Fe-Anchored Graphene Oxide: A Low-Cost and Easily Accessible Catalyst for Low-Temperature CO Oxidation

View Author Information
Department of Physics, Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China
Cite this: J. Phys. Chem. C 2012, 116, 3, 2507–2514
Publication Date (Web):December 22, 2011
https://doi.org/10.1021/jp209572d
Copyright © 2011 American Chemical Society
Article Views
2652
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

By means of first-principles computations, we investigated the catalytic capability of the Fe-anchored graphene oxide (Fe–GO) for CO oxidation with O2. The high-energy barrier of Fe atom diffusion on GO and the strong binding strength of Fe anchored on GO exclude the metal clustering problem and enhance the stability of the Fe–GO system. The Fe-anchored GO exhibits good catalytic activity for CO oxidation via the favorable Eley–Rideal (ER) mechanism with a two-step route, while the Langmuir–Hinshelwood (LH) mechanism is not kinetically favorable. The low-cost Fe-anchored GO system can be easily synthesized and serves as a promising green catalyst for low-temperature CO oxidation.

Supporting Information

ARTICLE SECTIONS
Jump To

Atomic configurations of the initial state (IS), transition state (TS), and final state (FS) for forming Fe–Fe bond on graphene oxide and CO oxidation on Fe-anchored graphene oxide via LH mechanism, and interaction between coadsorbed O2 and CO on Fe–GO. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 169 publications.

  1. Hong-Ying Zhuo, Xin Zhang, Jin-Xia Liang, Qi Yu, Hai Xiao, Jun Li. Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chemical Reviews 2020, 120 (21) , 12315-12341. https://doi.org/10.1021/acs.chemrev.0c00818
  2. Kai-Yang Chen, Shiuan-Yau Wu, Hsin-Tsung Chen. Unraveling Catalytic Mechanisms for CO Oxidation on Boron-Doped Fullerene: A Computational Study. ACS Omega 2020, 5 (44) , 28870-28876. https://doi.org/10.1021/acsomega.0c04532
  3. Cai Ning, Yadong Zhang, Zhaoshun Meng, Chuanyun Xiao, Ruifeng Lu. Computational Screening of Single Non-Noble Transition-Metal Atoms Confined Inside Boron Nitride Nanotubes for CO Oxidation. The Journal of Physical Chemistry C 2020, 124 (3) , 2030-2038. https://doi.org/10.1021/acs.jpcc.9b10585
  4. Iann C. Gerber, Philippe Serp. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews 2020, 120 (2) , 1250-1349. https://doi.org/10.1021/acs.chemrev.9b00209
  5. Hamid Reza Esmaili Zand, Hossein Ghafuri, Afsaneh Rashidizadeh, Zahra Khoushab. Study on Oxidative Condensation of Toluene and Hydrazine/Aniline Catalyzed by Copper Complex Immobilized on Functionalized Graphene Oxide. Industrial & Engineering Chemistry Research 2019, 58 (14) , 5379-5387. https://doi.org/10.1021/acs.iecr.8b05595
  6. Xu Zhang, Zihe Zhang, Dihua Wu, Xudong Zhao, and Zhen Zhou . K1–xMo3P2O14 as Support for Single-Atom Catalysts. The Journal of Physical Chemistry C 2017, 121 (41) , 22895-22900. https://doi.org/10.1021/acs.jpcc.7b07643
  7. Ravikiran Mandapaka, Saiphaneendra Bachu, Chandan Srivastava, and Giridhar Madras . Microkinetic Modeling of CO Oxidation over FePt-Decorated Graphene Oxide. Industrial & Engineering Chemistry Research 2017, 56 (30) , 8465-8473. https://doi.org/10.1021/acs.iecr.7b01935
  8. Xueling Lei, Godwin Mbamalu, and Changyong Qin . CO Oxidation by Molecular and Atomic Oxygen on Ag(100): A Density Functional Theory Study. The Journal of Physical Chemistry C 2017, 121 (5) , 2635-2642. https://doi.org/10.1021/acs.jpcc.6b09105
