First-Principles-Based Kinetic Monte Carlo Simulation of the Structure Sensitivity of the Water–Gas Shift Reaction on Platinum Surfaces

View Author Information
Department of Chemical Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716, United States
E-mail [email protected]; tel. +1-302-831-2830.
Cite this: J. Phys. Chem. C 2011, 115, 50, 24750–24762
Publication Date (Web):November 2, 2011
https://doi.org/10.1021/jp2071869
Copyright © 2011 American Chemical Society
Article Views
2010
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Precious metals, such as platinum, have recently been explored as catalysts for the water–gas shift (WGS) reaction. Previous studies have elucidated the underlying reaction mechanism using mean-field models; however, the contribution of different site types, namely, steps and terraces, on the overall reaction rate is an open question, and it remains unclear how structure sensitive the WGS reaction is. The present work addresses these questions using a multiscale modeling approach that integrates density functional theory (DFT) calculations and kinetic Monte Carlo (KMC) simulation. We calculate the reaction barriers and pre-exponential factors of the elementary steps of the WGS mechanism at steps and terraces using DFT. These elementary steps include adsorption and desorption, water and hydroxyl decomposition, and the formation of carboxyl and formate intermediates followed by the formation of CO2. We subsequently incorporate the calculated values into a KMC framework and calculate the turnover frequency for Pt(111), Pt(211), and Pt(322) under a wide range of conditions. Our results indicate that for industrially relevant conditions, the WGS reaction is practically structure-insensitive with both the steps and the terraces contributing to the overall activity, whereas for low CO:H2O ratios, the steps are much more active than the terraces. Investigation of the surface coverages and analysis of the reaction statistics reveals that this change in structure sensitivity stems from changes in the most abundant surface species as well as the primary pathway through which the chemistry proceeds. Our study provides the first evidence that the active site may be condition specific and may entail multiple individual sites under certain conditions.

Supporting Information

ARTICLE SECTIONS
Jump To

Accuracy of DFT-calculated transition-state energies; water–gas shift elementary reaction patterns. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 91 publications.

  1. Robert H. Wells, Suming An, Prajay Patel, Cong Liu, Rex T. Skodje. Single-Molecule Kinetics of Styrene Hydrogenation on Silica-Supported Vanadium: The Role of Disorder for Single-Atom Catalysts. The Journal of Physical Chemistry C 2021, 125 (37) , 20286-20300. https://doi.org/10.1021/acs.jpcc.1c04759
  2. Jan Fingerhut, Dmitriy Borodin, Michael Schwarzer, Georgios Skoulatakis, Daniel J. Auerbach, Alec M. Wodtke, Theofanis N. Kitsopoulos. The Barrier for CO2 Functionalization to Formate on Hydrogenated Pt. The Journal of Physical Chemistry A 2021, 125 (34) , 7396-7405. https://doi.org/10.1021/acs.jpca.1c04833
  3. Zheng Chen, Zhangyun Liu, Xin Xu. Coverage-Dependent Microkinetics in Heterogeneous Catalysis Powered by the Maximum Rate Analysis. ACS Catalysis 2021, 11 (15) , 9333-9344. https://doi.org/10.1021/acscatal.1c01997
