geoffrey A. Ozin . Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. The Journal of Physical Chemistry C 2016, 120 (24) , 12999-13012. https://doi.org/10.1021/acs.jpcc.6b00735
  21. Ki Min Nam, Eun Ah Cheon, Won Jung Shin, and Allen J. Bard . Improved Photoelectrochemical Water Oxidation by the WO3/CuWO4 Composite with a Manganese Phosphate Electrocatalyst. Langmuir 2015, 31 (39) , 10897-10903. https://doi.org/10.1021/acs.langmuir.5b01780
  22. Alessandro Minguzzi, Cristina Locatelli, Ottavio Lugaresi, Elisabetta Achilli, Giuseppe Cappelletti, Marco Scavini, Mauro Coduri, Paolo Masala, Benedetta Sacchi, Alberto Vertova, Paolo Ghigna, and Sandra Rondinini . Easy Accommodation of Different Oxidation States in Iridium Oxide Nanoparticles with Different Hydration Degree as Water Oxidation Electrocatalysts. ACS Catalysis 2015, 5 (9) , 5104-5115. https://doi.org/10.1021/acscatal.5b01281
  23. Zhiliang Wang, Guiji Liu, Chunmei Ding, Zheng Chen, Fuxiang Zhang, Jingying Shi, and Can Li . Synergetic Effect of Conjugated Ni(OH)2/IrO2 Cocatalyst on Titanium-Doped Hematite Photoanode for Solar Water Splitting. The Journal of Physical Chemistry C 2015, 119 (34) , 19607-19612. https://doi.org/10.1021/acs.jpcc.5b04892
  24. Shaoqing Jin, Xiang Wang, Xiuli Wang, Minggang Ju, Shuai Shen, Wanzhen Liang, Yi Zhao, Zhaochi Feng, Helen Y. Playford, Richard I. Walton, and Can Li . Effect of Phase Junction Structure on the Photocatalytic Performance in Overall Water Splitting: Ga2O3 Photocatalyst as an Example. The Journal of Physical Chemistry C 2015, 119 (32) , 18221-18228. https://doi.org/10.1021/acs.jpcc.5b04092
  25. Yixin Zhao, Nella M. Vargas-Barbosa, Megan E. Strayer, Nicholas S. McCool, Maria-Erini Pandelia, Timothy P. Saunders, John R. Swierk, Juan F. Callejas, Lasse Jensen, and Thomas E. Mallouk . Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrOx·nH2O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society 2015, 137 (27) , 8749-8757. https://doi.org/10.1021/jacs.5b03470
  26. Xuedong Fu, Mingzheng Xie, Peng Luan, and Liqiang Jing . Effective Visible-Excited Charge Separation in Silicate-Bridged ZnO/BiVO4 Nanocomposite and Its Contribution to Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces 2014, 6 (21) , 18550-18557. https://doi.org/10.1021/am505651d
  27. Masaaki Yoshida, Takumi Yomogida, Takehiro Mineo, Kiyofumi Nitta, Kazuo Kato, Takuya Masuda, Hiroaki Nitani, Hitoshi Abe, Satoru Takakusagi, Tomoya Uruga, Kiyotaka Asakura, Kohei Uosaki, and Hiroshi Kondoh . Photoexcited Hole Transfer to a MnOx Cocatalyst on a SrTiO3 Photoelectrode during Oxygen Evolution Studied by In Situ X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (42) , 24302-24309. https://doi.org/10.1021/jp507657p
  28. Andreas Bachmeier, Bonnie J. Murphy, and Fraser A. Armstrong . A Multi-Heme Flavoenzyme as a Solar Conversion Catalyst. Journal of the American Chemical Society 2014, 136 (37) , 12876-12879. https://doi.org/10.1021/ja507733j
  29. Matthew T. McDowell, Michael F. Lichterman, Joshua M. Spurgeon, Shu Hu, Ian D. Sharp, Bruce S. Brunschwig, and Nathan S. Lewis . Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO2/Ni Coatings. The Journal of Physical Chemistry C 2014, 118 (34) , 19618-19624. https://doi.org/10.1021/jp506133y