  9. J. Ulises Reveles, Nakul N. Karle, Tunna Baruah, and Rajendra R. Zope . Electronic and Structural Properties of C60 and [email protected] Supported on Graphene Nanoflakes. The Journal of Physical Chemistry C 2016, 120 (45) , 26083-26092. https://doi.org/10.1021/acs.jpcc.6b07405
  10. Xiaomei Gao, Shujiao Wang, and Sen Lin . Defective Hexagonal Boron Nitride Nanosheet on Ni(111) and Cu(111): Stability, Electronic Structures, and Potential Applications. ACS Applied Materials & Interfaces 2016, 8 (36) , 24238-24247. https://doi.org/10.1021/acsami.6b08097
  11. Lingyun Hu, Xiaoshu Zhu, Yichen Du, Yafei Li, Xiaosi Zhou, and Jianchun Bao . A Chemically Coupled Antimony/Multilayer Graphene Hybrid as a High-Performance Anode for Sodium-Ion Batteries. Chemistry of Materials 2015, 27 (23) , 8138-8145. https://doi.org/10.1021/acs.chemmater.5b03920
  12. Ioanna Fampiou and Ashwin Ramasubramaniam . Influence of Support Effects on CO Oxidation Kinetics on CO-Saturated Graphene-Supported Pt13 Nanoclusters. The Journal of Physical Chemistry C 2015, 119 (16) , 8703-8710. https://doi.org/10.1021/acs.jpcc.5b00029
  13. Chih-Chun Chen, Chen-Hao Yeh, Chun-Chih Chang, and Jia-Jen Ho . Conversion of CO2 and C2H6 to Propanoic Acid on an Iridium-Modified Graphene Oxide Surface: Quantum-Chemical Investigation. Industrial & Engineering Chemistry Research 2015, 54 (5) , 1539-1546. https://doi.org/10.1021/ie503982t
  14. Fengyu Li, Yafei Li, Xiao Cheng Zeng, and Zhongfang Chen . Exploration of High-Performance Single-Atom Catalysts on Support M1/FeOx for CO Oxidation via Computational Study. ACS Catalysis 2015, 5 (2) , 544-552. https://doi.org/10.1021/cs501790v
  15. D. W. Boukhvalov . Oxidation of a Graphite Surface: The Role of Water. The Journal of Physical Chemistry C 2014, 118 (47) , 27594-27598. https://doi.org/10.1021/jp509659p
  16. Jia Hu . Graphene-Oxide-Stabilized Atomic Ti for H2O2 Activation and Propylene Epoxidation: A First-Principle Study. The Journal of Physical Chemistry C 2013, 117 (31) , 16005-16011. https://doi.org/10.1021/jp402206c
  17. Lu Wang, Xiuyun Zhang, Helen L.W. Chan, Feng Yan, and Feng Ding . Formation and Healing of Vacancies in Graphene Chemical Vapor Deposition (CVD) Growth. Journal of the American Chemical Society 2013, 135 (11) , 4476-4482. https://doi.org/10.1021/ja312687a
  18. Chu Chen, Jun Zhang, Bei Zhang, and Hai Ming Duan . Hydrogen Adsorption of Mg-Doped Graphene Oxide: A First-Principles Study. The Journal of Physical Chemistry C 2013, 117 (9) , 4337-4344. https://doi.org/10.1021/jp308271b
  19. P. Zhang, X. F. Chen, J. S. Lian, and Q. Jiang . Structural Selectivity of CO Oxidation on Fe/N/C Catalysts. The Journal of Physical Chemistry C 2012, 116 (33) , 17572-17579. https://doi.org/10.1021/jp304097m
  20. Adnan Ali Khan, Mehdi D. Esrafili, Rashid Ahmad, Iftikhar Ahmad. Al-decorated C24N24 fullerene: A robust single-atom catalyst for CO oxidation. Polyhedron 2021, 210 , 115497. https://doi.org/10.1016/j.poly.2021.115497
  21. Sajjad Ali, Zijuan Xie, Hu Xu. Stability and Catalytic Performance of Single‐Atom Supported on Ti 2 CO 2 for Low‐Temperature CO Oxidation: A First‐Principles Study. ChemPhysChem 2021, 22 (22) , 2352-2361. https://doi.org/10.1002/cphc.202100436