  4. Sudipta Roy, Ashwani K. Tiwari. Efficient Water–Gas Shift Catalysts for H2O and CO Dissociation Using Cu–Ni Step Alloy Surfaces. The Journal of Physical Chemistry C 2021, 125 (25) , 13819-13835. https://doi.org/10.1021/acs.jpcc.1c02363
  5. Prajay Patel, Robert H. Wells, David M. Kaphan, Massimiliano Delferro, Rex T. Skodje, Cong Liu. Computational Investigation of the Role of Active Site Heterogeneity for a Supported Organovanadium(III) Hydrogenation Catalyst. ACS Catalysis 2021, 11 (12) , 7257-7269. https://doi.org/10.1021/acscatal.1c00688
  6. Carl R. F. Lund, Bruce Tatarchuk, Nelson Cardona-Martínez, Josephine M. Hill, Marco A. Sanchez-Castillo, George W. Huber, Yuriy Román-Leshkov, Dante Simonetti, Yomaira Pagan-Torres, Thomas J. Schwartz, Ali Hussain Motagamwala. A Career in Catalysis: James A. Dumesic. ACS Catalysis 2021, 11 (4) , 2310-2339. https://doi.org/10.1021/acscatal.0c05325
  7. Benjamin W. J. Chen, Lang Xu, Manos Mavrikakis. Computational Methods in Heterogeneous Catalysis. Chemical Reviews 2021, 121 (2) , 1007-1048. https://doi.org/10.1021/acs.chemrev.0c01060
  8. Giannis D. Savva, Michail Stamatakis. Comparison of Queueing Data-Structures for Kinetic Monte Carlo Simulations of Heterogeneous Catalysts. The Journal of Physical Chemistry A 2020, 124 (38) , 7843-7856. https://doi.org/10.1021/acs.jpca.0c06871
  9. Srikanth Ravipati, Mayeul d’Avezac, Jens Nielsen, James Hetherington, Michail Stamatakis. A Caching Scheme To Accelerate Kinetic Monte Carlo Simulations of Catalytic Reactions. The Journal of Physical Chemistry A 2020, 124 (35) , 7140-7154. https://doi.org/10.1021/acs.jpca.0c03571
  10. Tianjun Xie, Bryan J. Hare, Paul J. Meza-Morales, Carsten Sievers, Rachel B. Getman. Identification of the Active Sites in the Dehydrogenation of Methanol on Pt/Al2O3 Catalysts. The Journal of Physical Chemistry C 2020, 124 (35) , 19015-19023. https://doi.org/10.1021/acs.jpcc.0c03717
  11. Yang Chen, Yingxin Feng, Lin Li, Jingyue Liu, Xiaoli Pan, Wei Liu, Fenfei Wei, Yitao Cui, Botao Qiao, Xiucheng Sun, Xiaoyu Li, Jian Lin, Sen Lin, Xiaodong Wang, Tao Zhang. Identification of Active Sites on High-Performance Pt/Al2O3 Catalyst for Cryogenic CO Oxidation. ACS Catalysis 2020, 10 (15) , 8815-8824. https://doi.org/10.1021/acscatal.0c02253
  12. Jiangyue Liu, Lu Tan, Liangliang Huang, Qi Wang, Yingchun Liu. Kinetic Monte Carlo Modeling for the NO–CO Reaction Mechanism on Rh(100) and Rh(111). Langmuir 2020, 36 (12) , 3127-3140. https://doi.org/10.1021/acs.langmuir.9b03720
  13. Anshumaan Bajpai, Kurt Frey, William F. Schneider. Comparison of Coverage-Dependent Binding Energy Models for Mean-Field Microkinetic Rate Predictions. Langmuir 2020, 36 (1) , 465-474. https://doi.org/10.1021/acs.langmuir.9b03563
  14. Hèctor Prats, Sergio Posada-Pérez, José A. Rodriguez, Ramón Sayós, Francesc Illas. Kinetic Monte Carlo Simulations Unveil Synergic Effects at Work on Bifunctional Catalysts. ACS Catalysis 2019, 9 (10) , 9117-9126. https://doi.org/10.1021/acscatal.9b02813
  15. Salai Cheettu Ammal, Andreas Heyden. Understanding the Nature and Activity of Supported Platinum Catalysts for the Water–Gas Shift Reaction: From Metallic Nanoclusters to Alkali-Stabilized Single-Atom Cations. ACS Catalysis 2019, 9 (9) , 7721-7740. https://doi.org/10.1021/acscatal.9b01560