  30. Xinsheng Zhang, Huicheng Li, Shijun Wang, Fu-Ren F. Fan, and Allen J. Bard . Improvement of Hematite as Photocatalyst by Doping with Tantalum. The Journal of Physical Chemistry C 2014, 118 (30) , 16842-16850. https://doi.org/10.1021/jp500395a
  31. Min Zhou, Jian Bao, Yang Xu, Jiajia Zhang, Junfeng Xie, Meili Guan, Chengliang Wang, Liaoyong Wen, Yong Lei, and Yi Xie . Photoelectrodes Based upon Mo:BiVO4 Inverse Opals for Photoelectrochemical Water Splitting. ACS Nano 2014, 8 (7) , 7088-7098. https://doi.org/10.1021/nn501996a
  32. Stephen E. Fosdick, Sean P. Berglund, C. Buddie Mullins, and Richard M. Crooks . Evaluating Electrocatalysts for the Hydrogen Evolution Reaction Using Bipolar Electrode Arrays: Bi- and Trimetallic Combinations of Co, Fe, Ni, Mo, and W. ACS Catalysis 2014, 4 (5) , 1332-1339. https://doi.org/10.1021/cs500168t
  33. Chengxiang Xiang, Joel Haber, Martin Marcin, Slobodan Mitrovic, Jian Jin, and John M. Gregoire . Mapping Quantum Yield for (Fe–Zn–Sn–Ti)Ox Photoabsorbers Using a High Throughput Photoelectrochemical Screening System. ACS Combinatorial Science 2014, 16 (3) , 120-127. https://doi.org/10.1021/co400081w
  34. James R. McKone, Nathan S. Lewis, and Harry B. Gray . Will Solar-Driven Water-Splitting Devices See the Light of Day?. Chemistry of Materials 2014, 26 (1) , 407-414. https://doi.org/10.1021/cm4021518
  35. Michael F. Lichterman, Matthew R. Shaner, Sheila G. Handler, Bruce S. Brunschwig, Harry B. Gray, Nathan S. Lewis, and Joshua M. Spurgeon . Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition. The Journal of Physical Chemistry Letters 2013, 4 (23) , 4188-4191. https://doi.org/10.1021/jz4022415
  36. Sung Ki Cho, Hyun S. Park, Heung Chan Lee, Ki Min Nam, and Allen J. Bard . Metal Doping of BiVO4 by Composite Electrodeposition with Improved Photoelectrochemical Water Oxidation. The Journal of Physical Chemistry C 2013, 117 (44) , 23048-23056. https://doi.org/10.1021/jp408619u
  37. Jinhui Yang, Donge Wang, Hongxian Han, and Can Li . Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research 2013, 46 (8) , 1900-1909. https://doi.org/10.1021/ar300227e
  38. Fatwa F. Abdi, Tom J. Savenije, Matthias M. May, Bernard Dam, and Roel van de Krol . The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study. The Journal of Physical Chemistry Letters 2013, 4 (16) , 2752-2757. https://doi.org/10.1021/jz4013257
  39. Kevin C. Leonard, Ki Min Nam, Heung Chan Lee, Soon Hyung Kang, Hyun S. Park, and Allen J. Bard . ZnWO4/WO3 Composite for Improving Photoelectrochemical Water Oxidation. The Journal of Physical Chemistry C 2013, 117 (31) , 15901-15910. https://doi.org/10.1021/jp403506q
  40. Joshua N. Meyer, Mathew T. Mathew, Markus A. Wimmer, and Robert J. LeSuer . Effect of Tribolayer Formation on Corrosion of CoCrMo Alloys Investigated Using Scanning Electrochemical Microscopy. Analytical Chemistry 2013, 85 (15) , 7159-7166. https://doi.org/10.1021/ac400823q
  41. Alexander J. E. Rettie, Heung Chan Lee, Luke G. Marshall, Jung-Fu Lin, Cigdem Capan, Jeffrey Lindemuth, John S. McCloy, Jianshi Zhou, Allen J. Bard, and C. Buddie Mullins . Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO4 Single Crystals: Intrinsic Behavior of a Complex Metal Oxide. Journal of the American Chemical Society 2013, 135 (30) , 11389-11396. https://doi.org/10.1021/ja405550k