  22. Jia-Xing Guo, Shao-Yi Wu, Si-Ying Zhong, Gao-Jun Zhang, Gao-Qiang Shen, Xing-Yuan Yu. Janus WSSe monolayer adsorbed with transition-metal atoms (Fe, Co and Ni): excellent performance for gas sensing and CO catalytic oxidation. Applied Surface Science 2021, 565 , 150558. https://doi.org/10.1016/j.apsusc.2021.150558
  23. Yanan Tang, Weiguang Chen, Jinlei Shi, Zhiwen Wang, Yingqi Cui, Da Teng, Yi Li, Zhen Feng, Xianqi Dai. Nitrogen and boron coordinated single-atom catalysts for low-temperature CO/NO oxidations. Journal of Materials Chemistry A 2021, 9 (27) , 15329-15345. https://doi.org/10.1039/D1TA03099J
  24. Mingming Luo, Chao Liu, Shaik Gouse Peera, Tongxiang Liang. Atomic level N-coordinated Fe dual-metal embedded in graphene: An efficient double atoms catalyst for CO oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 621 , 126575. https://doi.org/10.1016/j.colsurfa.2021.126575
  25. Meiling Liu, Chao Liu, Mingming Luo, Shaik Gouse Peera, Tongxiang Liang. Theoretical study on iron and nitrogen co-doped graphene catalyzes CO oxidation. Molecular Catalysis 2021, 509 , 111624. https://doi.org/10.1016/j.mcat.2021.111624
  26. Donglin Li, Wenliang Li, Jingping Zhang. CO oxidation on atomic nickel/phosphorene nanosheet: An efficient single-atom catalyst. Molecular Catalysis 2021, 510 , 111626. https://doi.org/10.1016/j.mcat.2021.111626
  27. Jia-Xing Guo, Shao-Yi Wu, Si-Ying Zhong, Gao-Jun Zhang, Xing-Yuan Yu, Li-Na Wu. Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers. Physical Chemistry Chemical Physics 2021, 23 (18) , 11004-11014. https://doi.org/10.1039/D1CP00994J
  28. Jiang Zhu, Xining Feng, Xin Liu, Xin Zhang, Yong Wu, Hongdan Zhu, Yang Yang, Ting Duan, Yanhui Sui, Yu Han, Changgong Meng. The formation and evolution of carbonate species in CO oxidation over mono-dispersed Fe on graphene. Physical Chemistry Chemical Physics 2021, 23 (17) , 10509-10517. https://doi.org/10.1039/D1CP00814E
  29. Minhua Zhang, Jingbo Du, Yifei Chen. Single Cu atom supported on modified h-BN monolayer as n-p codoped catalyst for CO oxidation: A computational study. Catalysis Today 2021, 368 , 148-160. https://doi.org/10.1016/j.cattod.2020.03.058
  30. Shiva Kargar, Dawood Elhamifar, Ali Zarnegaryan. Ionic liquid modified graphene oxide supported Mo-complex: A novel, efficient and highly stable catalyst. Surfaces and Interfaces 2021, 23 , 100946. https://doi.org/10.1016/j.surfin.2021.100946
  31. Adnan Ali Khan, Mehdi D. Esrafili, Rashid Ahmad, Iftikhar Ahmad. Al-Decorated C 24N 24 Fullerene: A Promising Single-Atom Catalyst for CO Oxidation. SSRN Electronic Journal 2021, 80 https://doi.org/10.2139/ssrn.3859150
  32. Nuria Aguilar, Mert Atilhan, Santiago Aparicio. Single atom transition metals on MoS2 monolayer and their use as catalysts for CO2 activation. Applied Surface Science 2020, 534 , 147611. https://doi.org/10.1016/j.apsusc.2020.147611
  33. Yanan Tang, Weiguang Chen, Zhiwen Wang, Gao Zhao, Yingqi Cui, Zhaohan Li, Yi Li, Zhen Feng, Xianqi Dai. Formation, electronic, gas sensing and catalytic characteristics of graphene-like materials: A first-principles study. Applied Surface Science 2020, 530 , 147178. https://doi.org/10.1016/j.apsusc.2020.147178
  34. Chaoqun Ma, Bingping Liu, Shihai Yan. Enhanced catalytic activity for CO oxidation by Fe-Adsorbing on BN under mild condition: A promising single-atom catalyst. Molecular Catalysis 2020, 495 , 111165. https://doi.org/10.1016/j.mcat.2020.111165