  16. Matthew T. Darby, Felicia R. Lucci, Matthew D. Marcinkowski, Andrew J. Therrien, Angelos Michaelides, Michail Stamatakis, E. Charles H. Sykes. Carbon Monoxide Mediated Hydrogen Release from PtCu Single-Atom Alloys: The Punctured Molecular Cork Effect. The Journal of Physical Chemistry C 2019, 123 (16) , 10419-10428. https://doi.org/10.1021/acs.jpcc.9b01213
  17. Hanyu Ma, William F. Schneider. Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities. ACS Catalysis 2019, 9 (3) , 2407-2414. https://doi.org/10.1021/acscatal.8b04251
  18. Thiago P. de Carvalho, Rafael C. Catapan, Amir A. M. Oliveira, Dionisios G. Vlachos. Microkinetic Modeling and Reduced Rate Expression of the Water–Gas Shift Reaction on Nickel. Industrial & Engineering Chemistry Research 2018, 57 (31) , 10269-10280. https://doi.org/10.1021/acs.iecr.8b01957
  19. Eric A. Walker, Donald Mitchell, Gabriel A. Terejanu, Andreas Heyden. Identifying Active Sites of the Water–Gas Shift Reaction over Titania Supported Platinum Catalysts under Uncertainty. ACS Catalysis 2018, 8 (5) , 3990-3998. https://doi.org/10.1021/acscatal.7b03531
  20. Eric C. Dybeck, Craig P. Plaisance, and Matthew Neurock . Generalized Temporal Acceleration Scheme for Kinetic Monte Carlo Simulations of Surface Catalytic Processes by Scaling the Rates of Fast Reactions. Journal of Chemical Theory and Computation 2017, 13 (4) , 1525-1538. https://doi.org/10.1021/acs.jctc.6b00859
  21. Anshumaan Bajpai, Kurt Frey, and William F. Schneider . Binary Approach to Ternary Cluster Expansions: NO–O–Vacancy System on Pt(111). The Journal of Physical Chemistry C 2017, 121 (13) , 7344-7354. https://doi.org/10.1021/acs.jpcc.7b00914
  22. Di Li, Xinyu Li, and Jinlong Gong . Catalytic Reforming of Oxygenates: State of the Art and Future Prospects. Chemical Reviews 2016, 116 (19) , 11529-11653. https://doi.org/10.1021/acs.chemrev.6b00099
  23. Canan Sener, Thejas S. Wesley, Ana C. Alba-Rubio, Mrunmayi D. Kumbhalkar, Sikander H. Hakim, Fabio H. Ribeiro, Jeffrey T. Miller, and James A. Dumesic . PtMo Bimetallic Catalysts Synthesized by Controlled Surface Reactions for Water Gas Shift. ACS Catalysis 2016, 6 (2) , 1334-1344. https://doi.org/10.1021/acscatal.5b02028
  24. Da-Jiang Liu, Andres Garcia, Jing Wang, David M. Ackerman, Chi-Jen Wang, and James W. Evans . Kinetic Monte Carlo Simulation of Statistical Mechanical Models and Coarse-Grained Mesoscale Descriptions of Catalytic Reaction–Diffusion Processes: 1D Nanoporous and 2D Surface Systems. Chemical Reviews 2015, 115 (12) , 5979-6050. https://doi.org/10.1021/cr500453t
  25. Xiang-Kui Gu, Bin Liu, and Jeffrey Greeley . First-Principles Study of Structure Sensitivity of Ethylene Glycol Conversion on Platinum. ACS Catalysis 2015, 5 (4) , 2623-2631. https://doi.org/10.1021/cs5019088
  26. Luca Dietz, Simone Piccinin, and Matteo Maestri . Mechanistic Insights into CO2 Activation via Reverse Water–Gas Shift on Metal Surfaces. The Journal of Physical Chemistry C 2015, 119 (9) , 4959-4966. https://doi.org/10.1021/jp512962c