  42. Hyun S. Park, Kevin C. Leonard, and Allen J. Bard . Surface Interrogation Scanning Electrochemical Microscopy (SI-SECM) of Photoelectrochemistry at a W/Mo-BiVO4 Semiconductor Electrode: Quantification of Hydroxyl Radicals during Water Oxidation. The Journal of Physical Chemistry C 2013, 117 (23) , 12093-12102. https://doi.org/10.1021/jp400478z
  43. Hye Won Jeong, Tae Hwa Jeon, Jum Suk Jang, Wonyong Choi, and Hyunwoong Park . Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance. The Journal of Physical Chemistry C 2013, 117 (18) , 9104-9112. https://doi.org/10.1021/jp400415m
  44. Lena Trotochaud, Thomas J. Mills, and Shannon W. Boettcher . An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts. The Journal of Physical Chemistry Letters 2013, 4 (6) , 931-935. https://doi.org/10.1021/jz4002604
  45. Hoang X. Dang, Nathan T. Hahn, Hyun S. Park, Allen J. Bard, and C. Buddie Mullins . Nanostructured Ta3N5 Films as Visible-Light Active Photoanodes for Water Oxidation. The Journal of Physical Chemistry C 2012, 116 (36) , 19225-19232. https://doi.org/10.1021/jp307369z
  46. Yanqing Cong, Hyun S. Park, Shijun Wang, Hoang X. Dang, Fu-Ren F. Fan, C. Buddie Mullins, and Allen J. Bard . Synthesis of Ta3N5 Nanotube Arrays Modified with Electrocatalysts for Photoelectrochemical Water Oxidation. The Journal of Physical Chemistry C 2012, 116 (27) , 14541-14550. https://doi.org/10.1021/jp304340a
  47. Hollie V. Patten, Stanley C. S. Lai, Julie V. Macpherson, and Patrick R. Unwin . Active Sites for Outer-Sphere, Inner-Sphere, and Complex Multistage Electrochemical Reactions at Polycrystalline Boron-Doped Diamond Electrodes (pBDD) Revealed with Scanning Electrochemical Cell Microscopy (SECCM). Analytical Chemistry 2012, 84 (12) , 5427-5432. https://doi.org/10.1021/ac3010555
  48. Fatwa F. Abdi and Roel van de Krol . Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes. The Journal of Physical Chemistry C 2012, 116 (17) , 9398-9404. https://doi.org/10.1021/jp3007552
  49. Donge Wang, Rengui Li, Jian Zhu, Jingying Shi, Jingfeng Han, Xu Zong, and Can Li . Photocatalytic Water Oxidation on BiVO4 with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst. The Journal of Physical Chemistry C 2012, 116 (8) , 5082-5089. https://doi.org/10.1021/jp210584b
  50. Jason A. Seabold and Kyoung-Shin Choi . Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst. Journal of the American Chemical Society 2012, 134 (4) , 2186-2192. https://doi.org/10.1021/ja209001d
  51. Son Hoang, Siwei Guo, Nathan T. Hahn, Allen J. Bard, and C. Buddie Mullins . Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires. Nano Letters 2012, 12 (1) , 26-32. https://doi.org/10.1021/nl2028188
  52. Diane K. Zhong, Sujung Choi, and Daniel R. Gamelin . Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO4. Journal of the American Chemical Society 2011, 133 (45) , 18370-18377. https://doi.org/10.1021/ja207348x
  53. Jeremy L. Hitt, Yuguang C. Li, Songsheng Tao, Zhifei Yan, Yue Gao, Simon J. L. Billinge, Thomas E. Mallouk. A high throughput optical method for studying compositional effects in electrocatalysts for CO2 reduction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21342-w
  54. Sacha Corby, Reshma R. Rao, Ludmilla Steier, James R. Durrant. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nature Reviews Materials 2021, 6 (12) , 1136-1155. https://doi.org/10.1038/s41578-021-00343-7