  35. Yulu Miao, Jianfeng Zheng, Yongjin Liu, Ning Xiang, Yifan Li, Xiaojin Han, Zhanggen Huang. Relationship Between Oxygen-Containing Groups and Acidity of Graphene Oxide Supported Mn-Based SCR Catalysts and the Effects on the Catalytic Activity. Catalysis Letters 2020, 150 (11) , 3243-3255. https://doi.org/10.1007/s10562-020-03218-8
  36. Xiaofeng Wang, Baitang Jin, Xiaoqing He, Tommi A. White, Xinhua Liang. Highly Active and Stable Fe/SiO2 Catalyst Synthesized by Atomic Layer Deposition for CO Oxidation. Catalysis Letters 2020, 150 (11) , 3296-3303. https://doi.org/10.1007/s10562-020-03224-w
  37. Mehdi D. Esrafili, Safa Heydari. Si-doped C 3 N monolayers as efficient single-atom catalysts for the reduction of N 2 O: a computational study. Molecular Physics 2020, 118 (18) , e1759830. https://doi.org/10.1080/00268976.2020.1759830
  38. Nasim Hassani. C 20 fullerene and its boron- and nitrogen-doped counterparts as an efficient catalyst for CO oxidation. Molecular Physics 2020, 118 (18) , e1766708. https://doi.org/10.1080/00268976.2020.1766708
  39. Donglin Li, Wenliang Li, Jingping Zhang. Fe doped BN monolayer: A promising low-cost single atom catalyst for promoted CO oxidation activity. Applied Surface Science 2020, 525 , 146567. https://doi.org/10.1016/j.apsusc.2020.146567
  40. Luchao Han, Bengang Li, Shu Tao, Jie An, Bo Fu, Yunman Han, Wei Li, Xinyue Li, Siyuan Peng, Tianya Yin. Graphene oxide-induced formation of a boron-doped iron oxide shell on the surface of NZVI for enhancing nitrate removal. Chemosphere 2020, 252 , 126496. https://doi.org/10.1016/j.chemosphere.2020.126496
  41. Yanan Tang, Weiguang Chen, Hongwei Zhang, Zhiwen Wang, Da Teng, Yingqi Cui, Zhen Feng, Xianqi Dai. Single-atom metal-modified graphenylene as a high-activity catalyst for CO and NO oxidation. Physical Chemistry Chemical Physics 2020, 22 (28) , 16224-16235. https://doi.org/10.1039/D0CP01062F
  42. Chengyan Ge, Yaxin Yu, Dongqi An, Qing Tong, Changjin Tang, Fei Gao, Jingfang Sun, Lin Dong. Surface configuration modulation for FeO -CeO2/γ-Al2O3 catalysts and its influence in CO oxidation. Journal of Catalysis 2020, 386 , 139-150. https://doi.org/10.1016/j.jcat.2020.04.005
  43. Yu-Gyeong Kang, Huong Chi Vu, Yoon-Young Chang, Yoon-Seok Chang. Fe(III) adsorption on graphene oxide: A low-cost and simple modification method for persulfate activation. Chemical Engineering Journal 2020, 387 , 124012. https://doi.org/10.1016/j.cej.2020.124012
  44. Shahaboddin Shamshirband, Alireza Baghban, Narjes Nabipour, Meysam Najafi. Manganese-doped nanocages (B38N38 and C76) and titanium-doped nanocages (C48 and B24N24) as effective catalysts to oxidize the NO2 and ClO molecules. Applied Surface Science 2020, 508 , 145249. https://doi.org/10.1016/j.apsusc.2020.145249
  45. Weiguang Chen, Yanan Tang, Gao Zhao, Da Teng, Huadou Chai, Xianqi Dai. Structural, electronic and catalytic performance of single-atom Fe anchored 3Si-doped graphene. Molecular Physics 2020, 118 (1) , e1580783. https://doi.org/10.1080/00268976.2019.1580783
  46. Kah Yam, Na Guo, Zhuoling Jiang, Shulong Li, Chun Zhang. Graphene-Based Heterogeneous Catalysis: Role of Graphene. Catalysts 2020, 10 (1) , 53. https://doi.org/10.3390/catal10010053
  47. Parisa Nematollahi, Erik C. Neyts. Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): A comparative DFT study. Applied Surface Science 2019, 496 , 143618. https://doi.org/10.1016/j.apsusc.2019.143618