  27. Sina Behtash, Jianmin Lu, Christopher T. Williams, John R. Monnier, and Andreas Heyden . Effect of Palladium Surface Structure on the Hydrodeoxygenation of Propanoic Acid: Identification of Active Sites. The Journal of Physical Chemistry C 2015, 119 (4) , 1928-1942. https://doi.org/10.1021/jp511618u
  28. Bin Jiang and Hua Guo . Prediction of Mode Specificity, Bond Selectivity, Normal Scaling, and Surface Lattice Effects in Water Dissociative Chemisorption on Several Metal Surfaces Using the Sudden Vector Projection Model. The Journal of Physical Chemistry C 2014, 118 (46) , 26851-26858. https://doi.org/10.1021/jp5090839
  29. Salai Cheettu Ammal and Andreas Heyden . Water–Gas Shift Catalysis at Corner Atoms of Pt Clusters in Contact with a TiO2 (110) Support Surface. ACS Catalysis 2014, 4 (10) , 3654-3662. https://doi.org/10.1021/cs5009706
  30. Sara Aranifard, Salai Cheettu Ammal, and Andreas Heyden . On the Importance of the Associative Carboxyl Mechanism for the Water-Gas Shift Reaction at Pt/CeO2 Interface Sites. The Journal of Physical Chemistry C 2014, 118 (12) , 6314-6323. https://doi.org/10.1021/jp5000649
  31. Branko Zugic, Shiran Zhang, David C. Bell, Franklin (Feng) Tao, and Maria Flytzani-Stephanopoulos . Probing the Low-Temperature Water–Gas Shift Activity of Alkali-Promoted Platinum Catalysts Stabilized on Carbon Supports. Journal of the American Chemical Society 2014, 136 (8) , 3238-3245. https://doi.org/10.1021/ja4123889
  32. Antonio Prestianni, Micaela Crespo-Quesada, Remedios Cortese, Francesco Ferrante, Liubov Kiwi-Minsker, and Dario Duca . Structure Sensitivity of 2-Methyl-3-butyn-2-ol Hydrogenation on Pd: Computational and Experimental Modeling. The Journal of Physical Chemistry C 2014, 118 (6) , 3119-3128. https://doi.org/10.1021/jp4114859
  33. Ernst D. German and Moshe Sheintuch . Predicting CH4 Dissociation Kinetics on Metals: Trends, Sticking Coefficients, H Tunneling, and Kinetic Isotope Effect. The Journal of Physical Chemistry C 2013, 117 (44) , 22811-22826. https://doi.org/10.1021/jp406937r
  34. Wei Guo, Michail Stamatakis, and Dionisios G. Vlachos . Design Principles of Heteroepitaxial Bimetallic Catalysts. ACS Catalysis 2013, 3 (10) , 2248-2255. https://doi.org/10.1021/cs4005166
  35. Jonathan E. Sutton, Paraskevi Panagiotopoulou, Xenophon E. Verykios, and Dionisios G. Vlachos . Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. The Journal of Physical Chemistry C 2013, 117 (9) , 4691-4706. https://doi.org/10.1021/jp312593u
  36. Liu Yang, Altaf Karim, and James T. Muckerman . Density Functional Kinetic Monte Carlo Simulation of Water–Gas Shift Reaction on Cu/ZnO. The Journal of Physical Chemistry C 2013, 117 (7) , 3414-3425. https://doi.org/10.1021/jp3114286
  37. Michail Stamatakis and Dionisios G. Vlachos . Unraveling the Complexity of Catalytic Reactions via Kinetic Monte Carlo Simulation: Current Status and Frontiers. ACS Catalysis 2012, 2 (12) , 2648-2663. https://doi.org/10.1021/cs3005709
  38. C. M. Kalamaras, D. D. Dionysiou, and A. M. Efstathiou . Mechanistic Studies of the Water–Gas Shift Reaction over Pt/CexZr1–xO2 Catalysts: The Effect of Pt Particle Size and Zr Dopant. ACS Catalysis 2012, 2 (12) , 2729-2742. https://doi.org/10.1021/cs3006204