  55. Eva Oswald, Anna‐Laurine Gaus, Julian Kund, Maria Küllmer, Jan Romer, Simon Weizenegger, Tobias Ullrich, Alexander K. Mengele, Lydia Petermann, Robert Leiter, Patrick R. Unwin, Ute Kaiser, Sven Rau, Axel Kahnt, Andrey Turchanin, Max Delius, Christine Kranz. Cobaloxime Complex Salts: Synthesis, Patterning on Carbon Nanomembranes and Heterogeneous Hydrogen Evolution Studies. Chemistry – A European Journal 2021, 63 https://doi.org/10.1002/chem.202102778
  56. Dechao Chen, Huayang Zhang, Keisuke Miyazawa, Ryohei Kojima, Peng Zhang, Lei Yang, Qiang Sun, Guosheng Shao, Takeshi Fukuma, Yongsheng Gao, Nam-Trung Nguyen, Colin L. Raston, Guohua Jia, Dongyuan Zhao, Paras N. Prasad, Shaobin Wang, Qin Li. Quasi-solid-state self-assembly of 1D-branched ZnSe/ZnS quantum rods into parallel monorail-like continuous films for solar devices. Nano Energy 2021, 89 , 106348. https://doi.org/10.1016/j.nanoen.2021.106348
  57. Shigeru Amemiya. Scanning Electrochemical Microscopy. 2021,,, 1-48. https://doi.org/10.1002/9783527610426.bard030105
  58. Rui‐Ting Gao, Shujie Liu, Xiaotian Guo, Rongao Zhang, Jinlu He, Xianhu Liu, Tomohiko Nakajima, Xueyuan Zhang, Lei Wang. Pt‐Induced Defects Curing on BiVO 4 Photoanodes for Near‐Threshold Charge Separation. Advanced Energy Materials 2021, 6 , 2102384. https://doi.org/10.1002/aenm.202102384
  59. Ming Fang, Qian Cai, Qi Qin, Wenting Hong, Wei Liu. Mo-doping induced crystal orientation reconstruction and oxygen vacancy on BiVO4 homojunction for enhanced solar-driven water splitting. Chemical Engineering Journal 2021, 421 , 127796. https://doi.org/10.1016/j.cej.2020.127796
  60. Xianqiang Xiong, Chuanqun Zhang, Xiao Zhang, Liya Fan, Lujia Zhou, Yuxiao Chu, Weiya Huang, Chenglin Wu, JiangShan Li, Xiaogang Yang, Deman Han. Uniformly citrate-assisted deposition of small-sized FeOOH on BiVO4 photoanode for efficient solar water oxidation. Electrochimica Acta 2021, 389 , 138795. https://doi.org/10.1016/j.electacta.2021.138795
  61. Sahar Pishgar, Saumya Gulati, Jacob M. Strain, Ying Liang, Matthew C. Mulvehill, Joshua M. Spurgeon. In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications. Small Methods 2021, 5 (7) , 2100322. https://doi.org/10.1002/smtd.202100322
  62. Laia Francàs, Shababa Selim, Sacha Corby, Dongho Lee, Camilo A. Mesa, Ernest Pastor, Kyoung-Shin Choi, James R. Durrant. Water oxidation kinetics of nanoporous BiVO 4 photoanodes functionalised with nickel/iron oxyhydroxide electrocatalysts. Chemical Science 2021, 12 (21) , 7442-7452. https://doi.org/10.1039/D0SC06429G
  63. Nikita Thomas, Vikram Singh, Sabine Kuss. Optical fibers in analytical electrochemistry: Recent developments in probe design and applications. TrAC Trends in Analytical Chemistry 2021, 136 , 116196. https://doi.org/10.1016/j.trac.2021.116196
  64. Harshavardhan Mohan, Vaikundamoorthy Ramalingam, Natesan Karthi, Sundaramoorthy Malathidevi, Taeho Shin, Janaki Venkatachalam, Kamala-Kannan Seralathan. Enhanced visible light-driven photocatalytic activity of reduced graphene oxide/cadmium sulfide composite: Methylparaben degradation mechanism and toxicity. Chemosphere 2021, 264 , 128481. https://doi.org/10.1016/j.chemosphere.2020.128481