  48. Mehdi D. Esrafili, Safa Heydari. A promising and new single-atom catalyst for CO oxidation: Si-embedded MoS2 monolayer. Journal of Physics and Chemistry of Solids 2019, 135 , 109123. https://doi.org/10.1016/j.jpcs.2019.109123
  49. Yanan Tang, Weiguang Chen, Bingjie Wu, Gao Zhao, Zhiyong Liu, Yi Li, Xianqi Dai. Formation Mechanism, Geometric Stability and Catalytic Activity of a Single Iron Atom Supported on N‐Doped Graphene. ChemPhysChem 2019, 20 (19) , 2506-2517. https://doi.org/10.1002/cphc.201900666
  50. Yanan Tang, Jincheng Zhou, Weiguang Chen, Huadou Chai, Yi Li, Zhen Feng, Xianqi Dai. Theoretical evaluation on single-atom Fe doped divacancy graphene for catalytic CO and NO oxidation by O2 molecules. Molecular Catalysis 2019, 476 , 110524. https://doi.org/10.1016/j.mcat.2019.110524
  51. Parmanand, Shweta Kumari, Ayushi Mittal, Anoop Kumar, Krishna, Sunil K. Sharma. Palladium Nanoparticles Immobilized on Schiff Base‐Functionalized Graphene‐Oxide: Application in Carbon‐Carbon Cross‐Coupling Reactions. ChemistrySelect 2019, 4 (36) , 10828-10837. https://doi.org/10.1002/slct.201902242
  52. Chaoqun Ma, Bingping Liu, Hai Wang, Shihai Yan. Catalytic Mechanism of CO Oxidation on Three‐Silicon‐Doped Hexagonal Boron Nitride. ChemNanoMat 2019, 5 (9) , 1202-1208. https://doi.org/10.1002/cnma.201900274
  53. Weiguang Chen, Gao Zhao, Da Teng, Aizhong Qiu, Yanan Tang, Xianqi Dai. Formation, geometric properties, and surface activities of nSi clusters (n = 1 − 4) doped graphene as metal-free catalyst. Applied Physics A 2019, 125 (9) https://doi.org/10.1007/s00339-019-2940-y
  54. Hongbo Niu, Liwei Sun, Yulan Xu, Meysam Najafi. Theoretical investigation of oxidation of NO (NO + ½ O2 → NO2) on surfaces of nickel-doped nanocages (Ni–C60 and Ni–B30N30). Journal of Molecular Graphics and Modelling 2019, 91 , 140-147. https://doi.org/10.1016/j.jmgm.2019.06.010
  55. Guoliang Dai, Jiahui Liu, Hui Qian. CO catalytic oxidation over graphene with double vacancy-embedded molybdenum: a DFT investigation. Carbon Letters 2019, 29 (4) , 337-344. https://doi.org/10.1007/s42823-019-00038-8
  56. Donglin Li, Wenliang Li, Jingping Zhang. Al doped MoS2 monolayer: A promising low-cost single atom catalyst for CO oxidation. Applied Surface Science 2019, 484 , 1297-1303. https://doi.org/10.1016/j.apsusc.2019.02.016
  57. Zhong Liu, Xi-ren Cheng, Yi-min Yang, Hong-zhang Jia, Bao-quan Bai, Li Zhao. DFT Study of N2O Adsorption onto the Surface of M-Decorated Graphene Oxide (M = Mg, Cu or Ag). Materials 2019, 12 (16) , 2611. https://doi.org/10.3390/ma12162611
  58. Fatemeh Mofidi, Adel Reisi-Vanani. Sensing and elimination of the hazardous materials such as Sarin by metal functionalized γ-graphyne surface: A DFT study. Journal of Molecular Liquids 2019, 286 , 110929. https://doi.org/10.1016/j.molliq.2019.110929
  59. Noor H. Jabarullah, Razieh Razavi, Mohadeseh Yazdani Hamid, Qahtan. A. Yousif, Meysam Najafi. Potential of Ge-adopted Boron Nitride Nanotube as Catalyst for Sulfur Dioxide Oxidation. Protection of Metals and Physical Chemistry of Surfaces 2019, 55 (4) , 671-676. https://doi.org/10.1134/S2070205119040129
  60. Wei-Huan Kao, Shiuan-Yau Wu, Hsin-Tsung Chen. Exploring reaction mechanisms for CO oxidation on boron-doped carbon nanotubes: A computational approach. Applied Surface Science 2019, 480 , 63-69. https://doi.org/10.1016/j.apsusc.2019.02.223