  39. Rafael C. Catapan, Amir A. M. Oliveira, Ying Chen, and Dionisios G. Vlachos . DFT Study of the Water–Gas Shift Reaction and Coke Formation on Ni(111) and Ni(211) Surfaces. The Journal of Physical Chemistry C 2012, 116 (38) , 20281-20291. https://doi.org/10.1021/jp302488f
  40. Ying Chen and Dionisios G. Vlachos . Density Functional Theory Study of Methane Oxidation and Reforming on Pt(111) and Pt(211). Industrial & Engineering Chemistry Research 2012, 51 (38) , 12244-12252. https://doi.org/10.1021/ie301792g
  41. Xianyao Yan, Yingjie Li, Chunxiao Zhang, Yuzhuo Wang, Jianli Zhao, Zeyan Wang. Understanding the enhancement of CaO on water gas shift reaction for H2 production by density functional theory. Fuel 2021, 303 , 121257. https://doi.org/10.1016/j.fuel.2021.121257
  42. Dmitriy Borodin, Michael Schwarzer, Hinrich W. Hahn, Jan Fingerhut, Yingqi Wang, Daniel J. Auerbach, Hua Guo, Joerg Schroeder, Theofanis N. Kitsopoulos, Alec M. Wodtke. The puzzle of rapid hydrogen oxidation on Pt(111). Molecular Physics 2021, 119 (17-18) https://doi.org/10.1080/00268976.2021.1966533
  43. Raffaele Cheula, Matteo Maestri. Nature and identity of the active site via structure-dependent microkinetic modeling: An application to WGS and reverse WGS reactions on Rh. Catalysis Today 2021, 2 https://doi.org/10.1016/j.cattod.2021.05.016
  44. Matthew T. Darby, Michail Stamatakis. Single‐Atom Alloys for the Electrochemical Oxygen Reduction Reaction. ChemPhysChem 2021, 22 (5) , 499-508. https://doi.org/10.1002/cphc.202000869
  45. Niranjan Sitapure, Hyeonggeon Lee, Francisco Ospina‐Acevedo, Perla B. Balbuena, Sungwon Hwang, Joseph Sang‐II Kwon. A computational approach to characterize formation of a passivation layer in lithium metal anodes. AIChE Journal 2021, 67 (1) https://doi.org/10.1002/aic.17073
  46. Hiroya Nakata, Masaaki Araidai, Shandan Bai, Hiromichi Hirano, Tomofumi Tada. Accurate meso-scale dynamics by kinetic Monte Carlo simulation via free energy multicanonical sampling: oxygen vacancy diffusion in BaTiO 3. Science and Technology of Advanced Materials: Methods 2021, 1 (1) , 109-122. https://doi.org/10.1080/27660400.2021.1930915
  47. Hiroya Nakata. Development of a fragment kinetic Monte Carlo method for efficient prediction of ionic diffusion in perovskite crystals. Computational Materials Science 2020, 184 , 109844. https://doi.org/10.1016/j.commatsci.2020.109844
  48. Niranjan Sitapure, Tian Qiao, Dong Hee Son, Joseph Sang-Il Kwon. Kinetic Monte Carlo modeling of the equilibrium-based size control of CsPbBr3 perovskite quantum dots in strongly confined regime. Computers & Chemical Engineering 2020, 139 , 106872. https://doi.org/10.1016/j.compchemeng.2020.106872
  49. Pushkar Ghanekar, Joseph Kubal, Yanran Cui, Garrett Mitchell, W. Nicholas Delgass, Fabio Ribeiro, Jeffrey Greeley. Catalysis at Metal/Oxide Interfaces: Density Functional Theory and Microkinetic Modeling of Water Gas Shift at Pt/MgO Boundaries. Topics in Catalysis 2020, 63 (7-8) , 673-687. https://doi.org/10.1007/s11244-020-01257-4
  50. Vincenzo Palma, Concetta Ruocco, Marta Cortese, Simona Renda, Eugenio Meloni, Giovanni Festa, Marco Martino. Platinum Based Catalysts in the Water Gas Shift Reaction: Recent Advances. Metals 2020, 10 (7) , 866. https://doi.org/10.3390/met10070866