  65. Nisha Kodan, Mujeeb Ahmad, B.R. Mehta. Charge carrier separation and enhanced PEC properties of BiVO4 based heterojunctions having ultrathin overlayers. International Journal of Hydrogen Energy 2021, 46 (1) , 189-196. https://doi.org/10.1016/j.ijhydene.2020.09.096
  66. Paramita Hajra, Debasis Sariket, Sangeeta Ghosh, Swarnendu Baduri, Debasish Ray, Chinmoy Bhattacharya. Photoelectrochemical oxidation of water and degradation of pollutants using simple Bi-based metal oxide semiconductors under visible light irradiation. 2021,,, 279-303. https://doi.org/10.1016/B978-0-12-823007-7.00001-8
  67. Songcan Wang, Lianzhou Wang, Wei Huang. Bismuth-based photocatalysts for solar energy conversion. Journal of Materials Chemistry A 2020, 8 (46) , 24307-24352. https://doi.org/10.1039/D0TA09729B
  68. Rambabu Yalavarthi, Olivier Henrotte, Alessandro Minguzzi, Paolo Ghigna, Daniel A. Grave, Alberto Naldoni. In situ characterizations of photoelectrochemical cells for solar fuels and chemicals. MRS Energy & Sustainability 2020, 7 (1) https://doi.org/10.1557/mre.2020.37
  69. Songcan Wang, Tianwei He, Peng Chen, Aijun Du, Kostya (Ken) Ostrikov, Wei Huang, Lianzhou Wang. In Situ Formation of Oxygen Vacancies Achieving Near‐Complete Charge Separation in Planar BiVO 4 Photoanodes. Advanced Materials 2020, 32 (26) , 2001385. https://doi.org/10.1002/adma.202001385
  70. Rowshanak Irani, Paul Plate, Christian Höhn, Peter Bogdanoff, Markus Wollgarten, Katja Höflich, Roel van de Krol, Fatwa F. Abdi. The role of ultra-thin MnO x co-catalysts on the photoelectrochemical properties of BiVO 4 photoanodes. Journal of Materials Chemistry A 2020, 8 (11) , 5508-5516. https://doi.org/10.1039/D0TA00939C
  71. Florian Gelb, Yu-Chien Chueh, Neso Sojic, Valérie Keller, Dodzi Zigah, Thomas Cottineau. Electrosynthesis of gradient TiO 2 nanotubes and rapid screening using scanning photoelectrochemical microscopy. Sustainable Energy & Fuels 2020, 4 (3) , 1099-1104. https://doi.org/10.1039/C9SE00895K
  72. Chen Xi Li, Bing Qing Qiu, Wei Li Wang, Jin Liang Zhuang, Jing Tang. Electrochemical deposition of organic semiconductor thin film and screening by scanning electrochemical microscopy. Thin Solid Films 2020, 698 , 137855. https://doi.org/10.1016/j.tsf.2020.137855
  73. Dechao Kong, Jie Qi, Danyang Liu, Xiangwen Zhang, Lun Pan, Jijun Zou. Ni-Doped BiVO4 with V4+ Species and Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting. Transactions of Tianjin University 2019, 25 (4) , 340-347. https://doi.org/10.1007/s12209-019-00202-1
  74. Peng Luan, Jie Zhang. Stepping towards Solar Water Splitting: Recent Progress in Bismuth Vanadate Photoanodes. ChemElectroChem 2019, 6 (13) , 3227-3243. https://doi.org/10.1002/celc.201900398
  75. Sonya Kosar, Yuriy Pihosh, Raman Bekarevich, Kazutaka Mitsuishi, Kazuma Mawatari, Yutaka Kazoe, Takehiko Kitamori, Masahiro Tosa, Alexey B. Tarasov, Eugene A. Goodilin, Yaroslav M. Struk, Michio Kondo, Ivan Turkevych. Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods. Applied Nanoscience 2019, 9 (5) , 1017-1024. https://doi.org/10.1007/s13204-018-0759-z
  76. Huiwen Lan, Jiujun Deng, Jun Zhong. Boosting the performance of hematite photoanodes for solar water oxidation by synergistic W-incorporation and Zr-passivation. International Journal of Hydrogen Energy 2019, 44 (31) , 16436-16442. https://doi.org/10.1016/j.ijhydene.2019.04.247