  61. Donglin Li, Wenliang Li, Jingping Zhang. Catalytic CO oxidation by Fe doped penta-graphene: A density functional study. Molecular Catalysis 2019, 470 , 48-55. https://doi.org/10.1016/j.mcat.2019.03.023
  62. F. Montejo-Alvaro, J. Oliva, A. Zarate, M. Herrera-Trejo, H.M. Hdz-García, A.I. Mtz-Enriquez. Icosahedral transition metal clusters (M13, M = Fe, Ni, and Cu) adsorbed on graphene quantum dots, a DFT study. Physica E: Low-dimensional Systems and Nanostructures 2019, 110 , 52-58. https://doi.org/10.1016/j.physe.2019.02.005
  63. Zhiqiang Wang, Dianlong Zhao, Shidong Yu, Zikai Nie, Yuwei Li, Lijun Zhang. First-principles investigation of structural and electronic properties of oxygen adsorbing phosphorene. Progress in Natural Science: Materials International 2019, 29 (3) , 316-321. https://doi.org/10.1016/j.pnsc.2019.03.015
  64. Zhe Chen, Jingxiang Zhao, Carlos R. Cabrera, Zhongfang Chen. Computational Screening of Efficient Single‐Atom Catalysts Based on Graphitic Carbon Nitride (g‐C 3 N 4 ) for Nitrogen Electroreduction. Small Methods 2019, 3 (6) , 1800368. https://doi.org/10.1002/smtd.201800368
  65. Bora Ye, Minwoo Lee, Bora Jeong, Jinwoo Kim, Duck Hyun Lee, Jeong Min Baik, Hong-Dae Kim. Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Catalysis Today 2019, 328 , 300-306. https://doi.org/10.1016/j.cattod.2018.12.007
  66. Mehdi D. Esrafili, Parisasadat Mousavian. A DFT study on the possibility of using a single Cu atom incorporated nitrogen-doped graphene as a promising and highly active catalyst for oxidation of CO. International Journal of Quantum Chemistry 2019, 119 (7) , e25857. https://doi.org/10.1002/qua.25857
  67. Kiumars Bahrami, Homa Targhan. A new strategy to design a graphene oxide supported palladium complex as a new heterogeneous nanocatalyst and application in carbon-carbon and carbon-heteroatom cross-coupling reactions. Applied Organometallic Chemistry 2019, 33 (4) , e4842. https://doi.org/10.1002/aoc.4842
  68. Sakine Rezaie Kahkhaie, Halimeh Rajabzadeh, Meysam Najafi, Razieh Razavi, Milad Janghorban Lariche. Oxidation of Methylene via Sn-adsorbed Boron Nitride Nanocage (B30N30): DFT Investigation. Silicon 2019, 11 (2) , 995-1000. https://doi.org/10.1007/s12633-018-9913-1
  69. Zicheng Zuo, Dan Wang, Jin Zhang, Fushen Lu, Yuliang Li. Synthesis and Applications of Graphdiyne‐Based Metal‐Free Catalysts. Advanced Materials 2019, 31 (13) , 1803762. https://doi.org/10.1002/adma.201803762
  70. Sadegh Sadeghi, Mitra Amani. Co-doped triel–pnicogen graphene as metal-free catalyst for CO oxidation: Role of multi-center covalency. Journal of Molecular Modeling 2019, 25 (3) https://doi.org/10.1007/s00894-019-3960-4
  71. Xin Li, Munir Ahmed, A. Surendar, Razieh Razavi, Meysam Najafi. Study of capacity of Sn C60 and Ge B36N36 nanocages as catalysts of oxidation of SiO and N2 molecules. Materials Chemistry and Physics 2019, 223 , 694-699. https://doi.org/10.1016/j.matchemphys.2018.11.065
  72. Haiquan Zhang, Yanan Tang, Huadou Chai, Weiguang Chen, Mingyu Zhao, Xianqi Dai. CO oxidation over BC 3 nanosheet: a theoretical study. Molecular Physics 2019, 117 (2) , 125-135. https://doi.org/10.1080/00268976.2018.1503748
  73. Ramesh Kumar Singh, Naresh Nalajala, Tathagata Kar, Alex Schechter. Functionalization of Graphene—A Critical Overview of its Improved Physical, Chemical and Electrochemical Properties. 2019,,, 139-173. https://doi.org/10.1007/978-3-030-30207-8_6