  51. Olga Sneka-Płatek, Kamila Kaźmierczak, Marcin Jędrzejczyk, Philippe Sautet, Nicolas Keller, Carine Michel, Agnieszka M. Ruppert. Understanding the influence of the composition of the Ag Pd catalysts on the selective formic acid decomposition and subsequent levulinic acid hydrogenation. International Journal of Hydrogen Energy 2020, 45 (35) , 17339-17353. https://doi.org/10.1016/j.ijhydene.2020.04.180
  52. José L.C. Fajín, M. Natália D.S. Cordeiro. Probing the efficiency of platinum nanotubes for the H2 production by water gas shift reaction: A DFT study. Applied Catalysis B: Environmental 2020, 263 , 118301. https://doi.org/10.1016/j.apcatb.2019.118301
  53. Arunabhiram Chutia, Adam Thetford, Michail Stamatakis, C. Richard A. Catlow. A DFT and KMC based study on the mechanism of the water gas shift reaction on the Pd(100) surface. Physical Chemistry Chemical Physics 2020, 22 (6) , 3620-3632. https://doi.org/10.1039/C9CP05476F
  54. Gerhard R. Wittreich, Konstantinos Alexopoulos, Dionisios G. Vlachos. Microkinetic Modeling of Surface Catalysis. 2020,,, 1377-1404. https://doi.org/10.1007/978-3-319-44680-6_5
  55. Albert Bruix, Johannes T. Margraf, Mie Andersen, Karsten Reuter. First-principles-based multiscale modelling of heterogeneous catalysis. Nature Catalysis 2019, 2 (8) , 659-670. https://doi.org/10.1038/s41929-019-0298-3
  56. Lais R. Borges, Alejandro Lopez‐Castillo, Debora M. Meira, Jean Marcel R. Gallo, Daniela Zanchet, José Maria C. Bueno. Effect of the Pt Precursor and Loading on the Structural Parameters and Catalytic Properties of Pt/Al 2 O 3. ChemCatChem 2019, 11 (13) , 3064-3074. https://doi.org/10.1002/cctc.201900092
  57. M. Núñez, J. L. Lansford, D. G. Vlachos. Optimization of the facet structure of transition-metal catalysts applied to the oxygen reduction reaction. Nature Chemistry 2019, 11 (5) , 449-456. https://doi.org/10.1038/s41557-019-0247-4
  58. Tong-hao Shen, Xin Xu. The XPK package: A comparison between the extended phenomenological kinetic (XPK) method and the conventional kinetic Monte Carlo (KMC) method. Chinese Journal of Chemical Physics 2019, 32 (1) , 143-150. https://doi.org/10.1063/1674-0068/cjcp1901013
  59. Konstantinos G. Papanikolaou, Matthew T. Darby, Michail Stamatakis. Adlayer structure and lattice size effects on catalytic rates predicted from KMC simulations: NO oxidation on Pt(111). The Journal of Chemical Physics 2018, 149 (18) , 184701. https://doi.org/10.1063/1.5048787
  60. Stephen A. Giles, Jon C. Wilson, Jared Nash, Bingjun Xu, Dionisios G. Vlachos, Yushan Yan. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. Journal of Catalysis 2018, 367 , 328-331. https://doi.org/10.1016/j.jcat.2018.09.030
  61. Dongheon Lee, Alec Mohr, Joseph Sang-Il Kwon, Hung-Jen Wu. Kinetic Monte Carlo modeling of multivalent binding of CTB proteins with GM1 receptors. Computers & Chemical Engineering 2018, 118 , 283-295. https://doi.org/10.1016/j.compchemeng.2018.08.011
  62. Caoming Yu, Fang Wang, Yunlei Zhang, Leihong Zhao, Botao Teng, Maohong Fan, Xiaona Liu. H2 Thermal Desorption Spectra on Pt(111): A Density Functional Theory and Kinetic Monte Carlo Simulation Study. Catalysts 2018, 8 (10) , 450. https://doi.org/10.3390/catal8100450