  77. Maged N. Shaddad, Prabhakarn Arunachalam, Joselito Labis, Mahmoud Hezam, Abdullah M. Al-Mayouf. Fabrication of robust nanostructured (Zr)BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting. Applied Catalysis B: Environmental 2019, 244 , 863-870. https://doi.org/10.1016/j.apcatb.2018.11.079
  78. Dong Ki Lee, Dongho Lee, Margaret A. Lumley, Kyoung-Shin Choi. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chemical Society Reviews 2019, 48 (7) , 2126-2157. https://doi.org/10.1039/C8CS00761F
  79. Umesh Prasad, Jyoti Prakash, Bruno Azeredo, Arunachala Kannan. Stoichiometric and non-stoichiometric tungsten doping effect in bismuth vanadate based photoactive material for photoelectrochemical water splitting. Electrochimica Acta 2019, 299 , 262-272. https://doi.org/10.1016/j.electacta.2019.01.013
  80. Aadesh P. Singh, Nishant Saini, Bodh R. Mehta, Anders Hellman, Beniamino Iandolo, Björn Wickman. Hydrogen treatment and FeOOH overlayer: Effective approaches for enhancing the photoelectrochemical water oxidation performance of bismuth vanadate thin films. Catalysis Today 2019, 321-322 , 87-93. https://doi.org/10.1016/j.cattod.2018.03.041
  81. K. Trzciński, M. Szkoda, K. Szulc, M. Sawczak, A. Lisowska-Oleksiak. The bismuth vanadate thin layers modified by cobalt hexacyanocobaltate as visible-light active photoanodes for photoelectrochemical water oxidation. Electrochimica Acta 2019, 295 , 410-417. https://doi.org/10.1016/j.electacta.2018.10.167
  82. Dadao Wang, Jian Li, Zhifeng Xu, Yeran Zhu, Guoxin Chen. Preparation of novel flower-like BiVO4/Bi2Ti2O7/Fe3O4 for simultaneous removal of tetracycline and Cu2+: Adsorption and photocatalytic mechanisms. Journal of Colloid and Interface Science 2019, 533 , 344-357. https://doi.org/10.1016/j.jcis.2018.08.089
  83. Guiji Liu, Johanna Eichhorn, Chang-Ming Jiang, Mary C. Scott, Lucas H. Hess, John M. Gregoire, Joel A. Haber, Ian D. Sharp, Francesca M. Toma. Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers. Sustainable Energy & Fuels 2019, 3 (1) , 127-135. https://doi.org/10.1039/C8SE00473K
  84. Xiaofan Zhang, Man Liu, Weiqian Kong, Hongbo Fan. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy. Frontiers of Optoelectronics 2018, 11 (4) , 333-347. https://doi.org/10.1007/s12200-018-0852-7
  85. Jeongsuk Seo, Hiroshi Nishiyama, Taro Yamada, Kazunari Domen. Auf sichtbares Licht ansprechende Photoanoden für hochaktive, dauerhafte Wasseroxidation. Angewandte Chemie 2018, 130 (28) , 8530-8550. https://doi.org/10.1002/ange.201710873
  86. Jeongsuk Seo, Hiroshi Nishiyama, Taro Yamada, Kazunari Domen. Visible‐Light‐Responsive Photoanodes for Highly Active, Stable Water Oxidation. Angewandte Chemie International Edition 2018, 57 (28) , 8396-8415. https://doi.org/10.1002/anie.201710873
  87. Shigeru Ikeda, Takato Kawaguchi, Yui Higuchi, Naoto Kawasaki, Takashi Harada, Mikas Remeika, Muhammad M. Islam, Takeaki Sakurai. Effects of Zirconium Doping Into a Monoclinic Scheelite BiVO4 Crystal on Its Structural, Photocatalytic, and Photoelectrochemical Properties. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00266
  88. Miao Kan, Dongqi Xue, Aihua Jia, Xufang Qian, Dongting Yue, Jinping Jia, Yixin Zhao. A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst. Applied Catalysis B: Environmental 2018, 225 , 504-511. https://doi.org/10.1016/j.apcatb.2017.12.014