  74. Guoliang Dai, Lei Chen, Xin Zhao. Catalytic oxidation mechanisms of carbon monoxide over single and double vacancy Cr-embedded graphene. Journal of Materials Science 2019, 54 (2) , 1395-1408. https://doi.org/10.1007/s10853-018-2896-x
  75. Karim Kakaei, Mehdi D. Esrafili, Ali Ehsani. Introduction to Catalysis. 2019,,, 1-21. https://doi.org/10.1016/B978-0-12-814523-4.00001-0
  76. Karim Kakaei, Mehdi D. Esrafili, Ali Ehsani. Gas Convertor and Storage. 2019,,, 387-437. https://doi.org/10.1016/B978-0-12-814523-4.00010-1
  77. Mehdi D. Esrafili, Soheila Asadollahi. Exploring different reaction mechanisms for oxidation of CO over a single Pd atom incorporated nitrogen-doped graphene: A DFT study. Applied Surface Science 2019, 463 , 526-534. https://doi.org/10.1016/j.apsusc.2018.08.249
  78. M. Rosa Axet, Jerome Durand, Maryse Gouygou, Philippe Serp. Surface coordination chemistry on graphene and two-dimensional carbon materials for well-defined single atom supported catalysts. 2019,,, 53-174. https://doi.org/10.1016/bs.adomc.2019.01.002
  79. Razieh Razavi, Seyyed Milad Abrishamifar, Mohammad Reza Rezaei Kahkha, Arash Vojood, Meysam Najafi. Sn-adopted fullerene $$(\hbox {C}_{60})$$ ( C 60 ) nanocage as acceptable catalyst for silicon monoxide oxidation. Bulletin of Materials Science 2018, 41 (6) https://doi.org/10.1007/s12034-018-1652-9
  80. Mehdi D. Esrafili. Exploring Reaction Mechanisms for the Reduction of NO Molecules over Al‐ or Si‐Anchored Graphene Oxide: A Metal‐Free Approach. ChemistrySelect 2018, 3 (43) , 12072-12079. https://doi.org/10.1002/slct.201802579
  81. Camila Rivera‐Cárcamo, Philippe Serp. Single Atom Catalysts on Carbon‐Based Materials. ChemCatChem 2018, 10 (22) , 5058-5091. https://doi.org/10.1002/cctc.201801174
  82. Yan WANG, Ze-hua CHEN, Jing HUANG, Gao-jie LI, Jian-liang CAO, Bo ZHANG, Xing-ying CHEN, Huo-li ZHANG, Lei JIA. Preparation and catalytic behavior of reduced graphene oxide supported cobalt oxide hybrid nanocatalysts for CO oxidation. Transactions of Nonferrous Metals Society of China 2018, 28 (11) , 2265-2273. https://doi.org/10.1016/S1003-6326(18)64871-X
  83. A. Pourabadeh, B. Nasrollahzadeh, R. Razavi, A. Bozorgian, M. Najafi. Oxidation of FO and N2 Molecules on the Surfaces of Metal-Adopted Boron Nitride Nanostructures as Efficient Catalysts. Journal of Structural Chemistry 2018, 59 (6) , 1484-1491. https://doi.org/10.1134/S0022476618060355
  84. A. Surendar, Alireza Bozorgian, Andino Maseleno, Lubov K. Ilyashenko, Meysam Najafi. Oxidation of toxic gases via Ge B36N36 and Ge C72 nanocages as potential catalysts. Inorganic Chemistry Communications 2018, 96 , 206-210. https://doi.org/10.1016/j.inoche.2018.08.025
  85. Guoliang Dai, Lei Chen, Xin Zhao. Tungsten-Embedded Graphene: Theoretical Study on a Potential High-Activity Catalyst toward CO Oxidation. Materials 2018, 11 (10) , 1848. https://doi.org/10.3390/ma11101848
  86. Mehdi D. Esrafili, Soheila Asadollahi. A Single Pd Atom Stabilized on Boron-Vacancy of h-BN Nanosheet: A Promising Catalyst for CO Oxidation. ChemistrySelect 2018, 3 (32) , 9181-9188. https://doi.org/10.1002/slct.201801848
  87. Ji-Yu Tang, Jia-Sheng Shen, Lei Chen, Jia-Wei Jiang, Jia Lu, Xin Zhao, Guo-Liang Dai. Investigation of carbon monoxide catalytic oxidation on vanadium-embedded graphene. Monatshefte für Chemie - Chemical Monthly 2018, 149 (8) , 1349-1356. https://doi.org/10.1007/s00706-018-2181-3