  63. Matthew T. Darby, E. Charles H. Sykes, Angelos Michaelides, Michail Stamatakis. Carbon Monoxide Poisoning Resistance and Structural Stability of Single Atom Alloys. Topics in Catalysis 2018, 61 (5-6) , 428-438. https://doi.org/10.1007/s11244-017-0882-1
  64. Isaias Barbosa Aragao, Insoo Ro, Yifei Liu, Madelyn Ball, George W. Huber, Daniela Zanchet, James A. Dumesic. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction. Applied Catalysis B: Environmental 2018, 222 , 182-190. https://doi.org/10.1016/j.apcatb.2017.10.004
  65. Gerhard R. Wittreich, Konstantinos Alexopoulos, Dionisios G. Vlachos. Microkinetic Modeling of Surface Catalysis. 2018,,, 1-28. https://doi.org/10.1007/978-3-319-50257-1_5-1
  66. M. Núñez, T. Robie, D. G. Vlachos. Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling. The Journal of Chemical Physics 2017, 147 (16) , 164103. https://doi.org/10.1063/1.4998926
  67. Emanuele Vignola, Stephan N. Steinmann, Bart D. Vandegehuchte, Daniel Curulla, Michail Stamatakis, Philippe Sautet. A machine learning approach to graph-theoretical cluster expansions of the energy of adsorbate layers. The Journal of Chemical Physics 2017, 147 (5) , 054106. https://doi.org/10.1063/1.4985890
  68. Ryosuke Jinnouchi, Kensaku Kodama, Akihiro Nagoya, Yu Morimoto. Simulated Volcano Plot of Oxygen Reduction Reaction on Stepped Pt Surfaces. Electrochimica Acta 2017, 230 , 470-478. https://doi.org/10.1016/j.electacta.2017.02.034
  69. Ernst D. German, Moshe Sheintuch. Methane steam reforming rates over Pt, Rh and Ni(111) accounting for H tunneling and for metal lattice vibrations. Surface Science 2017, 656 , 126-139. https://doi.org/10.1016/j.susc.2016.03.024
  70. Mingxia Zhou, Thong Nguyen-Minh Le, Lam K. Huynh, Bin Liu. Effects of structure and size of Ni nanocatalysts on hydrogen selectivity via water-gas-shift reaction—A first-principles-based kinetic study. Catalysis Today 2017, 280 , 210-219. https://doi.org/10.1016/j.cattod.2016.07.018
  71. Hèctor Prats, Pablo Gamallo, Francesc Illas, Ramón Sayós. Comparing the catalytic activity of the water gas shift reaction on Cu(3 2 1) and Cu(1 1 1) surfaces: Step sites do not always enhance the overall reactivity. Journal of Catalysis 2016, 342 , 75-83. https://doi.org/10.1016/j.jcat.2016.07.013
  72. Neetu Kumari, M. Ali Haider, Suddhasatwa Basu. Mechanism of Catalytic and Electrocatalytic CO2 Reduction to Fuels and Chemicals. 2016,,, 267-292. https://doi.org/10.1201/b20177-7
  73. Jonathan E. Sutton, Wei Guo, Markos A. Katsoulakis, Dionisios G. Vlachos. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nature Chemistry 2016, 8 (4) , 331-337. https://doi.org/10.1038/nchem.2454
  74. N.J. van der Kaap, L.J.A. Koster. Massively parallel kinetic Monte Carlo simulations of charge carrier transport in organic semiconductors. Journal of Computational Physics 2016, 307 , 321-332. https://doi.org/10.1016/j.jcp.2015.12.001
  75. Hèctor Prats, Leny Álvarez, Francesc Illas, Ramón Sayós. Kinetic Monte Carlo simulations of the water gas shift reaction on Cu(1 1 1) from density functional theory based calculations. Journal of Catalysis 2016, 333 , 217-226. https://doi.org/10.1016/j.jcat.2015.10.029
  76. Wei Guo, Dionisios G. Vlachos. Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms9619