  89. Heung Chan Lee, Hyun S. Park, Sung Ki Cho, Ki Min Nam, Allen J. Bard. Direct photoelectrochemical characterization of photocatalytic H, N doped TiO2 powder suspensions. Journal of Electroanalytical Chemistry 2018, 819 , 38-45. https://doi.org/10.1016/j.jelechem.2017.06.050
  90. Jung Kyu Kim, Yoonjun Cho, Myung Jin Jeong, Ben Levy-Wendt, Dongguen Shin, Yeonjin Yi, Dong Hwan Wang, Xiaolin Zheng, Jong Hyeok Park. Rapid Formation of a Disordered Layer on Monoclinic BiVO 4 : Co-Catalyst-Free Photoelectrochemical Solar Water Splitting. ChemSusChem 2018, 11 (5) , 933-940. https://doi.org/10.1002/cssc.201702173
  91. Xin Yao, Danping Wang, Xin Zhao, Susu Ma, Prince S. Bassi, Guang Yang, Wei Chen, Zhong Chen, Thirumany Sritharan. Scale-Up of BiVO 4 Photoanode for Water Splitting in a Photoelectrochemical Cell: Issues and Challenges. Energy Technology 2018, 6 (1) , 100-109. https://doi.org/10.1002/ente.201700619
  92. Jing Wang, Teunis van Ree, Yuping Wu, Peng Zhang, Lian Gao. Metal oxide semiconductors for solar water splitting. 2018,,, 205-249. https://doi.org/10.1016/B978-0-12-811167-3.00008-0
  93. Miaoyan Huang, Juncao Bian, Wei Xiong, Chao Huang, Ruiqin Zhang. Low-dimensional Mo:BiVO 4 photoanodes for enhanced photoelectrochemical activity. Journal of Materials Chemistry A 2018, 6 (8) , 3602-3609. https://doi.org/10.1039/C7TA11132K
  94. Gisang Park, Joon Yong Park, Jong Hyeok Seo, Kyung Hee Oh, Ahyeon Ma, Ki Min Nam. Ultrasonic-assisted preparation of a pinhole-free BiVO 4 photoanode for enhanced photoelectrochemical water oxidation. Chemical Communications 2018, 54 (44) , 5570-5573. https://doi.org/10.1039/C8CC01976B
  95. Xin Yu, Zhenhuan Zhao, Deihui Sun, Na Ren, Longhua Ding, Ruiqi Yang, Yanchen Ji, Linlin Li, Hong Liu. TiO 2 /TiN core/shell nanobelts for efficient solar hydrogen generation. Chemical Communications 2018, 54 (47) , 6056-6059. https://doi.org/10.1039/C8CC02651C
  96. Moulay T. Sougrati, Jeethu J. Arayamparambil, Xiaohui Liu, Markus Mann, Adam Slabon, Lorenzo Stievano, Richard Dronskowski. Carbodiimides as energy materials: which directions for a reasonable future?. Dalton Transactions 2018, 47 (32) , 10827-10832. https://doi.org/10.1039/C8DT01846D
  97. Panyong Kuang, Liuyang Zhang, Bei Cheng, Jiaguo Yu. Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Applied Catalysis B: Environmental 2017, 218 , 570-580. https://doi.org/10.1016/j.apcatb.2017.07.002
  98. Chunhua Cui, Marc Heggen, Wolf-Dietrich Zabka, Wei Cui, Jürg Osterwalder, Benjamin Probst, Roger Alberto. Atomically dispersed hybrid nickel-iridium sites for photoelectrocatalysis. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01545-w
  99. Javier Quiñonero, Roberto Gómez. Controlling the amount of co-catalyst as a critical factor in determining the efficiency of photoelectrodes: The case of nickel (II) hydroxide on vanadate photoanodes. Applied Catalysis B: Environmental 2017, 217 , 437-447. https://doi.org/10.1016/j.apcatb.2017.06.005
  100. Martin Davi, George Ogutu, Felix Schrader, Anna Rokicinska, Piotr Kustrowski, Adam Slabon. Enhancing Photoelectrochemical Water Oxidation Efficiency of WO 3 /α‐Fe 2 O 3 Heterojunction Photoanodes by Surface Functionalization with CoPd Nanocrystals. European Journal of Inorganic Chemistry 2017, 2017 (37) , 4267-4274. https://doi.org/10.1002/ejic.201700952
Load more citations