  88. Razieh Razavi, Reza Eghtedaei, Halimeh Rajabzadeh, Meysam Najafi. Oxidation of NO on surface of Sn-doped carbon nanocone: DFT study. Inorganic Chemistry Communications 2018, 94 , 85-91. https://doi.org/10.1016/j.inoche.2018.06.009
  89. Mehdi D. Esrafili, Parisasadat Mousavian. Probing reaction pathways for oxidation of CO by O2 molecule over P-doped divacancy graphene: A DFT study. Applied Surface Science 2018, 440 , 580-585. https://doi.org/10.1016/j.apsusc.2018.01.209
  90. Mehdi D. Esrafili, Safa Heydari. CO Oxidation Catalyzed by a Single Ti Atom Supported on Divacancy Defective Graphene: A Dispersion-Corrected DFT Study. ChemistrySelect 2018, 3 (16) , 4471-4479. https://doi.org/10.1002/slct.201800573
  91. Yanan Tang, Zigang Shen, Yaqiang Ma, Weiguang Chen, Dongwei Ma, Mingyu Zhao, Xianqi Dai. Divacancy-nitrogen/boron-codoped graphene as a metal-free catalyst for high-efficient CO oxidation. Materials Chemistry and Physics 2018, 207 , 11-22. https://doi.org/10.1016/j.matchemphys.2017.12.048
  92. Xiao Hua Wang, Da Wei Wang, Ai Jun Yang, Nikhil Koratkar, Ji Feng Chu, Pin Lei Lv, Ming Zhe Rong. Effects of adatom and gas molecule adsorption on the physical properties of tellurene: a first principles investigation. Physical Chemistry Chemical Physics 2018, 20 (6) , 4058-4066. https://doi.org/10.1039/C7CP07906K
  93. Qingming Deng, Tiantian Wu, Guibin Chen, Heine Anton Hansen, Tejs Vegge. Combinatorial selection of a two-dimensional 3d-TM-tetracyanoquinodimethane (TM-TCNQ) monolayer as a high-activity nanocatalyst for CO oxidation. Physical Chemistry Chemical Physics 2018, 20 (7) , 5173-5179. https://doi.org/10.1039/C7CP07988E
  94. Bocheng Qiu, Mingyang Xing, Jinlong Zhang. Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews 2018, 47 (6) , 2165-2216. https://doi.org/10.1039/C7CS00904F
  95. M. Manolata Devi, N. Dolai, S. Sreehala, Y. M. Jaques, R. S. Kumar Mishra, Douglas S. Galvao, C. S. Tiwary, Sudhanshu Sharma, Krishanu Biswas. Morphology controlled graphene–alloy nanoparticle hybrids with tunable carbon monoxide conversion to carbon dioxide. Nanoscale 2018, 10 (18) , 8840-8850. https://doi.org/10.1039/C7NR09688G
  96. Yanan Tang, Huadou Chai, Hongwei Zhang, Weiguang Chen, Wuqin Zhang, Xianqi Dai. Tuning the adsorption and interaction of CO and O 2 on graphene-like BC 3 -supported non-noble metal atoms. Physical Chemistry Chemical Physics 2018, 20 (20) , 14040-14052. https://doi.org/10.1039/C8CP00772A
  97. Yadong Zhang, Yuzhen Liu, Zhaoshun Meng, Cai Ning, Chuanyun Xiao, Kaiming Deng, Purusottam Jena, Ruifeng Lu. Confinement boosts CO oxidation on an Ni atom embedded inside boron nitride nanotubes. Physical Chemistry Chemical Physics 2018, 20 (26) , 17599-17605. https://doi.org/10.1039/C8CP01957F
  98. Fengyu Li, Zhongfang Chen. Cu dimer anchored on C 2 N monolayer: low-cost and efficient Bi-atom catalyst for CO oxidation. Nanoscale 2018, 10 (33) , 15696-15705. https://doi.org/10.1039/C8NR03394C
  99. Yulan Lu, Lijun Su, Jing Qi, Shulai Lei, Bao Liu, Qi Zang, Siqi Shi, Xingbin Yan. A combined DFT and experimental study on the nucleation mechanism of NiO nanodots on graphene. Journal of Materials Chemistry A 2018, 6 (28) , 13717-13724. https://doi.org/10.1039/C8TA03451F
  100. Wang Rui, Feng Wei, Zhang Dandan, Liu Huiling, Zhao Huanyu, Huang Xuri. Geometric stability of PtFe/PdFe embedded in graphene and catalytic activity for CO oxidation. Applied Organometallic Chemistry 2017, 31 (11) https://doi.org/10.1002/aoc.3808
Load all citations