  77. Laura M. Herder, Jason M. Bray, William F. Schneider. Comparison of cluster expansion fitting algorithms for interactions at surfaces. Surface Science 2015, 640 , 104-111. https://doi.org/10.1016/j.susc.2015.02.017
  78. Beatriz Roldan Cuenya, Farzad Behafarid. Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity. Surface Science Reports 2015, 70 (2) , 135-187. https://doi.org/10.1016/j.surfrep.2015.01.001
  79. Michail Stamatakis. Kinetic modelling of heterogeneous catalytic systems. Journal of Physics: Condensed Matter 2015, 27 (1) , 013001. https://doi.org/10.1088/0953-8984/27/1/013001
  80. Jonathan E. Sutton, Dionisios G. Vlachos. Building large microkinetic models with first-principles׳ accuracy at reduced computational cost. Chemical Engineering Science 2015, 121 , 190-199. https://doi.org/10.1016/j.ces.2014.09.011
  81. John P. Clay, Jeffrey P. Greeley, Fabio H. Ribeiro, W. Nicholas Delgass, William F. Schneider. DFT comparison of intrinsic WGS kinetics over Pd and Pt. Journal of Catalysis 2014, 320 , 106-117. https://doi.org/10.1016/j.jcat.2014.09.026
  82. Klito C. Petallidou, Christos M. Kalamaras, Angelos M. Efstathiou. The effect of La3+, Ti4+ and Zr4+ dopants on the mechanism of WGS on ceria-doped supported Pt catalysts. Catalysis Today 2014, 228 , 183-193. https://doi.org/10.1016/j.cattod.2013.10.081
  83. Wei Guo, Dionisios G. Vlachos. On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption. The Journal of Chemical Physics 2014, 140 (1) , 014703. https://doi.org/10.1063/1.4855235
  84. Sara Aranifard, Salai Cheettu Ammal, Andreas Heyden. On the importance of metal–oxide interface sites for the water–gas shift reaction over Pt/CeO2 catalysts. Journal of Catalysis 2014, 309 , 314-324. https://doi.org/10.1016/j.jcat.2013.10.012
  85. Jens Nielsen, Mayeul d’Avezac, James Hetherington, Michail Stamatakis. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions. The Journal of Chemical Physics 2013, 139 (22) , 224706. https://doi.org/10.1063/1.4840395
  86. Salai Cheettu Ammal, Andreas Heyden. Origin of the unique activity of Pt/TiO2 catalysts for the water–gas shift reaction. Journal of Catalysis 2013, 306 , 78-90. https://doi.org/10.1016/j.jcat.2013.06.014
  87. Daojian Cheng, Fabio R. Negreiros, Edoardo Aprà, Alessandro Fortunelli. Computational Approaches to the Chemical Conversion of Carbon Dioxide. ChemSusChem 2013, 6 (6) , 944-965. https://doi.org/10.1002/cssc.201200872
  88. Christos M. Kalamaras, Klito C. Petallidou, Angelos M. Efstathiou. The effect of La3+-doping of CeO2 support on the water-gas shift reaction mechanism and kinetics over Pt/Ce1−xLaxO2−δ. Applied Catalysis B: Environmental 2013, 136-137 , 225-238. https://doi.org/10.1016/j.apcatb.2013.02.003
  89. Yannis Pantazis, Markos A. Katsoulakis. A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics. The Journal of Chemical Physics 2013, 138 (5) , 054115. https://doi.org/10.1063/1.4789612
  90. Hom Sharma, Ashish Mhadeshwar. A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC). Applied Catalysis B: Environmental 2012, 127 , 190-204. https://doi.org/10.1016/j.apcatb.2012.08.021
  91. Matthew A. Christiansen, Dionisios G. Vlachos. Microkinetic modeling of Pt-catalyzed ethylene glycol steam reforming. Applied Catalysis A: General 2012, 431-432 , 18-24. https://doi.org/10.1016/j.apcata.2012.04.010